
Citation: Han, X.; Hu, Z.; Wang, S.;

Zhang, Y. A Survey on Deep

Learning in COVID-19 Diagnosis. J.

Imaging 2023, 9, 1. https://doi.org/

10.3390/jimaging9010001

Academic Editor: Reyer Zwiggelaar

Received: 15 November 2022

Revised: 5 December 2022

Accepted: 16 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Review

A Survey on Deep Learning in COVID-19 Diagnosis
Xue Han 1,2, Zuojin Hu 1, Shuihua Wang 2 and Yudong Zhang 2,*

1 School of Mathematics and Information Science, Nanjing Normal University of Special Education,
Nanjing 210038, China

2 School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
* Correspondence: yudongzhang@ieee.org

Abstract: According to the World Health Organization statistics, as of 25 October 2022, there have
been 625,248,843 confirmed cases of COVID-19, including 65,622,281 deaths worldwide. The spread
and severity of COVID-19 are alarming. The economy and life of countries worldwide have been
greatly affected. The rapid and accurate diagnosis of COVID-19 directly affects the spread of the
virus and the degree of harm. Currently, the classification of chest X-ray or CT images based on
artificial intelligence is an important method for COVID-19 diagnosis. It can assist doctors in making
judgments and reduce the misdiagnosis rate. The convolutional neural network (CNN) is very
popular in computer vision applications, such as applied to biological image segmentation, traffic
sign recognition, face recognition, and other fields. It is one of the most widely used machine
learning methods. This paper mainly introduces the latest deep learning methods and techniques for
diagnosing COVID-19 using chest X-ray or CT images based on the convolutional neural network. It
reviews the technology of CNN at various stages, such as rectified linear units, batch normalization,
data augmentation, dropout, and so on. Several well-performing network architectures are explained
in detail, such as AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. We analyzed and discussed the
existing CNN automatic COVID-19 diagnosis systems from sensitivity, accuracy, precision, specificity,
and F1 score. The systems use chest X-ray or CT images as datasets. Overall, CNN has essential
value in COVID-19 diagnosis. All of them have good performance in the existing experiments. If
expanding the datasets, adding GPU acceleration and data preprocessing techniques, and expanding
the types of medical images, the performance of CNN will be further improved. This paper wishes to
make contributions to future research.

Keywords: COVID-19; diagnosis; deep learning; convolutional neural networks; CT images; transfer
learning; X-ray images; classification

1. Introduction

WHO declared COVID-19 as a global pandemic in March 2020. The COVID-19 pandemic
has affected thousands of people. It has affected people’s ordinary lives and the global
economy. COVID-19 can cause respiratory, gastrointestinal, and neurological syndromes [1].
Cough, fever, and other respiratory issues are the most common symptoms [2].

Rapid COVID-19 diagnosis is essential during the pandemic. Currently, the commonly
used diagnostic methods include the molecular assay, chest computed tomography (CT)
scan combined with the evaluation of clinical symptoms [3], artificial intelligence (AI)
methods [4], potential electrochemical (EC) biosensors [5], surface plasmon resonance
(SPR)-based biosensors [6], field-effect transistor (FET)-based biosensors [7], etc. As a
frequently employed auxiliary detection technology, CT images can show the changes in
the lung caused by virus infection [8]. Compared with CT images, X-ray images are more
accessible to obtain. It is also an important means of medical detection.

The most common diagnostic measure for COVID-19 is through reverse transcription-
polymerase chain reaction (RT-PCR) assays of nasopharyngeal swabs [9]. However, the
high false negative rate of RT-PCR [10] may affect the timely treatment of infected patients.

J. Imaging 2023, 9, 1. https://doi.org/10.3390/jimaging9010001 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9010001
https://doi.org/10.3390/jimaging9010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-4870-1493
https://doi.org/10.3390/jimaging9010001
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9010001?type=check_update&version=2

J. Imaging 2023, 9, 1 2 of 31

The X-ray and CT can image the lungs of patients with COVID-19. Lung imaging can reveal
the niduses’ spatial location and the infection’s extent. CT images have a fast turnaround
and excellent sensitivity [11]. They can visualize the degree of infection in the lung. Based
on the significant features of COVID-19 on X-ray or CT images, many researchers have
used artificial intelligence and computer vision to classify X-ray or CT images. These
images were classified into two categories: those without COVID-19 and those infected
with COVID-19. Other researchers divided the images into healthy, infected with COVID-19,
and infected with pneumonia. Some algorithms can detect the extent of infection based
on the features of X-ray or CT images. This research is meant to help doctors diagnose
COVID-19 accurately and quickly.

Artificial intelligence is widely used in medical [12–14]. Its accuracy rates and prediction
are high [15]. AI can be applied to multiple phases, such as prediction, diagnosis, virus
detection, response, prevention, and recovery, to accelerate research [16,17]. During the
COVID-19 epidemic, AI recognized chest X-rays or CT images. Features in X-ray or CT
images are extracted for COVID-19 diagnosis by segmenting regions of interest and capturing
fine structures. One of the important subfields of AI is machine learning (ML) [18]. It is already
widely applied to medical images [19–21]. Deep learning (DL) is a promising technology in
machine learning [22]. Deep learning has multiple hidden layers for learning and can perform
classification or detection tasks well [23,24]. The role of deep learning in image recognition
is vital [19,25–27]. The convolutional neural network (CNN) is a kind of deep network. It is
popular in computer vision applications. CNN has been successfully applied to biological
image segmentation [28], traffic sign recognition [29–31], face recognition [32,33], and other
fields. Later studies added rectified linear units, dropout, data augmentation, and other
techniques to CNN. This decreased the error rate of deep learning for image classification
tasks to less than 3% in 2016 [34] and exceeded human performance.

This paper mainly summarizes and discusses methods and experiments based on
convolutional neural networks, which classify chest X-ray or CT images into infected and
non-infected with COVID-19. All along, CNNs have been very widely used in medical
images [35–37]. The severity and spread of COVID-19 around the world are alarming.
CNN is used to extract features from chest X-rays or CT images. CNN, combined with
other algorithms or architectures, divided the images into two categories: infected with
COVID-19 and uninfected, or three categories: infected with COVID-19, infected with
other pneumonia, and uninfected [38–40]. The COVID-19 diagnosis based on convolutional
neural networks can assist doctors in making judgments quickly and accurately. We gave a
detailed explanation of CNN, its existing technologies, and network types. The following
contents also summarize, analyze and compare the automatic diagnosis systems established
by scholars based on convolutional neural networks. Finally, we suggested future research
on improving the performance of COVID-19 classification models.

The parts of this paper are organized as follows: Section 2 reviews the characteristics
of medical images currently commonly used for COVID-19 diagnosis. Section 3 introduces
convolutional neural networks (CNN) and current methods commonly used to improve
CNN. Section 4 introduces several mature and well-performing convolutional neural
networks. Section 5 analyzes and discusses the current experiments and methods of
applying CNN to COVID-19 diagnosis. Section 6 summarizes the full text and provides
suggestions for future research. To help understand more clearly, all abbreviations and full
names in this paper are shown in Table 1.

J. Imaging 2023, 9, 1 3 of 31

Table 1. List of all abbreviations and terms.

Abbreviation Term

AI Artificial intelligence
ANN Artificial neural network
AT Angle transformation
AVNC Attention-based VGG-style network for COVID-19
BiLSTM Bidirectional long short-term memories
BN Batch normalization
CB Convolution block
CBAM Convolutional block attention module
CGAN Conditional generative adversarial net
CNN Convolution neural network
CO-IRv2 Optimized inceptionResNetV2 for COVID-19
COVID-19 Coronavirus disease 2019
CT Computed tomography
DA Data augmentation
DC-Net Deep COVID network
DCNN Deep convolutional neural network
DenseNet Dense convolutional network
DL Deep learning
DNN Deep neural network
EC Electrochemical
ELU Exponential linear unit
FCB Fully connected block
FET Field-effect transistor
FMP Fractional max pooling
GANs Generative adversarial networks
GGO Ground glass opacity
GoogleNet Google inception net
GPU Graphics processing unit
ICS Internal covariate shift
LReLU Leaky rectified linear unit
LSTM Long short-term memory
mAlexNet Modified AlexNet
ML Machine learning
PAM-DenseNet DenseNet with parallel attention module
PDF Probability density function
PReLU Parametric rectified linear unit
ReLU Rectified linear unit
ResNet Residual network
RICAP Random image cropping and patching
RReLU Randomized leaky rectified linear unit
RT-PCR Reverse transcription-polymerase chain reaction
RVFL Random vector functional-link net
SE block Squeeze and excitation blocks
SPEA-II Strength Pareto evolutionary algorithm-II
SPR Surface plasmon resonance
SRGAN Super-resolution generative adversarial network
TSA Tree seed algorithm
VGG Visual geometry group
VSBN VGG-style base network
WCNN4 Wavelet CNN-4

2. Imaging Modalities for COVID-19 Diagnosis

Computed tomography (CT), published in 1972 [41], has become a widely used tool
for diagnostic imaging. CT is a cross-sectional scan of a certain part of the human body one
by one. Its advantages include clear images and fast scanning. CT is widely used to detect
a variety of diseases. X-rays penetrate a person’s body and take an X-ray image. X-ray
images are also an important basis for diagnosing diseases.

J. Imaging 2023, 9, 1 4 of 31

2.1. Chest Computed Tomography

CT takes images from different angles. One shot was taken for each rotation angle.
Using a large number of projection images taken from different angles, we back-calculated
a fault plane image by a mathematical algorithm. This is computed tomography. Many
scholars have studied the features of COVID-19 on CT images. In the study of patients in
Rome and Italy [8], ground glass opacity (GGO) was found in 100% of confirmed patients on
CT images. Ground-glass opacity (GGO) means that the density will be slightly increased
on high-resolution CT images, and the bronchovascular will still be visible. This sign is
often the manifestation of early lung disease. Timely detection and diagnosis of GGO are
important for clinical management. Multilobe and posterior lung involvement was present
in 93% of patients. Bilateral pneumonia occurred in 91% of patients. Cellina et al. [42]
concluded that GGO was more common bilaterally in the peripheral lung areas under
the pleura on CT images of COVID-19. During the disease, the number of consolidations
increases, forming fibrotic stripes. Consolidation refers to accumulating fluids, fibrin, and
cellular components in the alveolar airspaces. It reduces alveolar air content and increases
parenchymal density. Wang et al. [43] found that CT manifestations of mild/common-
type infection were multifocal lesions, GGO, involving multiple segments or lobes. CT
manifestations of heavy/critical-type infection show consolidation of multiple lesions
and interlobular septal thickening. In the paper [44], Bernheim et al. mentioned that
the CT image features of COVID-19 are consolidative pulmonary opacities and bilateral
and peripheral ground glass. The longer the onset of symptoms, the more findings on
CT images. These findings include bilateral and peripheral disease, consolidation, linear
opacities, greater total lung involvement, the “reverse halo” sign, and a “crazy-paving”
pattern. In Guan’s study [2], 56.4% of the COVID-19 subjects showed GGO.

