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Abstract: Accurate iris segmentation is a crucial preprocessing stage for computer-aided ophthalmic
disease diagnosis. The quality of iris images taken under different camera sensors varies greatly, and
thus accurate segmentation of heterogeneous iris databases is a huge challenge. At present, network
architectures based on convolutional neural networks (CNNs) have been widely applied in iris
segmentation tasks. However, due to the limited kernel size of convolution layers, iris segmentation
networks based on CNNs cannot learn global and long-term semantic information interactions well,
and this will bring challenges to accurately segmenting the iris region. Inspired by the success of
vision transformer (VIT) and swin transformer (Swin T), a hybrid deep learning approach is proposed
to segment heterogeneous iris images. Specifically, we first proposed a bilateral segmentation
backbone network that combines the benefits of Swin T with CNNs. Then, a multiscale feature
information extraction module (MFIEM) is proposed to extract multiscale spatial information at a
more granular level. Finally, a channel attention mechanism module (CAMM) is used in this paper to
enhance the discriminability of the iris region. Experimental results on a multisource heterogeneous
iris database show that our network has a significant performance advantage compared with some
state-of-the-art (SOTA) iris segmentation networks.

Keywords: image segmentation; iris segmentation; semantic segmentation; CNNs; deep learning

1. Introduction

Iris recognition has been widely applied in security, e-commerce, finance, etc. Iris
segmentation is when iris regions are segmented from a lot of interfering information,
which includes eyelids, eyelashes, and light [1]. An accurate iris segmentation method
means that the iris region can include more discriminative features and get a higher final
recognition accuracy [2]. For same-sensor iris segmentation, the database is compiled
with the same acquisition equipment and shooting environment. These iris images in
the training set and test set have similar data distribution, and thus most of the properly
trained iris segmentation networks can achieve promising segmentation accuracy on the
test set. For cross-sensor iris segmentation, uncorrelated noise (e.g., user cooperation,
occlusion, illumination, gaze deviation, etc.) frequently appears in the cross-database
situation, which can seriously threaten its segmentation performance [3]. Meanwhile,
there is a significant imaging gap between training and testing sets in the cross-database
scenario [4,5]. Therefore, cross-database iris segmentation is a challenging task [6].

Many traditional iris segmentation methods involved locating iris boundaries using
variants of the Hough Transform [7,8] and the integro-differential operator [9,10]. These
traditional iris segmentation algorithms can achieve satisfactory segmentation results on
the ideal iris image. However, in most instances, iris images may contain a lot of irrelevant
noise, and thus the segmentation accuracy of these algorithms will drop significantly.

In the past few years, CNNs have achieved milestones in image semantic segmenta-
tion. A series of CNNs-based semantic segmentation networks have constantly advanced
state-of-the-art performance. At present, the existing iris segmentation methods are mostly
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based on several typical semantic segmentation networks, such as fully convolutional net-
works (FCN) [11], U-shaped net (U-Net) [12], Linknet [13], etc. Specifically, Jalilian et al. [14]
first proposed an FCN-based iris segmentation network. Then, Chen et al. [15] proposed a
DFCN combined with dense blocks to alleviate model overfitting and gradient vanishing.
Mousumi Sardar et al. [16] proposed an interactive variant of UNet for iris segmentation,
referred to as ISqEUNet. By introducing the squeeze and expand module, the model param-
eters are decreased by 48.39% compared with the original UNet. Tian et al. [17] proposed an
iris segmentation algorithm SRN-UNet to solve the problem of low segmentation accuracy
for segmenting low-quality iris images. In order to improve multi-source heterogeneous
iris segmentation accuracy, Huo et al. [1] proposed a DMS-UNet based on DropBlock and
shortcut branches. The DropBlock structure is used to improve the generalization ability
of the network, and the shortcut branch is used to reduce the loss of information. The
current iris segmentation networks have good segmentation accuracy on the same database.
However, these networks have poor generalization ability and migration ability when
different iris databases are used for training and test sets.

VIT [18] based on self-attention has the ability to extract global feature information
because it performs self-attention computations on the entire image. However, the heavy
computational cost hampers its application in semantic segmentation tasks. Liu et al. [19]
proposed a hierarchical vision transformer based on shifted windows, referred to as a
Swin T. Computational self-attention within a moving window can greatly reduce the
computational cost while maintaining the global feature information ability. Compared
with CNNs, Swin T pays more attention to global features but ignores the detailed features
in the image. However, CNNs have better performance than Swin T in extracting image
details such as texture features.

Our main innovations and contributions are as follows:

1. We proposed a bilateral segmentation backbone network that combines the benefits
of Swin T with CNNs for accurate iris segmentation. Swin T is used to learn global
and long-term semantic information interactions, and CNNs are used to extract fine-
grained iris texture features and edge features

2. We designed a parallel structure based on dilated convolution to enhance the receptive
field and capture rich iris feature information. MFIEM can extract multiscale context
heterogeneous iris feature information.

3. In order to reduce the interference of irrelevant noise in the network, a channel atten-
tion mechanism module was used in this paper. CAMM can assign the importance
of information on the channel, enhance the important features, suppress the useless
features, and improve the representation ability of the network model.

2. Related Works

Most traditional iris segmentation algorithms need to prespecify that the iris region
is a standard circle or ellipse. Meanwhile, there are also strict requirements (e.g., user
cooperation, no obvious occlusion, etc.) for the collection environment. The methods based
on deep neural networks can effectively compensate for the shortcomings of traditional
methods. Therefore, deep learning technology and convolutional neural network have
gradually become the mainstream methods to solve the iris segmentation task. Some
CNNs-based iris segmentation methods are presented below.

Chen et al. [20] proposed a high-performance network architecture to improve the
segmentation accuracy of low-quality iris images. Based on the encoding and decoding
structure, the network introduces an improved skip connection structure to effectively
fuse the spatial location information of low-level features and the semantic information
of high-level features. Although the proposed method achieves promising segmentation
accuracy, the network lacks sufficient training data.

The training data directly affects the performance of supervised iris segmentation
networks. Although data augmentation techniques (e.g., scaling, flipping, cropping) have
been successful in image classification tasks, these techniques are ineffective in the field of
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iris segmentation. To this end, Putri et al. [21] utilized generative adversarial networks to
generate different types of iris images. The model generates a large number of iris images
by using predefined iris masks and periocular masks. The model provides a new approach
to solving small-sample iris image segmentation.

To improve the efficiency of the iris segmentation network, Miron et al. [22] designed
a compact UNet network structure that requires only three down-sampling operations
and three up-sampling operations. The network utilizes traditional convolutional layers
and depth-wise separable convolutional layers to extract iris image features. Compared
with UNet, the network can greatly reduce the training parameters while maintaining the
segmentation accuracy.

In order to meet the demand for multiple scenarios iris segmentation, Huo et al. [23]
proposed an Attention Mechanism UNet++ (AM-UNet++). They designed a deeply super-
vised learning scheme to train the network structure and used the pruning scheme to obtain
four iris segmentation networks with different performances in the inference stage. AM-
UNet++ (L1) and AM-UNet++ (L2) have more advantages in the number of parameters and
computational cost, and thus they can be applied to low-performance devices or real-time
devices. AM-UNet++ (L3) and AM-UNet++ (L4) have more advantages in segmentation
accuracy, so they can be deployed in places with high security requirements. The pruning
strategy is only adopted in the inference phase, and thus the network still requires a large
number of computing resources and storage space capacity in the training phase.

Different from other segmentation networks, Wang et al. [3] proposed a unified multi-
task iris segmentation method. The network can generate not only iris segmentation masks
but also parameterized inner and outer iris boundaries, which means that subsequent
normalization operations can be implemented more easily. UNet is used as the backbone
network of this method, and the iris mask, pupil mask, and iris outer boundary are selected
as the input of the method. Pupil mask and iris outer boundary require manual annotation
by experimenters, which undoubtedly increases the cost.

At present, most iris segmentation networks are trained and tested on the same
database. Cross-database iris segmentation means that the segmentation network is trained
on one database and tested directly on the other database. The cross-database iris segmen-
tation requires that the segmentation network has a strong generalization ability, and thus
it is a challenging task. Therefore, a bilateral segmentation backbone network based on
MFIEM and CAMM is proposed in this paper.