2.2. Chest X-ray

X-rays are emitted from one end, passed through the body, and picked up by a detector
at the other end. What is received is a two-dimensional image. So X-ray imaging is fast
and cheap. Chest X-ray images of patients diagnosed with COVID-19 show air space
consolidation and the bilateral distribution of peripheral hazy lung opacities [45]. When
COVID-19 is suspected, the preferred imaging modality for the chest is the X-ray [46]. The
radiation dose of chest X-rays is lower than CT, and chest X-rays are cheaper [47]. Because
portable chest X-ray is easy to carry and clean, chest X-ray can reduce the risk of COVID-19
transmission during testing [48]. According to Oh [49], although the sensitivity of chest
X-ray results is not high (69%) [45], chest X-rays can be used to determine the sequence of
treatment for patients infected with COVID-19. Diagnosing chest X-rays can alleviate the
saturated healthcare system during the COVID-19 pandemic.

3. Convolutional Neural Networks

Convolutional neural networks (CNN) are widely applied to computer vision currently.
In the aspect of medical image processing about health, CNN performs outstanding [50].
CNN uses multi-layer superposition to extract from low-level features to high-level features.
It is like the hierarchical structure of the human brain function [51–54]. A CNN comprises an
input layer, an output layer, convolution layers, pooling layers, and fully connected layers.
Input the raw data in the input layer. Convolution operations are performed to extract
features in the convolution layers. The scale of parameters is further reduced in the pooling
layers. Fully connected layers connect all the features and output them to the classifier.

CNN is a kind of local perception. Divide the entire image into multiple small windows
that can overlap locally. The local features of the image are identified by utilizing sliding
windows. A window can be regarded as a filter, which is a neuron. The convolutional layer
has a set of such filters.

Figure 1 is a 6× 6 image. The size of filter one is 3× 3. Put filter one in the upper left
corner of the 6× 6 image to do the convolution operation, and obtain the result −1. The step
size of the sliding window is one. Filter one moves one step to the right and then performs the

J. Imaging 2023, 9, 1 5 of 31

convolution operation, and the result is −2. Do convolution operation step by step from top
to bottom and from left to right, and a 4× 4 matrix can be obtained as shown in Equation (1).
Doing the same operation with filter2 will obtain another different 4× 4 matrix.

nout = floor
(

nin + 2 ∗ p− k
s

)
+ 1, (1)

where nin is the number of input features. p is the size of padding. k is the kernel size. s is
the stride. nout is the number of output features.

J. Imaging 2023, 9, 1 5 of 32

fully connected layers. Input the raw data in the input layer. Convolution operations are

performed to extract features in the convolution layers. The scale of parameters is further

reduced in the pooling layers. Fully connected layers connect all the features and output

them to the classifier.

CNN is a kind of local perception. Divide the entire image into multiple small win-

dows that can overlap locally. The local features of the image are identified by utilizing

sliding windows. A window can be regarded as a filter, which is a neuron. The convolu-

tional layer has a set of such filters.

Figure 1 is a 6 × 6 image. The size of filter one is 3 × 3. Put filter one in the upper

left corner of the 6 × 6 image to do the convolution operation, and obtain the result −1.

The step size of the sliding window is one. Filter one moves one step to the right and then

performs the convolution operation, and the result is −2. Do convolution operation step

by step from top to bottom and from left to right, and a 4 × 4 matrix can be obtained as

shown in Equation (1). Doing the same operation with filter2 will obtain another different

4 × 4 matrix.

Figure 1. Convolution operation.

𝑛𝑜𝑢𝑡 = floor (
𝑛𝑖𝑛 + 2 ∗ 𝑝 − 𝑘

𝑠
) + 1, (1)

where 𝑛𝑖𝑛 is the number of input features. 𝑝 is the size of padding. 𝑘 is the kernel size.

𝑠 is the stride. 𝑛𝑜𝑢𝑡 is the number of output features.

The dimensionality of the convolution results can be further reduced in the pooling

layers. The location of the pooling layer is usually in the middle of the two convolutional

layers [55]. Pooling layers reduce the feature model size of the previous convolutional

layer, speed up the calculation, and reduce the probability of overfitting [56]. Pooling op-

erations divide the feature image into regions and choose a value in one pooling area to

replace. In this way, the data and parameters of the feature image are compressed. Aver-

age pooling [57] and max pooling [58] are the two most typical pooling operations.

The fully connected layers come after the convolution layers and the pooling layers.

There may be one or more fully connected layers [59–61]. In the fully connected layers,

each neuron is fully connected to all neurons in the previous layer. The local features of

the previous outputs are integrated into global features through fully connected layers.

3.1. Batch Normalization

A deep neural network may have many hidden layers. When training each layer, the

parameters are updated, causing the input data distribution of the upper layer to change

accordingly. Layer-by-layer accumulation will cause the input distribution of the front

layer to change drastically. There will be changes not only in the input layer but also in

the hidden layers. The phenomenon is defined as Internal Covariate Shift (ICS) [62]. The

front layers should constantly adapt to the update of the parameters in the last layers,

which will reduce the training efficiency of the whole network.

Whitening the neural network’s input layer can make the network training converge

faster [63,64]. The whitening operation refers to linearly transforming the input data to

reach a normal distribution with means of 0 and variances of 1. Each neuron in hidden

layers can be seen as input to the next layer. Scholars can perform a whitening operation

0 1 0 1 0 0

0 1 0 0 1 0

0 1 0 0 0 1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 1 1

 1 1 1

 1 1 1

 1 2 2 3

 1 0 1 1

 3 0 1 3

3 1 3 1

Figure 1. Convolution operation.

The dimensionality of the convolution results can be further reduced in the pooling
layers. The location of the pooling layer is usually in the middle of the two convolutional
layers [55]. Pooling layers reduce the feature model size of the previous convolutional
layer, speed up the calculation, and reduce the probability of overfitting [56]. Pooling
operations divide the feature image into regions and choose a value in one pooling area to
replace. In this way, the data and parameters of the feature image are compressed. Average
pooling [57] and max pooling [58] are the two most typical pooling operations.

The fully connected layers come after the convolution layers and the pooling layers.
There may be one or more fully connected layers [59–61]. In the fully connected layers,
each neuron is fully connected to all neurons in the previous layer. The local features of the
previous outputs are integrated into global features through fully connected layers.

3.1. Batch Normalization

A deep neural network may have many hidden layers. When training each layer, the
parameters are updated, causing the input data distribution of the upper layer to change
accordingly. Layer-by-layer accumulation will cause the input distribution of the front
layer to change drastically. There will be changes not only in the input layer but also in the
hidden layers. The phenomenon is defined as Internal Covariate Shift (ICS) [62]. The front
layers should constantly adapt to the update of the parameters in the last layers, which
will reduce the training efficiency of the whole network.

Whitening the neural network’s input layer can make the network training converge
faster [63,64]. The whitening operation refers to linearly transforming the input data to
reach a normal distribution with means of 0 and variances of 1. Each neuron in hidden
layers can be seen as input to the next layer. Scholars can perform a whitening operation on
each hidden layer neuron to solve the ICS. Transform increasingly skewed data distributions
to more standard normal distributions. This is Batch Normalization (BN). BN is located
after the input linear activation and before the nonlinear transformation. That is, BN
is performed on the activation values ai of neurons in each hidden layer. If there are n
activation values in a mini-batch, the process of BN is as follows [62]:

(1) Calculate the mean µ, as shown in Equation (2);

µ =
1
n

n

∑
i=1

ai (2)

J. Imaging 2023, 9, 1 6 of 31

(2) Calculate the variance δ2, as shown in Equation (3);

δ2 =
1
n

n

∑
i=1

(ai − µ)2 (3)

(3) Normalize a∗i , as shown in Equation (4);

a∗i =
ai − µ√
δ2 + e

(4)

where e is a constant used to ensure numerical stability.
(4) Scale and shift, as shown in Equation (5).

BN(ai) = ϕa∗i + ω, (5)

ϕ is the parameter that scales the normalized value. ω is the parameter that shifts the
normalized value. These parameters are learnable. Simply normalizing the input may lead
to changing what the input represents. The addition of these parameters can restore the
representation of the network.

3.2. Dropout Technology

Between the input and the output layers, there are hidden layers. A deep neural
network (DNN) usually has many hidden layers. The training set can be modeled correctly
by adapting the weights on the incoming connections of the neurons in hidden layers [60].
However, the weight matrix performs poorly on the test set and has poor generalization
ability. This phenomenon is called overfitting.

Dropout can solve the problem of overfitting. Dropout means that some neurons in
the network are dropped out. However, instead of being deleted, they are temporarily
dropped out of the network, including their output and input connections [65], as shown
in Figure 2. The neurons that are dropped out are randomly selected. Each neuron is left
with a fixed probability p. The neurons that are left form new networks thinner than the
original network. These networks use the same weight matrix, so there is no increase in the
number of parameters.

J. Imaging 2023, 9, 1 6 of 32

on each hidden layer neuron to solve the ICS. Transform increasingly skewed data distri-

butions to more standard normal distributions. This is Batch Normalization (BN). BN is

located after the input linear activation and before the nonlinear transformation. That is,

BN is performed on the activation values 𝑎𝑖 of neurons in each hidden layer. If there are

𝑛 activation values in a mini-batch, the process of BN is as follows [62]:

(1) Calculate the mean 𝜇, as shown in Equation (2);

𝜇 =
1

𝑛
∑ 𝑎𝑖

𝑛

𝑖=1

 (2)

(2) Calculate the variance 𝛿2, as shown in Equation (3);

𝛿2 =
1

𝑛
∑(𝑎𝑖 − 𝜇)2

𝑛

𝑖=1

 (3)

(3) Normalize 𝑎𝑖
∗, as shown in Equation (4);

𝑎𝑖
∗ =

𝑎𝑖 − 𝜇

√𝛿2 + 𝑒
 (4)

where e is a constant used to ensure numerical stability.

(4) Scale and shift, as shown in Equation (5).

𝐵𝑁(𝑎𝑖) = 𝜑𝑎𝑖
∗ + 𝜔, (5)

𝜑 is the parameter that scales the normalized value. 𝜔 is the parameter that shifts

the normalized value. These parameters are learnable. Simply normalizing the input may

lead to changing what the input represents. The addition of these parameters can restore

the representation of the network.

3.2. Dropout Technology

Between the input and the output layers, there are hidden layers. A deep neural net-

work (DNN) usually has many hidden layers. The training set can be modeled correctly

by adapting the weights on the incoming connections of the neurons in hidden layers [60].

However, the weight matrix performs poorly on the test set and has poor generalization

ability. This phenomenon is called overfitting.

Dropout can solve the problem of overfitting. Dropout means that some neurons in

the network are dropped out. However, instead of being deleted, they are temporarily

dropped out of the network, including their output and input connections [65], as shown

in Figure 2. The neurons that are dropped out are randomly selected. Each neuron is left

with a fixed probability p. The neurons that are left form new networks thinner than the

original network. These networks use the same weight matrix, so there is no increase in

the number of parameters.

Dropped

Figure 2. Dropout neural net. Figure 2. Dropout neural net.

When the network is training, a neuron is left with probability p (p is randomly
generated from a Bernoulli distribution). It is connected to the next layer with a weight w.
Then the weight value is ultimately p× w. To make the weights connecting the neurons in
the next layer consistent with those during training, the neurons during testing are always
present, and the weights are reduced to p× w, as shown in Figure 3.

J. Imaging 2023, 9, 1 7 of 31

J. Imaging 2023, 9, 1 7 of 32

When the network is training, a neuron is left with probability 𝑝 (𝑝 is randomly

generated from a Bernoulli distribution). It is connected to the next layer with a weight

𝑤. Then the weight value is ultimately 𝑝 × 𝑤. To make the weights connecting the neu-

rons in the next layer consistent with those during training, the neurons during testing are

always present, and the weights are reduced to 𝑝 × 𝑤, as shown in Figure 3.

Be left with

probability p

w1
w2w3

At training time

Always be left

pw1
pw2pw3

At testing time

Figure 3. The output during testing is consistent with the output during training.

The dropout operation of the neural network is as Equation (6) [65]:
�̃�𝑙 = 𝑟𝑙 × 𝑑𝑙

𝑐𝑖
𝑙+1 = 𝑤𝑖

𝑙+1 × �̃�𝑙 + 𝑏𝑖
𝑙+1

𝑑𝑖
𝑙+1 = 𝑓(𝑐𝑖

𝑙+1)
(6)

where 𝑟𝑙 is a vector produced by the probability 𝑝𝑙 of the neurons in the hidden layer 𝑙.

𝑑𝑙 is the output vector of hidden layer 𝑙. 𝑐𝑙 is the input vector of the hidden layer 𝑙. 𝑤𝑙

and 𝑏𝑙 are the weights and biases of hidden layer l. 𝑓() is the activation function. �̃�𝑙

is the output vector of hidden layer l with the dropout. �̃�𝑙 is processed to be used as the

input of the hidden layer 𝑙 + 1.

3.3. ReLU Function and Its Variants

3.3.1. ReLU

As the activation function, ReLU functions increase the nonlinear relationship be-

tween the layers of CNN to complete complex tasks. The neurons of each layer in the

convolutional neural network are weighted and shifted, then output to the next layer, as

shown in Equation (7).

𝑦 = 𝑤𝑥 + 𝑏, (7)

where x is the input vector, y is the output vector. w is the weight vector for the layer, and

b is the bias vector for the layer. If there are two hidden layers, the input is weighted and

biased twice to obtain the output, as shown in Equations (8) and (9).

𝑦 = 𝑤2(𝑤1𝑥 + 𝑏1) + 𝑏2 (8)

𝑦 = 𝑤2𝑤1𝑥 + 𝑤2𝑏1 + 𝑏2 (9)

From Equation (9), it can be concluded that multiple hidden layers can be combined

into one layer if only linear transformations of weights and biases are applied to the input.

The linear expression ability is limited and insufficient to fit nonlinear neural networks.

The activation functions process the outputs of the neurons in the previous layers. The

processing results are passed as inputs to the neurons of the next layer. Activation func-

tions can add nonlinear factors. Rectified linear unit (ReLU) is a kind of activation function

commonly used in CNN. ReLU function is defined as Equation (10):

ReLU(𝑚) = {
0 𝑚 < 0
𝑚 𝑚 ≥ 0

 (10)

Figure 3. The output during testing is consistent with the output during training.

The dropout operation of the neural network is as Equation (6) [65]:

d̃l = rl × dl

cl+1
i = wl+1

i × d̃l + bl+1
i

dl+1
i = f

(
cl+1

i

) (6)

where rl is a vector produced by the probability pl of the neurons in the hidden layer l. dl

is the output vector of hidden layer l. cl is the input vector of the hidden layer l. wl and bl

are the weights and biases of hidden layer l. f () is the activation function. d̃l is the output
vector of hidden layer l with the dropout. d̃l is processed to be used as the input of the
hidden layer l + 1.

3.3. ReLU Function and Its Variants
3.3.1. ReLU

As the activation function, ReLU functions increase the nonlinear relationship between
the layers of CNN to complete complex tasks. The neurons of each layer in the convolutional
neural network are weighted and shifted, then output to the next layer, as shown in
Equation (7).

y = wx + b, (7)

where x is the input vector, y is the output vector. w is the weight vector for the layer, and b
is the bias vector for the layer. If there are two hidden layers, the input is weighted and
biased twice to obtain the output, as shown in Equations (8) and (9).

y = w2(w1x + b1) + b2 (8)

y = w2w1x + w2b1 + b2 (9)

From Equation (9), it can be concluded that multiple hidden layers can be combined
into one layer if only linear transformations of weights and biases are applied to the input.
The linear expression ability is limited and insufficient to fit nonlinear neural networks.
The activation functions process the outputs of the neurons in the previous layers. The
processing results are passed as inputs to the neurons of the next layer. Activation functions
can add nonlinear factors. Rectified linear unit (ReLU) is a kind of activation function
commonly used in CNN. ReLU function is defined as Equation (10):

ReLU(m) =

{
0 m < 0
m m ≥ 0

(10)

ReLU is illustrated in Figure 4a. The ReLU function is a piecewise linear function. It has
unilateral inhibition, which enables sparse activation of neurons in a deep neural network.
Sparsity networks are more helpful for mining features. The ReLU function accelerates
the convergence, and the gradient vanishing problem is solved [66]. A large parameter
update may cause some ReLU neurons to never be activated. The phenomenon of “dying

J. Imaging 2023, 9, 1 8 of 31

ReLU” appeared [67]. Variants of the ReLU function appeared to solve the problem, such
as LReLU (Figure 4b), PReLU (Figure 4c), RReLU (Figure 4d), ELU (Figure 4e), etc.

J. Imaging 2023, 9, 1 8 of 32

ReLU is illustrated in Figure 4a. The ReLU function is a piecewise linear function. It

has unilateral inhibition, which enables sparse activation of neurons in a deep neural net-

work. Sparsity networks are more helpful for mining features. The ReLU function accel-

erates the convergence, and the gradient vanishing problem is solved [66]. A large param-

eter update may cause some ReLU neurons to never be activated. The phenomenon of

“dying ReLU” appeared [67]. Variants of the ReLU function appeared to solve the prob-

lem, such as LReLU (Figure 4b), PReLU (Figure 4c), RReLU (Figure 4d), ELU (Figure 4e),

etc.

(a) ReLU function (b) LReLU function

(c) PReLU function (d) RReLU function

(e) ELU function

Figure 4. ReLU function and its variants.

3.3.2. Leaky ReLU

Leaky ReLU (LReLU) solves the dying ReLU problem using a small slope [68]. The

LReLU function is defined as Equation (11):

LReLU(𝑚) = {
𝛽𝑚 𝑚 < 0
𝑚 𝑚 ≥ 0

. (11)

where 𝛽 is generally 0.01. The LReLU has the advantage that if the input of the LReLU

activation function is less than zero, the gradient can also be calculated, unlike ReLU,

which keeps the gradient zero.

m

n

0

ReLU(m) = m

ReLU(m) = 0
m

n

0

LReLU(m) = m

LReLU(m) = 0.01m

m

n

0

PReLU(m) = m

PReLU(m) = βm

(β is trainable)

m

n

0

RReLU(m) = m

RReLU(m) = βm

m

n

0

ELU(m) = m

ELU(m) = β (em-1)

Figure 4. ReLU function and its variants.

3.3.2. Leaky ReLU

Leaky ReLU (LReLU) solves the dying ReLU problem using a small slope [68]. The
LReLU function is defined as Equation (11):

LReLU(m) =

{
βm m < 0
m m ≥ 0

. (11)

where β is generally 0.01. The LReLU has the advantage that if the input of the LReLU
activation function is less than zero, the gradient can also be calculated, unlike ReLU, which
keeps the gradient zero.

3.3.3. Parametric ReLU

Parametric rectified linear unit (PReLU) is a variant of LeakyReLU. The parameter β
of PReLU [69] is not set artificially but is obtained through training. The parameter is the
key to improving the classification performance. PReLU is defined as Equation (12):

PReLU(m) = max(0, m) + βmin(0, m) (12)

When β = 0, PReLU becomes ReLU. β controls the slope of the negative axis.

J. Imaging 2023, 9, 1 9 of 31

3.3.4. Randomized Leaky ReLU

Randomized leaky rectified linear unit (RReLU) is another variant of LeakyReLU.
RReLU is defined as Equation (13). Parameter β is randomly valued during training and
becomes a fixed value during testing. During the training process, the distribution of β
satisfies the normal distribution with a standard deviation of 1 and a mean of 0. When
testing, Srivastava [70] et al. took an average of all β using the method of dropout. The
NDSB competitor suggested that it would be better if β is sampled from C (3,8).

RReLU(m) =

{
βm m < 0
m m ≥ 0

β ∼ C(x, y), x < y and x, y ∈ [0 , 1) (13)

3.3.5. Exponential Linear Unit

The exponential linear unit (ELU) is also an activation function. It has similarities and
differences with ReLU. ELU is an activation function with negative values, and it is defined
as Equation (14):

ELU(m) =

{
m m > 0

β(em − 1) m ≤ 0
, ELU′(m) =

{
1 m > 0

ELU(m) + β m ≤ 0
(β > 0) (14)

where β controls the saturation value for negative net input [71]. ELU solves the problem of
gradient vanishing. The mean values of the ELU output are close to zero, which makes the
convergence faster. Because ELU is nonzero for negative values, there is no “dying ReLU”
phenomenon. ELU is an unsaturated function, and there is no problem with vanishing
gradients or exploding gradients.