3. Methods

The framework of our network is illustrated in Figure 1. Specifically, the encoder
consists of a semantic branch (Section 3.1) and a detailed branch (Section 3.2), which are
used to extract iris image features. In the detailed branch, MFIEM (Section 3.3) is used
to extract iris feature information at different scales, and CAMM (Section 3.4) is used to
increase the feature weight of the iris region. The decoder is used to convert the iris feature
information into iris semantic information. The implementation details of our structure are
shown in Table 1. The size of the input image is 224 × 224 × 3 (H ×W × C), where H and
W represent the height and width of the feature map, respectively, and C represents the
depth (the number of channels) of the feature map.

Table 1. Network structure details.

Structure Input Size (H ×W × C) Operation Stride Output Size (H ×W × C)

Semantic branch

224 × 224 × 3 Patch Partition 4 56 × 56 × 48
56 × 56 × 48 Linear Embedding 1 56 × 56 × 96
56 × 56 × 96 Swin T Block1 1 56 × 56 × 96
56 × 56 × 96 Patch Merging 2 28 × 28 × 192

28 × 28 × 192 Swin T Block2 1 28 × 28 × 192
28 × 28 × 192 Patch Merging 2 14 × 14 × 384
14 × 14 × 384 Swin T Block3 1 14 × 14 × 384
14 × 14 × 384 Patch Merging 2 7 × 7 × 768
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Table 1. Cont.

Structure Input Size (H ×W × C) Operation Stride Output Size (H ×W × C)

Detailed branch

224 × 224 × 3 3 × 3 Convolution 2 112 × 112 × 16
112 × 112 × 16 3 × 3 Convolution 2 56 × 56 × 96

56 × 56 × 96 Feature extraction module 2 28 × 28 × 192
28 × 28 × 192 Feature extraction module 1 28 × 28 × 192
28 × 28 × 192 Feature extraction module 2 14 × 14 × 384
14 × 14 × 384 Feature extraction module 1 14 × 14 × 384
14 × 14 × 384 MFIEM 1 14 × 14 × 384
14 × 14 × 384 CAMM 1 14 × 14 × 384

Decoder

7 × 7 × 768 Decode Block1 2 14 × 14 × 384
14 × 14 × 384 Decode Block2 2 28 × 28 × 192
28 × 28 × 192 Decode Block3 2 56 × 56 × 96
56 × 56 × 96 Decode Block4 2 112 × 112 × 48

112 × 112 × 48 3 × 3 Convolution 1 112 × 112 × 16
112 × 112 × 16 Transposed convolution 2 224 × 224 × 1
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Figure 1. The iris segmentation network proposed in this paper (MFIEM: Multiscale feature informa-
tion extraction module, CAMM: Channel attention mechanism module).

3.1. Design of the Semantic Branch

The semantic branch consists of a patch partition layer, a linear embedding, three Swin
T blocks, and three patch merging layers. Specifically, the patch partition layer is used to
divide the input image into non-overlapping patches, and the linear embedding layer is
used to adjust the number of channels. As shown in Figure 2a, the red rectangle represents
a patch. The patch partition layer is implemented by a convolutional layer, which consists
of 48 convolutional kernels with a kernel of size 4× 4 and a stride of 4. Therefore, the width
and height of the output feature map are reduced to 1/4 of the input feature map, and the
number of channels is increased to 48. Then the feature map processed by linear embedding
is sent into the Swin T blocks. The Swin T block is used to extract the feature information of
the iris image, and the block does not change the size of the input feature map. The patch
merging layer is used to perform down-sampling operations, which function similarly to
the max-pooling operation in CNNs. This structure can reduce the resolution of the feature
map and increase the number of channels of the feature map. Therefore, the width and
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height of the output feature map are reduced to 1/2 of the input feature map, and the
number of channels is increased to two times that of the input feature map. The calculation
process of the Swin T block is described in detail below.
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The Swin T block performs the self-attentive computation in a local window. Self-
attentive computation is computed as follows:

Attention(Q, K, V) = So f tmax
(

QKT
√

d
+ B

)
V, (1)

where Q, K, VεRM2×d denote the query, key, and value matrices, respectively. M2 represents
the number of patches in a window, d represents the dimension of query or key, and the
bias matrix is denoted as B.

In the local window, each patch performs self-attentive computation with other patches
to obtain global feature information. As shown in Figure 2a, the blue rectangle represents
a window. Each window contains M × M patches. As the number of down-sampling
increases, the size of the window also increases.

As shown in Figure 3, Swin T block consists of two stages: stage 1 and stage 2. Stage1
is composed of two layer-norm (LN) layers, a window-based multi-head self attention
(W-MSA) module, two residual connections, and a multi-head self-attention (MLP) module.
LN has a certain anti-overfitting effect, which makes the training process more stable.
Shallow features and deep features are connected by residual connection. The calculation
process of stage 1 is as follows:

Zl
1 = W −MSA(LN(Zl−1

1 )) + Zl−1
1 , (2)

Zl
2 = MLP(LN(Zl

1)) + Zl
1, (3)

where Zl
1 and Zl

2 represent the outputs of the W-MSA module and the MLP module,
respectively. The feature map Zl

2 processed by stage 1 is sent to stage 2 as input data.
W-MSA lacks effective information interaction between the windows, which limits its
modeling power. To solve this problem, shifted window MSA (SW-MSA) is used in stage 2
instead of W-MSA to perform the self-attentive computation. The calculation process of
stage 2 is as follows:

Zl+1
2 = SW −MSA(LN(Zl

2)) + Zl
2, (4)

Zl+2
2 = MLP(LN(Zl+1

2 )) + Zl+1
2 , (5)

where Zl+1
2 and Zl+2

2 represent the outputs of the SW-MSA module and the MLP module,
respectively. The feature map Zl+2

2 processed by stage 2 is sent to the next Swin T block as
input data.
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3.2. Design of the Detailed Branch and Decoder Structure

Detailed branch: The input images are first convolved by two 3 × 3 convolution layers
to extract iris features. Then, the feature maps pass through four feature extraction modules.
Existing feature extraction modules mainly consist of some traditional convolutional layers
(e.g., 3 × 3 convolution layers and 5 × 5 convolution layers) and depth-wise separable con-
volutional layers. In the iris segmentation task, using traditional convolutional layers, such
as UNet, entails a lot of computational and hardware costs. However, using depth-wise
separable convolutional layers can improve segmentation efficiency while maintaining seg-
mentation accuracy. Compared with these two convolution methods, this paper designed
an efficient feature extraction module. As shown in Figure 4a, the feature extraction module
consists of two depth-wise separable convolution layers and two 1 × 1 convolution layers.
It is worth noting that no activation function is added after the first 1 × 1 convolution and
the second depth-wise separable convolution. When the input size and output size of the
feature map are consistent, the input features and output features are fused through the
shortcut branch structure. The first convolutional layer is used to reduce the number of
channels of the feature map, and the second convolutional layer is used to increase the
number of channels of the feature map. Using these 1 × 1 convolution layers to achieve
dimensionality reduction and dimensionality generation operations can effectively encode
channel information compared to using only depth-wise separation convolutions. MFIEM
is inserted after the feature extraction module to extract multiscale iris feature information,
and the CAMM is inserted at the end of the detailed branch.

Decoder structure: The feature map is first passed through four decoder blocks to
extract features. As illustrated in Figure 4b, the decode block consists of two 1 × 1 convolu-
tion layers and a transposed convolution layer. The transposed convolution layer is used
to expand the length and width of the input feature map. Finally, the 3 × 3 convolution
layer is used to adjust the dimension of the feature map, and the transposed convolution
layer is used for the final prediction.
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3.3. Multiscale Feature Information Extraction Module

In the detailed branch, small convolution kernels, such as 3 × 3 convolution and
5 × 5 convolution, can effectively extract the edge detail information of the iris image
but ignore the spatial correlation of the image. Inspired by the Atrous Spatial Pyramid
Pooling [24] (ASPP) module, a multiscale feature information extraction module is proposed
in this paper. As shown in Figure 5, the module consists of a multiscale feature extraction
module (MFEM) and a spatial attention mechanism module (SAMM).
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Multiscale feature extraction module: Dilated convolution (DC) controls the receptive
field of the convolution kernel by setting different dilation rates. Using the DC does not add
extra model parameters and computation costs. Therefore, the proposed MFEM employs
dilated convolution with different DC to extract features, and the dilation rates are set
to {1, 2, 3}. The output feature maps are stacked in the dimension of the channel, and a
3 × 3 convolution layer is used to adjust the dimension of the feature maps.