3.4. Pooling

Pooling usually follows the convolution operation. The essence of pooling is sampling.
The dimension of the input feature map can be reduced using pooling by choosing an
appropriate method. Pooling can reduce the operation’s complexity and improve the
operation’s speed. The addition of pooling layers in the architecture of CNN can reduce
the scale of weights and parameters [72], reducing the input’s dimensions and memory
consumption [73–75]. The use of pooling layers can also solve overfitting [76].

3.4.1. Max Pooling

Max pooling is an extensively applied pooling method in CNNs [58]. This method
is popular because it does not require tuning parameters. The max pooling technique is
to find the max element in the pooling region [77,78]. Max pooling can exhibit the max
value of the feature map in the k× k neighborhood. Not only the scale of the feature map
space is optimized, but also the translation invariance of the network is preserved by max
pooling [79].

In Max pooling, the whole image is divided into several blocks of the same size that
do not overlap. We discard all other nodes and take only the max value in each block. For
example, there is a pooling region of size 4× 4. The pooling filter size is 2× 2, and the stride
is 2. These setups enable pooling to be applied to regions of the image that do not overlap.
The pooling filter selects the max value of each block to obtain the final output. Figure 5
shows the process of max pooling. Max pooling focuses on the max element and discards
the others. This may lead to wrong results of the disappearance of salient features [80].

J. Imaging 2023, 9, 1 10 of 31

J. Imaging 2023, 9, 1 10 of 32

discards the others. This may lead to wrong results of the disappearance of salient features

[80].

1 6

3 1

2

1

3

7

3 5

5 8

0 1

0 1

6 7

8 1

Before max pooling

2×2 Filter

Stride is 2

After max pooling

Max

Figure 5. The process of max pooling.

3.4.2. Average Pooling

The input sample is divided into multiple blocks of the same size and not overlap-

ping each other. Average pooling is to calculate the average value of all elements in each

block and present output. Use the input sample in Section 3.4.1. Similarly, the average

pooling filter size is 2 × 2, and the stride is 2. The purpose is to ensure that the areas

swept by the pooling filter do not overlap. Calculate the average of all values in each 2 × 2

pooling block as the output. Figure 6 shows the process of average pooling. In average

pooling, if the averages are low, the contrast will be diminished [79]. The convolutional

features will be decreased [81] if most of the averages are zero. Wang et al. [82] proposed

using a rank-based average pooling module in the network for COVID-19 COVID-19

recognition to avoid overfitting.

1 6

3 1

2

1

3

7

3 5

5 8

0 1

0 1

2.75 3.25

5.25 0.5

Before average pooling

2×2 Filter

Stride is 2

After average pooling

Average

Figure 6. The process of average pooling

3.4.3. Fractional Max Pooling

Fractional max pooling (FMP) is a special max pooling. It has an important parameter

𝜇 called the pooled fraction. Because 𝜇 represents the ratio of the input-spatial size to the

output-spatial size of the pooling region, the image size can be reduced by setting 𝜇. For

regular max pooling, 𝜇 is set to an integer. The size of the feature map is rapidly reduced.

For fractional max pooling, 𝜇 is set to a non-integer (a fraction). The decay rate of the

feature map will slow down. If the focus is on accuracy, set 𝜇 ∈ (1,2), as shown in Figure

7. Suppose the focus is on speed, set 𝜇 ∈ (2,3) [83].

Figure 5. The process of max pooling.

3.4.2. Average Pooling

The input sample is divided into multiple blocks of the same size and not overlapping
each other. Average pooling is to calculate the average value of all elements in each block
and present output. Use the input sample in Section 3.4.1. Similarly, the average pooling
filter size is 2× 2, and the stride is 2. The purpose is to ensure that the areas swept by
the pooling filter do not overlap. Calculate the average of all values in each 2× 2 pooling
block as the output. Figure 6 shows the process of average pooling. In average pooling,
if the averages are low, the contrast will be diminished [79]. The convolutional features
will be decreased [81] if most of the averages are zero. Wang et al. [82] proposed using a
rank-based average pooling module in the network for COVID-19 COVID-19 recognition
to avoid overfitting.

J. Imaging 2023, 9, 1 10 of 32

discards the others. This may lead to wrong results of the disappearance of salient features

[80].

1 6

3 1

2

1

3

7

3 5

5 8

0 1

0 1

6 7

8 1

Before max pooling

2×2 Filter

Stride is 2

After max pooling

Max

Figure 5. The process of max pooling.

3.4.2. Average Pooling

The input sample is divided into multiple blocks of the same size and not overlap-

ping each other. Average pooling is to calculate the average value of all elements in each

block and present output. Use the input sample in Section 3.4.1. Similarly, the average

pooling filter size is 2 × 2, and the stride is 2. The purpose is to ensure that the areas

swept by the pooling filter do not overlap. Calculate the average of all values in each 2 × 2

pooling block as the output. Figure 6 shows the process of average pooling. In average

pooling, if the averages are low, the contrast will be diminished [79]. The convolutional

features will be decreased [81] if most of the averages are zero. Wang et al. [82] proposed

using a rank-based average pooling module in the network for COVID-19 COVID-19

recognition to avoid overfitting.

1 6

3 1

2

1

3

7

3 5

5 8

0 1

0 1

2.75 3.25

5.25 0.5

Before average pooling

2×2 Filter

Stride is 2

After average pooling

Average

Figure 6. The process of average pooling

3.4.3. Fractional Max Pooling

Fractional max pooling (FMP) is a special max pooling. It has an important parameter

𝜇 called the pooled fraction. Because 𝜇 represents the ratio of the input-spatial size to the

output-spatial size of the pooling region, the image size can be reduced by setting 𝜇. For

regular max pooling, 𝜇 is set to an integer. The size of the feature map is rapidly reduced.

For fractional max pooling, 𝜇 is set to a non-integer (a fraction). The decay rate of the

feature map will slow down. If the focus is on accuracy, set 𝜇 ∈ (1,2), as shown in Figure

7. Suppose the focus is on speed, set 𝜇 ∈ (2,3) [83].

Figure 6. The process of average pooling.

3.4.3. Fractional Max Pooling

Fractional max pooling (FMP) is a special max pooling. It has an important parameter
µ called the pooled fraction. Because µ represents the ratio of the input-spatial size to the
output-spatial size of the pooling region, the image size can be reduced by setting µ. For
regular max pooling, µ is set to an integer. The size of the feature map is rapidly reduced.
For fractional max pooling, µ is set to a non-integer (a fraction). The decay rate of the
feature map will slow down. If the focus is on accuracy, set µ ∈ (1, 2), as shown in Figure 7.
Suppose the focus is on speed, set µ ∈ (2, 3) [83].

J. Imaging 2023, 9, 1 11 of 32

(a) Original image (b) Result of set 𝜇 = 1.4

Figure 7. Illustration of FMP.

There are two types of pooling regions: disjoint rectangular areas and overlapping

square areas. The pooling regions can be chosen in pseudorandom and random ways.

FMP works better in a random way [83]. Wang et al. [84] used fractional max pooling

(FMP) instead of max pooling and average pooling in a network for COVID-19 recogni-

tion.

3.4.4. Other Popular Pooling Methods

Both average pooling and max pooling have disadvantages. Yu et al. [85] proposed

a way to mix the two. This method is called mixed pooling. The weights of average pool-

ing and max pooling are merged [86], which can overcome their shortcomings. In many

experiments, the performance of mixed pooling is better than that of max pooling and

average pooling in image classification [87–89].

Tree pooling [90] uses the data from pooling filters to learn and combines these

learned filters. The performance of tree pooling is better than that of average pooling, max

pooling, and mixed pooling. However, more parameters must be learned than mixed av-

erage and max pooling [91]. Tree pooling is suitable for lower network layers focusing on

functional responses [92].

Fergus and Zeiler et al. [59] proposed stochastic pooling. Stochastic pooling ran-

domly selects values. It is not suitable for negative activations. With little training data,

stochastic pooling tends to generate strong activation, leading to overfitting. Rank-based

stochastic pooling [93] may solve this problem. It estimates the ranking of the activations

within the pooling region. Stochastic pooling needs to address issues related to scaling

[94]. Wang et al. [95] proposed the stochastic pooling module and a stochastic pooling

neural network for COVID-19 diagnosis. Zhang et al. [96] proposed a deep-learning

model for COVID-19 diagnosis. It used stochastic pooling instead of max pooling and av-

erage pooling.

4. Data Augmentation

Data augmentation (DA) is an effective way to expand datasets. The larger the size

of the data, the better the generalization ability of the trained model. When the number of

samples in the dataset is relatively small, data augmentation increases the amount of train-

ing data by modifying the existing training data [97]. Data augmentation is mainly used

to prevent overfitting, especially when the training dataset is small. There are many ways

for data augmentation [98–101].

4.1. Geometric Transforms

Geometric transforms are standard methods of data augmentation. Training data can

be effectively increased with geometric transforms [102]. Flipping is one of the easiest

ways to implement data augmentation [103]. Flipping is a mirror image reflected along a

line. Horizontal axis flipping is commonly used. Figure 8a shows the original image. Fig-

ure 8b shows the image after horizontal flipping. Figure 9a shows the original image. Fig-

ure 9b shows the image after vertical flipping. No matter what direction the image is

flipped, the image remains the same.

Figure 7. Illustration of FMP.

There are two types of pooling regions: disjoint rectangular areas and overlapping
square areas. The pooling regions can be chosen in pseudorandom and random ways. FMP

J. Imaging 2023, 9, 1 11 of 31

works better in a random way [83]. Wang et al. [84] used fractional max pooling (FMP)
instead of max pooling and average pooling in a network for COVID-19 recognition.

3.4.4. Other Popular Pooling Methods

Both average pooling and max pooling have disadvantages. Yu et al. [85] proposed
a way to mix the two. This method is called mixed pooling. The weights of average
pooling and max pooling are merged [86], which can overcome their shortcomings. In
many experiments, the performance of mixed pooling is better than that of max pooling
and average pooling in image classification [87–89].