Spatial attention mechanism module: The module consists of a 1 × 1 convolution
layer and a Sigmoid function. Then, a 1 × 1 convolution layer is used to capture global
feature information. The output feature map is multiplied by the feature map processed by
the 3 × 3 convolution layer in the spatial dimension to achieve information calibration.

Compared with traditional convolution, using convolution kernels with different
receptive fields can obtain more accurate and comprehensive feature information. SAMM
is lightweight because it only uses a 1 × 1 convolution layer.

3.4. Channel Attention Mechanism Module

As shown in Figure 6, CAMM extracts features through two branches, which consist of
a pooling layer and two 1× 1 convolution layers. First, the input feature maps pass through
a global max pooling layer based on the width direction and a global average pooling layer
based on the height direction, respectively. Then, the output feature maps are sent to the
first 1× 1 convolution layer to compress the channel. The second 1 × 1 convolution layer is
used to learn the weights for each channel. The feature maps output by the two branches is
fused by adding operations. Finally, feature maps redistribute the weights on the channels
through the Sigmoid function.
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4. Experimental Configurations
4.1. The Iris Image Database

The databases used for the comparison experiment: IITD iris database [25] is provided
by the IIT Delhi, New Delhi. UBIRIS.v2 iris database [26] is proposed by the University of
Beira Interior. The detailed parameters of these datasets are listed in Table 2, and some im-
age samples are shown in Figure 7. The iris databases are divided into three parts, training
set, validation set, and test set, which are split according to a ratio of 7:1:2. This pattern of
dividing the training and test sets is used by most iris segmentation methods [1,15,27,28].
For the IITD iris database, 1580 iris images are used to train the segmentation network,
220 iris images are used to adjust network weights, and 440 iris images are used to measure
the accuracy of the segmentation network. For the UBIRIS.v2 iris database, 1575 iris images
are used to train the segmentation network, 225 iris images are used to adjust network
weights, and 450 iris images are used to measure the accuracy of the segmentation network.
In order to fairly evaluate the segmentation accuracy of different methods, the training
and testing sets of the two iris databases used in our experiment are the same as those of
DMS-UNet [1] and Linknet [13]. For other segmentation networks, the number of training
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and test sets used in this article is very close to the number of training and test sets used in
other respected studies. Therefore, the experimental results in this paper are reliable.

Table 2. The characteristics of iris image databases.

Property IITD UBIRIS.v2

Image Size 320 × 240 400 × 300
Input Size 224 × 224 224 × 224

The number of training sets 1580 1575
The number of validating sets 220 225

The number of testing sets 440 450
Modality near-infrared visible light

Color gray-level RGB
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The database used for the Universality experiment: The segmentation method should
be tested on the database which is not used in the training stage. To this end, two iris
databases were chosen for the generality experiments of the network. The CASIA-v4.0iris
database is captured with a self-developed close-up iris camera [29]. The JLU-4.0 [30]
iris database is captured by an iris collector independently developed by Jilin University.
CASIA-v4.0 and JLU-4.0 were obtained under near-infrared illumination, and some image
samples are shown in Figure 8.
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4.2. Metrices Used in the Evaluation Section and Experimental Implementation

We measure the segmentation accuracy of the network by the following evaluation
metrics. Specifically, mean intersection over union (MIOU), f1 score (F1), and error score2
(NICE2) [31] are used to evaluate the segmentation accuracy. The value of MIOU, F1, and
NICE2 is between zero and one. The closer the MIOU value and F1 value are to 0, the
worse the performance of the segmented network. The closer the MIOU value and F1 value
are to 1, the better the performance of the segmented network. However, the closer the
value of NICE is to 1, the worse the performance of the network. The closer the value of
NICE is to 0, the better the performance of the network.

MIOU =
1
n ∑i=1

n

[
TP

FP + FN + TP

]
i

(6)

F1 =
2TP

2TP + FP + FN
(7)

NICE2 =
1
2

(
FN

FN + TP
+

FP
FP + TN

)
(8)

The hardware platform is a single NVIDIA GeForce RTX 3090 GPU with 24 GB of
memory. We implement our method based on Pytorch (version 1.7.1). The Dice function [32]
is adopted as the loss function in this paper. The optimization is performed by using the
Adam optimizer with an initial learning rate that equals 0.001. The proposed model is
trained for 50 epochs with a batch size of 32.

5. Experimental Results
5.1. Ablation Experiments

Table 3 summarizes the ablation results with different feature extraction networks.
Using only CNNs achieves better iris segmentation accuracy than using only Swin T. Com-
pared with using CNNs, Swin T can extract the global features of the image, which will
cause the network to lose some detailed feature information in the encoder stage.

Table 3. Results of network ablation experiments.

Database Network MIOU F1 NICE2

IITD
Swin T 0.9530 0.9758 0.0274
CNNs 0.9568 0.9779 0.0214

Swin T + CNNs (Ours) 0.9609 0.9800 0.0212

UBIRIS.v2
Swin T 0.9376 0.9670 0.0316
CNNs 0.9417 0.9693 0.0303

Swin T + CNNs (Ours) 0.9489 0.9738 0.0226
Note: Bold values represent the best iris segmentation accuracy in the comparison methods.

It is seen from Table 3 that using both CNNs and Swin T achieves the best iris segmenta-
tion. Specifically, for the IITD database, compared with using only a single branch network,
the MIOU of our network is improved by 0.83% and 0.43%, respectively. At the same time,
for the UBIRIS.v2 database, the MIOU of our network is improved by 1.21% and 0.76%,
respectively. Using a dual-branch network can simultaneously extract global and local
features, which helps to improve the segmentation precision of our network.

Four different networks are designed for the ablation study. Swin T and CNNs are
used as the backbone of the benchmark network to extract iris image features. Firstly, the
benchmark network does not use MFIEM and CAMM. Then, two different models use
MFIEM and CAMM, respectively. Finally, we use the proposed network as the fourth
network. Figure 9 shows the segmentation results of different networks. The third column
shows the results of the baseline network, the fourth column is the results of the baseline
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network after adding the CAMM, and the fifth column is the results of the baseline network
after adding the MFIEM.
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As shown in Table 4, the MIOU values of the proposed network on the two databases
are 0.9694 and 0.9566, respectively, which are 0.88% and 0.81% higher than the baseline
network. The segmentation results of the baseline network contain some misclassifications.
Compared with the baseline network, our network achieves better segmentation results.
Therefore, it is effective to use MFIEM and CAMM in the iris segmentation task.

Table 4. Network ablation experiments.

Database Network MIOU F1 NICE2

IITD

Baseline 0.9609 0.9800 0.0212
Baseline + MFIEM 0.9665 0.9829 0.0180
Baseline + CAMM 0.9650 0.9822 0.0182

Ours 0.9694 0.9844 0.0160

UBIRIS.v2

Baseline 0.9489 0.9738 0.0226
Baseline + MFIEM 0.9544 0.9763 0.0202
Baseline + CAMM 0.9528 0.9754 0.0216

Ours 0.9566 0.9774 0.0196
Note: Bold values represent the best iris segmentation accuracy in the comparison methods.

The MIOU values of the network with the MFIEM on two iris databases are respec-
tively 0.58% and 0.43% higher than the baseline network. For the benchmark network,
some iris areas are segmented into the background area, and some pupil areas are under-
segmented. Using the MFIEM can effectively capture multiscale feature information, which
is critical for identifying small target areas.
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As illustrated in Table 4, the MIOU of the baseline network based on CAMM is
improved by 0.43% and 0.41% on two iris databases, respectively. The misclassified pixels
of the benchmark network based on CAMM are greatly reduced. Adding the CAMM can
effectively reduce the network’s response to irrelevant noise.

5.2. Comparison with Conventional Segmentation Networks

Compared with other conventional algorithms, as shown in Table 5, our iris segmenta-
tion network achieves higher MIOU and F1 and lower NICE on two iris databases, with
MIOU reaching 0.9694 and 0.9566, and F1 reaching 0.9844 and 0.9774 on the iris datasets
of IITD and UBIRIS.V2, respectively. For UBIRIS.v2, conventional iris segmentation al-
gorithms cannot accurately segment the iris region because iris images contain a lot of
irrelevant noise. Compared with Ahmad’s method, the F1 of our network is improved
by 3.4% on the IITD iris database. Compared with the Ifpp algorithm, the NICE2 of our
network is improved by 95.06% on the UBIRISv2 iris database.