Tree pooling [90] uses the data from pooling filters to learn and combines these learned
filters. The performance of tree pooling is better than that of average pooling, max pooling,
and mixed pooling. However, more parameters must be learned than mixed average and
max pooling [91]. Tree pooling is suitable for lower network layers focusing on functional
responses [92].

Fergus and Zeiler et al. [59] proposed stochastic pooling. Stochastic pooling randomly
selects values. It is not suitable for negative activations. With little training data, stochastic
pooling tends to generate strong activation, leading to overfitting. Rank-based stochastic
pooling [93] may solve this problem. It estimates the ranking of the activations within the
pooling region. Stochastic pooling needs to address issues related to scaling [94]. Wang
et al. [95] proposed the stochastic pooling module and a stochastic pooling neural network
for COVID-19 diagnosis. Zhang et al. [96] proposed a deep-learning model for COVID-19
diagnosis. It used stochastic pooling instead of max pooling and average pooling.

4. Data Augmentation

Data augmentation (DA) is an effective way to expand datasets. The larger the size
of the data, the better the generalization ability of the trained model. When the number
of samples in the dataset is relatively small, data augmentation increases the amount of
training data by modifying the existing training data [97]. Data augmentation is mainly
used to prevent overfitting, especially when the training dataset is small. There are many
ways for data augmentation [98–101].

4.1. Geometric Transforms

Geometric transforms are standard methods of data augmentation. Training data can
be effectively increased with geometric transforms [102]. Flipping is one of the easiest ways
to implement data augmentation [103]. Flipping is a mirror image reflected along a line.
Horizontal axis flipping is commonly used. Figure 8a shows the original image. Figure 8b
shows the image after horizontal flipping. Figure 9a shows the original image. Figure 9b
shows the image after vertical flipping. No matter what direction the image is flipped, the
image remains the same.

J. Imaging 2023, 9, 1 12 of 32

(a) Original image (b) Flipped image

Figure 8. Horizontal flipping.

(a) Original image (b) Flipped image

Figure 9. Vertical flipping.

Rotation augmentation rotates the image to the left or right according to the selected

angle. The image is rotated around a central point [104]. The angle of rotation should be

chosen appropriately. A wide rotation may make recognition unsafe [105]. Figure 10a

shows the original image. Figure 10b shows the result of a clockwise rotation of 10 de-

grees.

(a) Original image (b) Clockwise rotation of 10 degrees

Figure 10. Rotation operation

Shear is the non-vertical projection effect of a plane object on the projected plane.

Horizontal shear and vertical shear are commonly used in data enhancement. If the orig-

inal coordinate of a point is (𝑥, 𝑦), the coordinate after horizontal shear is (𝑥ℎ
′ , 𝑦ℎ

′), as

shown in Equation (15),

[𝑥ℎ
′ , 𝑦ℎ

′ , 1] = [𝑥, 𝑦, 1] × [
1 0 0

𝛽ℎ 1 0
0 0 1

] (15)

where 𝛽ℎ is horizontal shear parameter. The coordinate after the vertical shear is (𝑥𝑣
′ , 𝑦𝑣

′),

as shown in Equation (16), where 𝛽𝑣 is vertical shear parameter.

3 3

Figure 8. Horizontal flipping.

J. Imaging 2023, 9, 1 12 of 31

J. Imaging 2023, 9, 1 12 of 32

(a) Original image (b) Flipped image

Figure 8. Horizontal flipping.

(a) Original image (b) Flipped image

Figure 9. Vertical flipping.

Rotation augmentation rotates the image to the left or right according to the selected

angle. The image is rotated around a central point [104]. The angle of rotation should be

chosen appropriately. A wide rotation may make recognition unsafe [105]. Figure 10a

shows the original image. Figure 10b shows the result of a clockwise rotation of 10 de-

grees.

(a) Original image (b) Clockwise rotation of 10 degrees

Figure 10. Rotation operation

Shear is the non-vertical projection effect of a plane object on the projected plane.

Horizontal shear and vertical shear are commonly used in data enhancement. If the orig-

inal coordinate of a point is (𝑥, 𝑦), the coordinate after horizontal shear is (𝑥ℎ
′ , 𝑦ℎ

′), as

shown in Equation (15),

[𝑥ℎ
′ , 𝑦ℎ

′ , 1] = [𝑥, 𝑦, 1] × [
1 0 0

𝛽ℎ 1 0
0 0 1

] (15)

where 𝛽ℎ is horizontal shear parameter. The coordinate after the vertical shear is (𝑥𝑣
′ , 𝑦𝑣

′),

as shown in Equation (16), where 𝛽𝑣 is vertical shear parameter.

3 3

Figure 9. Vertical flipping.

Rotation augmentation rotates the image to the left or right according to the selected
angle. The image is rotated around a central point [104]. The angle of rotation should
be chosen appropriately. A wide rotation may make recognition unsafe [105]. Figure 10a
shows the original image. Figure 10b shows the result of a clockwise rotation of 10 degrees.

J. Imaging 2023, 9, 1 12 of 32

(a) Original image (b) Flipped image

Figure 8. Horizontal flipping.

(a) Original image (b) Flipped image

Figure 9. Vertical flipping.

Rotation augmentation rotates the image to the left or right according to the selected

angle. The image is rotated around a central point [104]. The angle of rotation should be

chosen appropriately. A wide rotation may make recognition unsafe [105]. Figure 10a

shows the original image. Figure 10b shows the result of a clockwise rotation of 10 de-

grees.

(a) Original image (b) Clockwise rotation of 10 degrees

Figure 10. Rotation operation

Shear is the non-vertical projection effect of a plane object on the projected plane.

Horizontal shear and vertical shear are commonly used in data enhancement. If the orig-

inal coordinate of a point is (𝑥, 𝑦), the coordinate after horizontal shear is (𝑥ℎ
′ , 𝑦ℎ

′), as

shown in Equation (15),

[𝑥ℎ
′ , 𝑦ℎ

′ , 1] = [𝑥, 𝑦, 1] × [
1 0 0

𝛽ℎ 1 0
0 0 1

] (15)

where 𝛽ℎ is horizontal shear parameter. The coordinate after the vertical shear is (𝑥𝑣
′ , 𝑦𝑣

′),

as shown in Equation (16), where 𝛽𝑣 is vertical shear parameter.

3 3
Figure 10. Rotation operation.

Shear is the non-vertical projection effect of a plane object on the projected plane.
Horizontal shear and vertical shear are commonly used in data enhancement. If the
original coordinate of a point is (x, y), the coordinate after horizontal shear is

(
x′h, y′h

)
, as

shown in Equation (15),

[
x′h, y′h, 1

]
= [x, y, 1]×

 1 0 0
βh 1 0
0 0 1

 (15)

where βh is horizontal shear parameter. The coordinate after the vertical shear is (x′v, y′v),
as shown in Equation (16), where βv is vertical shear parameter.

[
x′v, y′v, 1

]
= [x, y, 1]×

1 βv 0
0 1 0
0 0 1

 (16)

Cropping cuts a portion of the input image. It is an effective tool for extracting
patches [106,107]. Images can be classified according to patches rather than the whole
image. An image can be cropped into several pieces. It does not lose important information
about the image when cropping.

4.2. Noise Injection

There are many ways for data augmentation using noise injection, such as Gaussian
noise, salt-and-pepper noise, speckle noise, etc. Noise injection has been successfully used in
plant leaf disease recognition [108], robot speech commands [109], fruit classification [110],
and so on. Gaussian noise injection is more popular. Gaussian noise follows the normal
distribution. The probability density function (PDF) f (x) of Gaussian noise can be expressed

J. Imaging 2023, 9, 1 13 of 31

as Equation (17), where α2 is the variance and β is the mean value. Gaussian injection means
injecting random values from a Gaussian distribution into the pixels of the image.

f (x) =
1√

2πα2
e−

(x−β)2

2α2 (17)

In addition to adding noise to the input layer, you can also add noise to other layers.
DeVries et al. add noise to a learned feature space instead of the input space [111]. Xie
et al. [112] add noise to the loss layer. These prevent the network from overfitting.

4.3. Color Space

Implementing data augmentation in a color space is also a practical approach. The
transformations are based on gray or RGB color values [113]. Color augmentation can be
completed by isolating a color channel and converting an image into a representation in
one color channel. Color augmentation can be completed by manipulating the RGB values
to change the image’s brightness. Color augmentation can be completed by changing the
color histograms of the image [98].

4.4. Random Erasing

Random erasing means randomly selecting an area of the image, and its pixels are
erased by random or mean pixel values [114]. It can augment the recognition of occluded
images. Random erasing requires no parameters to learn and is easy to implement.

The size of the source image is M × N. The size of the randomly selected erasing
rectangle region is M′ × N′. Then, select randomly a point W = (x, y) in the source image
region. If x + M′ < M and y + N′ < N, S = (x, y, x + M′, y + N′) is the erasing region.
Each pixel in S is assigned a random value between 0 and 255. Finally, a new image with a
part of the regions erased is obtained.

4.5. Kernel Filters

Kernel filters can sharpen or blur images. The data augmentation can be obtained by
convolving the kernel filter with the image. A Gaussian blur filter [115] is used to slide
an n× n matrix across the image. A blurry image is yielded. An unsharp masking [116]
slides an n× n matrix over the image. A sharpened image is yielded. The blurred image
can resist motion blur. The sharpened image allows for more detail. Figure 11a shows the
original image. Figure 11b shows the image after sharpening. Figure 11c shows the image
after blurring.

J. Imaging 2023, 9, 1 14 of 32

(a) Original image (b) Sharpened image (c) Blurry image

Figure 11. Sharpening and Blurring operation.

4.6. Mixing Images

Mixing images is a method for data augmentation of two or more images. Calculating

the average of the pixels can achieve a mixed image. This strategy of data augmentation

may seem irrational, but it is effective. Ionue [117] came up with Samplepaining technol-

ogy. Two images were randomly selected from the dataset, and one was overlaid on an-

other. A new sample is obtained by superimposing two images. This simple data augmen-

tation technology significantly improved classification accuracy. Summers and Dinneen

[118] mixed the images in a nonlinear manner. Takahashi et al. [119] generate a new train-

ing image by mixing four images obtained through random image cropping and patching

(RICAP).

4.7. Data Augmentation Methods Based on Deep Learning

There are some DA ways based on deep learning. The feature space in CNN is a low-

dimensional representation in high-level layers [98]. Feature space augmentation opens

up opportunities for many vector operations for data augmentation [111]. Adversarial

training helps to search the space for possible augmentations. It can improve the weakness

in the boundaries of learnable decisions. Generative Adversarial Networks (GANs) are a

way to obtain additional information from a dataset [120]. Figure 12 shows the architec-

ture of GAN.

ra
n

d
o

m
 i

n
p

u
t

v
al

u
es

Generator

Network

Fake

Images

Discriminator

Network
Real

Images
Predicted Classification

Figure 12. GAN architecture.