Table 5. Comparison with conventional algorithms on two iris databases.

Database Approach MIOU F1 NICE2

IITD
Ahmad [33] - 0.9520 -

GST [34] - 0.3393 -
Ours 0.9694 0.9844 0.0160

UBIRIS.v2

Chat [35] - 0.1048 0.4809
Ifpp [36] - 0.2899 0.3970

Wahet [37] - 0.1977 0.4498
Osiris [38] - 0.1865 -
IFPP [39] - 0.2852 -

Ours 0.9566 0.9774 0.0196
Note: Bold values represent the best iris segmentation accuracy in the comparison methods.

5.3. Comparison with Algorithms Based on CNNs

The approaches labeled with the symbol “*” represent our implementation of the algo-
rithm. The method that is not marked with this symbol represents the experimental data
from respected studies. Figure 10 shows the training loss curves of different segmentation
networks on the training set. Early phases of training are marked with a red frame, and
late stages of training are marked with a purple frame.
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(a) IITD and (b) UBIRIS.V2. Red frame: the early stage of network training; purple frame: the later
stage of network training.

The convergence speed of our network is slower than that of the network based on a
CNN. There is a certain semantic gap between global features captured by Swin T and local
features captured by CNN, which causes the network to learn slowly before 10 epochs.
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Our method achieves lower loss values compared with other segmentation networks.
Meanwhile, the loss curves of our network converge rapidly with increasing epochs, and
the curves are stable without significant oscillations, indicating that the network has more
fully learned than other segmentation methods.

As shown in Table 6, it can be observed that UNet outperforms other semantic seg-
mentation networks across all metrics on the UBIRIS.v2 database. DeepLabV3 and Linknet
are proposed to segment the universal dataset (e.g., PASCAL VOC 2012), while UNet
is proposed to segment the dataset for medical images. Iris image segmentation can be
regarded as a sub-task of medical image segmentation, and thus UNet has achieved promis-
ing performance in the field of iris image segmentation. This is why most iris segmentation
methods use UNet as the baseline network. DMS-UNet uses the DropBlock structure to
enhance the network in terms of learning more useful iris features. Therefore, DMS-UNet
achieves higher MIOU and F1 and lower NICE2 than UNet on the UBIRIS.v2 test set. Com-
pared with the other segmentation networks, our method can achieve better segmentation
accuracy. Specifically, on the IITD test set, our network gets the highest MIOU of 0.9694, the
highest F1 of 0.9844, and the lowest NICE2 of 0.016. Compared with DMS-UNet, the MIOU
and F1 of our network are improved by 0.95% and 0.48%. Meanwhile, our segmentation
network gets the highest MIOU and F1 of 0.9566 and 0.9774 on the UBIRIS.v2 database
and the lowest NICE2 of 0.0196 on the UBIRIS.v2 database. Compared with segmentation
network Linknet, the MIOU and F1 of our network are improved by 4.03% and 2.16%,
respectively. Our network surpasses the DMS-UNet, the latest high-performance hetero-
geneous iris segmentation method, by about 0.97%, 0.5%, and 2.09% on MIOU, F1, and
NICE2, respectively. DMS-UNet and Linknet use depthwise separable convolution and
traditional 3 × 3 convolution to extract iris image features, respectively. These methods
cannot learn global and long-term semantic information interactions well.

Table 6. Comparison with algorithms based on CNNs on two iris databases.

Database Approach MIOU F1 NICE2

IITD

FCEDNs-original [14] - 0.8661 0.0588
FCEDNs-basic [14] - 0.9072 0.0438

FCEDNs-Bayesian-basic [14] - 0.8489 0.0701
FD-UNet [27] - 0.9481 0.0258
Linknet [13] * 0.9595 0.9793 0.0188

DMS-UNet [1] * 0.9603 0.9797 0.0176
Ours 0.9694 0.9844 0.0160

UBIRIS.v2

FCEDNs-original [14] - 0.7691 0.1249
FCEDNs-basic [14] - 0.7700 0.1517

FCEDNs-Bayesian-basic [14] - 0.8407 0.1116
RTV-L [28] 0.7401 0.8597 -

DeepLabV3 [28] 0.7024 0.8755 -
UNet [40] 0.9362 0.9553 -
DFCN [15] - 0.9606 0.0204

Linknet [13] * 0.9195 0.9567 0.0316
MFFIris-UNet [28] 0.9428 0.9659 -

DMS-UNet [1] * 0.9474 0.9725 0.0248
Ours 0.9566 0.9774 0.0196

* The symbol represents our implementation of the algorithm. Note: Bold values represent the best iris segmenta-
tion accuracy in the comparison methods.

Our bilateral segmentation backbone network can not only extract the global feature
information but also extract the detailed features. Therefore, the proposed segmentation net-
work can achieve an outstanding segmentation effect on different iris databases. Figure 11
shows the comparison of different methods on two databases.
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5.4. The Segmentation Results of Different Databases

For iris images occluded by eyelashes, it is difficult for Linknet and DMS-UNet to
accurately predict the iris boundary. However, adding the CAMM module to the network
can largely address this deficiency, and thus our method can accurately segment the
iris region.

As shown in Figures 12 and 13, the overall result of DMS-UNet is good, but the iris
edge fitting is not good enough. Linknet cannot accurately segment some small regions,
such as the pupil. However, the segmentation results of our network are closer to the real
label graph. The proposed network can calculate the relationship between elements in a
wide range, which is beneficial to obtain the global receptive field of small target areas.
Therefore, our network can accurately segment the pupil area.
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5.5. The Universality of Network Experiment

To verify the generality and practicality of the iris segmentation network, our network,
Linknet, and DMS-UNet are trained on the IITD database and tested on the CASIA-V4.0
(Figure 14) and JLU-4.0 (Figure 15) databases. Since the JLU-4.0 iris database does not
provide corresponding ground-truth masks, we only conduct qualitative analysis based on
the segmentation results of different networks.
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As shown in Table 7, our segmentation network has significant advantages under the
cross-database protocol. Compared with Linknet and DMS-UNet, our iris segmentation
network achieves higher MIOU and F1 and lower NICE2 on the IITD test set, with MIOU
reaching 0.9425 and F1 reaching 0.9701. In order to further explore the reason for this, we
randomly selected some iris images segmented by different networks for qualitative analysis.

Table 7. Comparison with other networks on the CASIA-V4.0 database.

Approach MIOU F1 NICE2

Linknet [13] * 0.9096 0.9520 0.0538
DMS-UNet [1] * 0.8826 0.9369 0.0434

Ours 0.9425 0.9701 0.0337
* The symbol represents our implementation of the algorithm. Note: Bold values represent the best iris segmenta-
tion accuracy in the comparison methods.

As shown in Figures 14 and 15, the results of DMS-UNet and Linknet are unsatisfac-
tory, which indicates that these networks have poor generalization and migration ability.
Specifically, for the region with eyebrows and eyelashes in the image, the segmentation
result of Linknet contains some misclassification of the iris region pixels for these irrelevant
noise pixels. For shaded regions in the iris image, DMS-UNet incorrectly identifies the
shadow area as the iris area (e.g., the first row of Figure 15). However, compared with other
networks, the segmentation results of our network have fewer pixel misjudgments.

Based on the above segmentation results, the proposed network gets better segmen-
tation accuracy than other segmentation networks on a database that is not used in the
training stage. This shows that our network has learned the real iris features and has
universality for iris images taken under different conditions. Therefore, the network has a
certain application value.

6. Conclusions

To accurately segment multisource heterogeneous iris images, we proposed an archi-
tecture based on a bilateral segmentation backbone network. This bilateral network can
combine the advantages of Swin T and CNNs. The semantic branch based on Swin T is
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used to extract the global feature information of images, and the detailed branch based on
CNNs is used to extract the detailed features.

The ablation experiment and visualization results demonstrate that using the MFIEM
module can efficiently extract spatial contextual information from the iris images. Using
CAMM gives more importance to iris regions and ignores irrelevant ones. Our network can
achieve SOTA performance. The universality experimental results show that the network
has a certain migration and generalization ability. Therefore, our method allows users to
choose different acquisition devices to flexibly form their own iris recognition system.
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