Neural style transfer transfers the style of an image created in CNN to another image

and preserves the original content [121]. Overfitting of the model can be prevented. Meta-

learning refers to optimizing neural networks with neural networks [122]. There is neural

augmentation [123], smart augmentation [124], and auto-augmentation [125].

5. Pretrained Models

With the development of CNN, many mature networks perform well in image recog-

nition, object recognition, natural language processing, and other fields. These networks

Figure 11. Sharpening and Blurring operation.

J. Imaging 2023, 9, 1 14 of 31

4.6. Mixing Images

Mixing images is a method for data augmentation of two or more images. Calculating
the average of the pixels can achieve a mixed image. This strategy of data augmentation
may seem irrational, but it is effective. Ionue [117] came up with Samplepaining technology.
Two images were randomly selected from the dataset, and one was overlaid on another.
A new sample is obtained by superimposing two images. This simple data augmentation
technology significantly improved classification accuracy. Summers and Dinneen [118]
mixed the images in a nonlinear manner. Takahashi et al. [119] generate a new training
image by mixing four images obtained through random image cropping and patching
(RICAP).

4.7. Data Augmentation Methods Based on Deep Learning

There are some DA ways based on deep learning. The feature space in CNN is a
low-dimensional representation in high-level layers [98]. Feature space augmentation opens
up opportunities for many vector operations for data augmentation [111]. Adversarial
training helps to search the space for possible augmentations. It can improve the weakness
in the boundaries of learnable decisions. Generative Adversarial Networks (GANs) are a
way to obtain additional information from a dataset [120]. Figure 12 shows the architecture
of GAN.

J. Imaging 2023, 9, 1 14 of 32

(a) Original image (b) Sharpened image (c) Blurry image

Figure 11. Sharpening and Blurring operation.

4.6. Mixing Images

Mixing images is a method for data augmentation of two or more images. Calculating

the average of the pixels can achieve a mixed image. This strategy of data augmentation

may seem irrational, but it is effective. Ionue [117] came up with Samplepaining technol-

ogy. Two images were randomly selected from the dataset, and one was overlaid on an-

other. A new sample is obtained by superimposing two images. This simple data augmen-

tation technology significantly improved classification accuracy. Summers and Dinneen

[118] mixed the images in a nonlinear manner. Takahashi et al. [119] generate a new train-

ing image by mixing four images obtained through random image cropping and patching

(RICAP).

4.7. Data Augmentation Methods Based on Deep Learning

There are some DA ways based on deep learning. The feature space in CNN is a low-

dimensional representation in high-level layers [98]. Feature space augmentation opens

up opportunities for many vector operations for data augmentation [111]. Adversarial

training helps to search the space for possible augmentations. It can improve the weakness

in the boundaries of learnable decisions. Generative Adversarial Networks (GANs) are a

way to obtain additional information from a dataset [120]. Figure 12 shows the architec-

ture of GAN.

ra
n

d
o

m
 i

n
p

u
t

v
al

u
es

Generator

Network

Fake

Images

Discriminator

Network
Real

Images
Predicted Classification

Figure 12. GAN architecture.

Neural style transfer transfers the style of an image created in CNN to another image

and preserves the original content [121]. Overfitting of the model can be prevented. Meta-

learning refers to optimizing neural networks with neural networks [122]. There is neural

augmentation [123], smart augmentation [124], and auto-augmentation [125].

5. Pretrained Models

With the development of CNN, many mature networks perform well in image recog-

nition, object recognition, natural language processing, and other fields. These networks

Figure 12. GAN architecture.

Neural style transfer transfers the style of an image created in CNN to another image
and preserves the original content [121]. Overfitting of the model can be prevented. Meta-
learning refers to optimizing neural networks with neural networks [122]. There is neural
augmentation [123], smart augmentation [124], and auto-augmentation [125].

5. Pretrained Models

With the development of CNN, many mature networks perform well in image recognition,
object recognition, natural language processing, and other fields. These networks include
AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. During the COVID-19 pandemic, these
networks could be fine-tuned and used to classify chest CT or chest X-ray images into different
categories (such as infection and health).

5.1. AlexNet

AlexNet contains five convolutional layers and three fully connected layers [66]. Compared
with LeNet, it uses more new technology [126]. Figure 13 is the structure of AlexNet.

J. Imaging 2023, 9, 1 15 of 32

include AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. During the COVID-19 pan-

demic, these networks could be fine-tuned and used to classify chest CT or chest X-ray

images into different categories (such as infection and health).

5.1. AlexNet

AlexNet contains five convolutional layers and three fully connected layers [66].

Compared with LeNet, it uses more new technology [126]. Figure 13 is the structure of

AlexNet.

(1) AlexNet uses ReLU as the activation function. ReLU solves the problem of gradient

descent.

(2) For fully connected layer training, AlexNet randomly ignores some neurons using

dropout to avoid model overfitting.

(3) AlexNet uses overlapping max pooling in CNN. The step size in AlexNet is smaller

than the size of the pooling kernel, so overlapping pooling is obtained.

(4) AlexNet uses the local normalization scheme, which is more helpful for generaliza-

tion.

(5) AlexNet uses the computing power of parallel GPU, and the training of CNN is ac-

celerated.

(6) Two different forms of data augmentation are used in AlexNet. The first form of data

augmentation is the translation and horizontal reflection. The second form of data

augmentation is the change in the intensity of the image color channel.

Figure 13. Structure of AlexNet.

5.2. ResNet

ResNet is developed and optimized based on AlexNet. One of the advantages of re-

sidual neural networks is identity mapping. ResNet has 152 layers. Simply increasing the

depth of the network can lead to the problem of vanishing gradients or exploding gradi-

ents [127,128]. This problem has been addressed by normalized initialization

[63,69,128,129] and intermediate normalization layers. However, with the network layers

stacking, the accuracy of the training dataset saturates or even descends. That is the deg-

radation. The degradation is not due to overfitting. Stacking layers in the deep model will

make the training error larger [130,131]. ResNet uses a deep residual learning framework

to mitigate the degradation [132].

The shallow network gradually stacks layers to make it a deep network. In a deep

network, if the stacked layers are identity mapping, and the other layers copy the shallow

network, the performance can be almost the same as the shallow network. A few stacked

layers are called a block. x is the input to the first layer of the block. The expected mapping

is 𝐺(𝑥). The fitting function of the block is Equation (18):

𝐷(𝑥) = 𝐺(𝑥) − 𝑥. (18)

So 𝐺(𝑥) is recast into 𝐷(𝑥) + 𝑥. It is easier to approximate 𝐷(𝑥) to 𝐺(𝑥) − 𝑥 than to

approximate 𝐷(𝑥) to 𝐺(𝑥). 𝐺(𝑥) − 𝑥 is the residual mapping. To the extreme, the iden-

tity mapping 𝐺(𝑥) = 𝑥 can be obtained by pushing the residual 𝐷(𝑥) to zero. Figure 14

shows that feedforward neural networks with shortcut connections can achieve 𝐷(𝑥) + 𝑥.

Input Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 FC 6 FC 7 FC 8

227×227×3 55×55×96 27×27×256 13×13×384 13×13×384 13×13×256 4096 4096 1000

Max

Pooling

Max

Pooling

Max

Pooling

Filter

11× 11

Filter

5×5

Filter

3×3

Filter

3×3

Filter

3×3

Figure 13. Structure of AlexNet.

J. Imaging 2023, 9, 1 15 of 31

(1) AlexNet uses ReLU as the activation function. ReLU solves the problem of
gradient descent.

(2) For fully connected layer training, AlexNet randomly ignores some neurons using
dropout to avoid model overfitting.

(3) AlexNet uses overlapping max pooling in CNN. The step size in AlexNet is smaller
than the size of the pooling kernel, so overlapping pooling is obtained.

(4) AlexNet uses the local normalization scheme, which is more helpful for generalization.
(5) AlexNet uses the computing power of parallel GPU, and the training of CNN

is accelerated.
(6) Two different forms of data augmentation are used in AlexNet. The first form of data

augmentation is the translation and horizontal reflection. The second form of data
augmentation is the change in the intensity of the image color channel.

5.2. ResNet

ResNet is developed and optimized based on AlexNet. One of the advantages of residual
neural networks is identity mapping. ResNet has 152 layers. Simply increasing the depth of
the network can lead to the problem of vanishing gradients or exploding gradients [127,128].
This problem has been addressed by normalized initialization [63,69,128,129] and intermediate
normalization layers. However, with the network layers stacking, the accuracy of the training
dataset saturates or even descends. That is the degradation. The degradation is not due to
overfitting. Stacking layers in the deep model will make the training error larger [130,131].
ResNet uses a deep residual learning framework to mitigate the degradation [132].

The shallow network gradually stacks layers to make it a deep network. In a deep
network, if the stacked layers are identity mapping, and the other layers copy the shallow
network, the performance can be almost the same as the shallow network. A few stacked
layers are called a block. x is the input to the first layer of the block. The expected mapping
is G(x). The fitting function of the block is Equation (18):

D(x) = G(x)− x. (18)

So G(x) is recast into D(x) + x. It is easier to approximate D(x) to G(x)− x than to
approximate D(x) to G(x). G(x)− x is the residual mapping. To the extreme, the identity
mapping G(x) = x can be obtained by pushing the residual D(x) to zero. Figure 14 shows
that feedforward neural networks with shortcut connections can achieve D(x) + x.

J. Imaging 2023, 9, 1 16 of 32

Layer

Layer

x

identity
D(x)

D(x)+x

ReLU

ReLU

x

Figure 14. Shortcut Connection.

5.3. DenseNet

All the front layers in DenseNet are densely connected to the back layers. Each layer

connects to every other layer. One of its characteristics is that the connection of features

on channels enables feature reuse. DenseNet has fewer parameters, faster computation,

and better performance.

DenseNet is a densely connected convolutional network. Feature maps from all pre-

ceding layers are concatenated as additional inputs to this layer. Its feature maps are

passed on as inputs to all subsequent layers, which preserves the feedforward nature of

the network. If DenseNet has N layers, there are 𝑁(𝑁 + 1)/2 connections. 𝑥0 is the input

image of a DenseNet. 𝑥𝑛 is the output of the network at layer n. Layer n receives feature

maps from all preceding layers as inputs (19):

𝑥𝑛 = 𝐹𝑛([𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1]), (19)

where 𝐹𝑛() is a nonlinear transformation function of layer 𝑛. It is a composite function of

operations [133]. It includes batch normalization (BN), rectified linear units (ReLU), pool-

ing [126], or convolution.

Pooling and convolution in CNN will change the size of feature maps. In DenseNet,

only feature maps of the same size can be densely connected. To resolve this contradiction,

DenseNet divides the network into several dense blocks. The feature maps of each layer

in one dense block have the same size. They are densely connected. Between two adjacent

dense blocks are transition layers. Pooling and convolution in the transition layer make

the feature map smaller. Figure 15 is the structure of DenseNet.

T
ran

sitio
n

T
ran

sitio
n

Dense Block Dense Block Dense Block

C
o
n
v
-P

o
o
l

Figure 15. Structure of DenseNet.

5.4. VGG

Visual Geometry Group (VGG) won first place in localization and second place in the

classification on ImageNet Challenge in 2014. VGG is an improvement on AlexNet by

deepening the depth of the network. VGG uses 3 × 3 convolution filters in all layers. It

enables the network to add more convolutional layers. Increasing the depth of the net-

work leads to better performance. Figure 16 is the structure of VGG16.

VGG uses a stack of three 3 × 3 convolution kernels. Three 3 × 3 convolution ker-

nels have the same receptive field of 7 × 7. The three nonlinear rectification layers make

Figure 14. Shortcut Connection.

5.3. DenseNet

All the front layers in DenseNet are densely connected to the back layers. Each layer
connects to every other layer. One of its characteristics is that the connection of features on
channels enables feature reuse. DenseNet has fewer parameters, faster computation, and
better performance.

DenseNet is a densely connected convolutional network. Feature maps from all
preceding layers are concatenated as additional inputs to this layer. Its feature maps are
passed on as inputs to all subsequent layers, which preserves the feedforward nature of

J. Imaging 2023, 9, 1 16 of 31

the network. If DenseNet has N layers, there are N(N + 1)/2 connections. x0 is the input
image of a DenseNet. xn is the output of the network at layer n. Layer n receives feature
maps from all preceding layers as inputs (19):

xn = Fn([x0, x1, · · · , xn−1]), (19)

where Fn() is a nonlinear transformation function of layer n. It is a composite function
of operations [133]. It includes batch normalization (BN), rectified linear units (ReLU),
pooling [126], or convolution.

Pooling and convolution in CNN will change the size of feature maps. In DenseNet,
only feature maps of the same size can be densely connected. To resolve this contradiction,
DenseNet divides the network into several dense blocks. The feature maps of each layer in
one dense block have the same size. They are densely connected. Between two adjacent
dense blocks are transition layers. Pooling and convolution in the transition layer make the
feature map smaller. Figure 15 is the structure of DenseNet.

J. Imaging 2023, 9, 1 16 of 32

Layer

Layer

x

identity
D(x)

D(x)+x

ReLU

ReLU

x

Figure 14. Shortcut Connection.

5.3. DenseNet

All the front layers in DenseNet are densely connected to the back layers. Each layer

connects to every other layer. One of its characteristics is that the connection of features

on channels enables feature reuse. DenseNet has fewer parameters, faster computation,

and better performance.

DenseNet is a densely connected convolutional network. Feature maps from all pre-

ceding layers are concatenated as additional inputs to this layer. Its feature maps are

passed on as inputs to all subsequent layers, which preserves the feedforward nature of

the network. If DenseNet has N layers, there are 𝑁(𝑁 + 1)/2 connections. 𝑥0 is the input

image of a DenseNet. 𝑥𝑛 is the output of the network at layer n. Layer n receives feature

maps from all preceding layers as inputs (19):

𝑥𝑛 = 𝐹𝑛([𝑥0, 𝑥1, ⋯ , 𝑥𝑛−1]), (19)

where 𝐹𝑛() is a nonlinear transformation function of layer 𝑛. It is a composite function of

operations [133]. It includes batch normalization (BN), rectified linear units (ReLU), pool-

ing [126], or convolution.

Pooling and convolution in CNN will change the size of feature maps. In DenseNet,

only feature maps of the same size can be densely connected. To resolve this contradiction,

DenseNet divides the network into several dense blocks. The feature maps of each layer

in one dense block have the same size. They are densely connected. Between two adjacent

dense blocks are transition layers. Pooling and convolution in the transition layer make

the feature map smaller. Figure 15 is the structure of DenseNet.

T
ran

sitio
n

T
ran

sitio
n

Dense Block Dense Block Dense Block

C
o
n
v
-P

o
o
l

Figure 15. Structure of DenseNet.

5.4. VGG

Visual Geometry Group (VGG) won first place in localization and second place in the

classification on ImageNet Challenge in 2014. VGG is an improvement on AlexNet by

deepening the depth of the network. VGG uses 3 × 3 convolution filters in all layers. It

enables the network to add more convolutional layers. Increasing the depth of the net-

work leads to better performance. Figure 16 is the structure of VGG16.

VGG uses a stack of three 3 × 3 convolution kernels. Three 3 × 3 convolution ker-

nels have the same receptive field of 7 × 7. The three nonlinear rectification layers make

Figure 15. Structure of DenseNet.

5.4. VGG

Visual Geometry Group (VGG) won first place in localization and second place in
the classification on ImageNet Challenge in 2014. VGG is an improvement on AlexNet by
deepening the depth of the network. VGG uses 3× 3 convolution filters in all layers. It
enables the network to add more convolutional layers. Increasing the depth of the network
leads to better performance. Figure 16 is the structure of VGG16.

J. Imaging 2023, 9, 1 17 of 32

the decision function more discriminative. Then, the number of parameters is decreased.

If the input and the output of three 3 × 3 convolution layers both have X channels, the

number of parameters is 3 × 32 × 𝑋2 = 27𝑋2. One 7 × 7 convolution layer has the pa-

rameters is 72 × 𝑋2 = 49𝑋2, 81% more parameters [61].

VGG uses the max pooling layer. The size of the pooling kernel is 2 × 2, with stride

2. Smaller pooling kernels can capture more details of the information. Max pooling is

easier to capture the changes in the image and obtain more differences in local infor-

mation.

Input

3× 3 Conv 64

3× 3 Conv 64

3× 3 Conv 128

3× 3 Conv 128

3× 3 Conv 256

3× 3 Conv 256

3× 3 Conv 256

3× 3 Conv 512

3× 3 Conv 512

3× 3 Conv 512

3× 3 Conv 512

3× 3 Conv 512

3× 3 Conv 512

FC 4086

FC 4086

FC 1000

Max Pooling

Max Pooling

Max Pooling

Max Pooling

Max Pooling

Figure 16. Structure of VGG16.

5.5. GoogleNet

GoogleNet believes that increasing the number of layers (depth) or the number of

neurons at each layer (width) of the networks can improve the performance of the net-

works. Increasing the size of a network has two drawbacks:

(1) Larger sizes of networks generate more parameters. When the data in the training set

is small, too many parameters will cause the network to overfit.

(2) Larger size of networks increases computation dramatically. Adding a convolution

layer will result in a quadratic increase in computation.

To overcome the two drawbacks, GoogleNet uses a sparse connection instead of a

full connection. Inception architecture is constructed in GoogleNet to realize sparse con-

nections [134]. The idea of Inception is to find the optimal local sparse structure in the

network and repeat it. The filter sizes of Inception are 1 × 1, 3 × 3, and 5× 5. The output

filter banks concatenate into a single vector as the input of the next step. At the same time,

it is also necessary to add an alternative parallel pooling path in each stage, as shown in

Figure 17.

But in Inception architecture, the outputs of the convolutional layer and the pooling

layer will increase. It can become expensive and a computational blow-up. Dimension

reductions and projections can solve this problem. Using 1 × 1 convolutions can reduce

the computation before 3 × 3 and 5× 5 convolutions and rectify linear activation, as

shown in Figure 18.

Figure 16. Structure of VGG16.

J. Imaging 2023, 9, 1 17 of 31

VGG uses a stack of three 3× 3 convolution kernels. Three 3× 3 convolution kernels
have the same receptive field of 7× 7. The three nonlinear rectification layers make the
decision function more discriminative. Then, the number of parameters is decreased. If the
input and the output of three 3× 3 convolution layers both have X channels, the number
of parameters is 3× 32 × X2 = 27X2. One 7× 7 convolution layer has the parameters is
72 × X2 = 49X2, 81% more parameters [61].

VGG uses the max pooling layer. The size of the pooling kernel is 2×2, with stride 2.
Smaller pooling kernels can capture more details of the information. Max pooling is easier
to capture the changes in the image and obtain more differences in local information.

5.5. GoogleNet

GoogleNet believes that increasing the number of layers (depth) or the number of
neurons at each layer (width) of the networks can improve the performance of the networks.
Increasing the size of a network has two drawbacks:

(1) Larger sizes of networks generate more parameters. When the data in the training set
is small, too many parameters will cause the network to overfit.

(2) Larger size of networks increases computation dramatically. Adding a convolution
layer will result in a quadratic increase in computation.

To overcome the two drawbacks, GoogleNet uses a sparse connection instead of
a full connection. Inception architecture is constructed in GoogleNet to realize sparse
connections [134]. The idea of Inception is to find the optimal local sparse structure in the
network and repeat it. The filter sizes of Inception are 1× 1, 3× 3, and 5×5. The output
filter banks concatenate into a single vector as the input of the next step. At the same time,
it is also necessary to add an alternative parallel pooling path in each stage, as shown in
Figure 17.

J. Imaging 2023, 9, 1 18 of 32

1×1 Conv 3×3 Conv 5×5 Conv 3×3 Max Pooling

Layer

 Filter concatenation

Figure 17. Basic Inception Module.

1×1 Conv 3×3 Conv 5×5 Conv

3×3 Max Pooling

Layer

 Filter concatenation

1×1 Conv 1×1 Conv

1×1 Conv

Figure 18. Inception module with 1 × 1 convolution.

5.6. Transfer Learning

In some cases, it is not easy to obtain training data that matches the feature space of

the test data [135]. If a test dataset is related to a training dataset that has already been

trained, the parameters of the trained model (pre-trained model) can be transferred to the

target model, as shown in Figure 19. This avoids training the target model from scratch.

It speeds up and optimizes the learning of the target model. Transfer learning can provide

related but not identical existing datasets for the target model.

Transfer learning has been applied to include text sentiment classification [136], im-

age classification [137–139], human activity classification [140], software defect classifica-

tion [141], and multi-language text classification [142–144]. The networks that can be used

as pre-trained are also the focus of research.

Dataset 1

Model 1

Task 1

Source Domain

Transfer Learning Dataset 2

Model 2

Task 2

Target Domain

Figure 19. The process of transfer learning.

The feature space of the source domain is 𝐹𝑠, and the feature space of the target do-

main is 𝐹𝑡. If 𝐹𝑡 = 𝐹𝑠, this is homogeneous transfer learning. If 𝐹𝑡 ≠ 𝐹𝑠, this is heterogene-

ous transfer learning. The strategies adopted by homogeneous transfer learning [135] in-

clude correcting the difference in the marginal distribution in the source, correcting the

Figure 17. Basic Inception Module.

But in Inception architecture, the outputs of the convolutional layer and the pooling
layer will increase. It can become expensive and a computational blow-up. Dimension
reductions and projections can solve this problem. Using 1× 1 convolutions can reduce the
computation before 3× 3 and 5×5 convolutions and rectify linear activation, as shown in
Figure 18.

J. Imaging 2023, 9, 1 18 of 31

J. Imaging 2023, 9, 1 18 of 32

1×1 Conv 3×3 Conv 5×5 Conv 3×3 Max Pooling

Layer

 Filter concatenation

Figure 17. Basic Inception Module.

1×1 Conv 3×3 Conv 5×5 Conv

3×3 Max Pooling

Layer

 Filter concatenation

1×1 Conv 1×1 Conv

1×1 Conv

Figure 18. Inception module with 1 × 1 convolution.

5.6. Transfer Learning

In some cases, it is not easy to obtain training data that matches the feature space of

the test data [135]. If a test dataset is related to a training dataset that has already been

trained, the parameters of the trained model (pre-trained model) can be transferred to the

target model, as shown in Figure 19. This avoids training the target model from scratch.

It speeds up and optimizes the learning of the target model. Transfer learning can provide

related but not identical existing datasets for the target model.

Transfer learning has been applied to include text sentiment classification [136], im-

age classification [137–139], human activity classification [140], software defect classifica-

tion [141], and multi-language text classification [142–144]. The networks that can be used

as pre-trained are also the focus of research.

Dataset 1

Model 1

Task 1

Source Domain

Transfer Learning Dataset 2

Model 2

Task 2

Target Domain

Figure 19. The process of transfer learning.

The feature space of the source domain is 𝐹𝑠, and the feature space of the target do-

main is 𝐹𝑡. If 𝐹𝑡 = 𝐹𝑠, this is homogeneous transfer learning. If 𝐹𝑡 ≠ 𝐹𝑠, this is heterogene-

ous transfer learning. The strategies adopted by homogeneous transfer learning [135] in-

clude correcting the difference in the marginal distribution in the source, correcting the

Figure 18. Inception module with 1× 1 convolution.

5.6. Transfer Learning

In some cases, it is not easy to obtain training data that matches the feature space of
the test data [135]. If a test dataset is related to a training dataset that has already been
trained, the parameters of the trained model (pre-trained model) can be transferred to the
target model, as shown in Figure 19. This avoids training the target model from scratch. It
speeds up and optimizes the learning of the target model. Transfer learning can provide
related but not identical existing datasets for the target model.

J. Imaging 2023, 9, 1 18 of 32

1×1 Conv 3×3 Conv 5×5 Conv 3×3 Max Pooling

Layer

 Filter concatenation

Figure 17. Basic Inception Module.

1×1 Conv 3×3 Conv 5×5 Conv

3×3 Max Pooling

Layer

 Filter concatenation

1×1 Conv 1×1 Conv

1×1 Conv

Figure 18. Inception module with 1 × 1 convolution.

5.6. Transfer Learning

In some cases, it is not easy to obtain training data that matches the feature space of

the test data [135]. If a test dataset is related to a training dataset that has already been

trained, the parameters of the trained model (pre-trained model) can be transferred to the

target model, as shown in Figure 19. This avoids training the target model from scratch.

It speeds up and optimizes the learning of the target model. Transfer learning can provide

related but not identical existing datasets for the target model.

Transfer learning has been applied to include text sentiment classification [136], im-

age classification [137–139], human activity classification [140], software defect classifica-

tion [141], and multi-language text classification [142–144]. The networks that can be used

as pre-trained are also the focus of research.

Dataset 1

Model 1

Task 1

Source Domain

Transfer Learning Dataset 2

Model 2

Task 2

Target Domain

Figure 19. The process of transfer learning.

The feature space of the source domain is 𝐹𝑠, and the feature space of the target do-

main is 𝐹𝑡. If 𝐹𝑡 = 𝐹𝑠, this is homogeneous transfer learning. If 𝐹𝑡 ≠ 𝐹𝑠, this is heterogene-

ous transfer learning. The strategies adopted by homogeneous transfer learning [135] in-

clude correcting the difference in the marginal distribution in the source, correcting the

Figure 19. The process of transfer learning.

Transfer learning has been applied to include text sentiment classification [136], image
classification [137–139], human activity classification [140], software defect classification [141],
and multi-language text classification [142–144]. The networks that can be used as pre-trained
are also the focus of research.

The feature space of the source domain is Fs, and the feature space of the target domain
is Ft. If Ft = Fs, this is homogeneous transfer learning. If Ft 6= Fs, this is heterogeneous
transfer learning. The strategies adopted by homogeneous transfer learning [135] include
correcting the difference in the marginal distribution in the source, correcting the difference
in the conditional distribution in the source, or correcting the difference between the
marginal and conditional distribution in the source. Heterogeneous transfer learning [135]
uses strategies that align the input spaces of the source and target domains. If the domain
distributions are still unequal, further modulations are needed.

There are three strategies for transfer learning: (i) inductive transfer learning,
(ii) transductive transfer learning, and (iii) unsupervised transfer learning [145,146]. There
are two common types of inductive learning. One is to use the source domain to obtain
a trained learning model and fine-tune different target layers [147]. Another is multi-
task—learning multiple tasks simultaneously from the same input [148]. The target task
is similar to the source task in transductive transfer learning, but the domains differ. The
factors affecting transductive transfer learning include domain adaptation [149], sample
selection bias [150], and covariate shift [151]. Unsupervised transfer learning mainly solves
unsupervised learning tasks in the target domain.

There are four kinds of approaches to transfer learning [145]. The first is instance-based
transfer learning. A common approach is to reweight instances of the source domain [152–154].

J. Imaging 2023, 9, 1 19 of 31

These worked best when the conditional distributions were the same in the source domain and
target domain. The second is feature-based transfer learning. The standard methods include
asymmetric feature transformation [155] and symmetric feature transformation [156]. The
third is parameter-based transfer learning. Source tasks and target tasks share the parameters
of the models [157,158]. Target learners are formed by optimally combining the reweighted
source learners [158–160]. The last one is relational-based transfer learning [161–163]. If the
source and target data have similar relationships, the relationship among the data can be
transferred. Figure 20 shows the classification of transfer learning.

J. Imaging 2023, 9, 1 19 of 32

difference in the conditional distribution in the source, or correcting the difference be-

tween the marginal and conditional distribution in the source. Heterogeneous transfer

learning [135] uses strategies that align the input spaces of the source and target domains.

If the domain distributions are still unequal, further modulations are needed.

There are three strategies for transfer learning: (i) inductive transfer learning, (ii)

transductive transfer learning, and (iii) unsupervised transfer learning [145,146]. There

are two common types of inductive learning. One is to use the source domain to obtain a

trained learning model and fine-tune different target layers [147]. Another is multi-task—

learning multiple tasks simultaneously from the same input [148]. The target task is simi-

lar to the source task in transductive transfer learning, but the domains differ. The factors

affecting transductive transfer learning include domain adaptation [149], sample selection

bias [150], and covariate shift [151]. Unsupervised transfer learning mainly solves unsu-

pervised learning tasks in the target domain.

There are four kinds of approaches to transfer learning [145]. The first is instance-

based transfer learning. A common approach is to reweight instances of the source do-

main [152–154]. These worked best when the conditional distributions were the same in

the source domain and target domain. The second is feature-based transfer learning. The

standard methods include asymmetric feature transformation [155] and symmetric fea-

ture transformation [156]. The third is parameter-based transfer learning. Source tasks and

target tasks share the parameters of the models [157,158]. Target learners are formed by

optimally combining the reweighted source learners [158–160]. The last one is relational-

based transfer learning [161–163]. If the source and target data have similar relationships,

the relationship among the data can be transferred. Figure 20 shows the classification of

transfer learning.

Transfer learning

Inductive transfer

learning

Unsupervised

transfer learning

Instance-based

Feature-based

Parameter-based

Relational-based

Transductive

transfer learning

Strategies Approaches

Figure 20. Strategies and approaches of transfer learning.

6. Application, Analysis, and Discussion

Currently, the diagnosis of COVID-19 mainly relies on epidemiological history, clin-

ical symptoms, laboratory results, chest imaging findings, nucleic acid testing, or homol-

ogous comparison of gene sequencing [164]. COVID-19 is highly contagious and has an

incubation period. It needs repeated testing over some time to determine infection. It is

difficult for doctors to diagnose COVID-19 quickly and accurately. Chest computed to-

mography (CT) and chest X-ray images can reflect whether the patient’s lung is infected

and the degree of damage. However, doctors rely on experience to judge CT images, and

X-ray images can also lead to misdiagnosis. Popular artificial intelligence (AI) systems can

quickly analyze large amounts of image data. After learning, the system can accurately

classify chest CT images and X-ray images. This will help doctors diagnose COVID-19

quickly and accurately.

Figure 20. Strategies and approaches of transfer learning.

6. Application, Analysis, and Discussion

Currently, the diagnosis of COVID-19 mainly relies on epidemiological history, clinical
symptoms, laboratory results, chest imaging findings, nucleic acid testing, or homologous
comparison of gene sequencing [164]. COVID-19 is highly contagious and has an incubation
period. It needs repeated testing over some time to determine infection. It is difficult for
doctors to diagnose COVID-19 quickly and accurately. Chest computed tomography (CT)
and chest X-ray images can reflect whether the patient’s lung is infected and the degree of
damage. However, doctors rely on experience to judge CT images, and X-ray images can
also lead to misdiagnosis. Popular artificial intelligence (AI) systems can quickly analyze
large amounts of image data. After learning, the system can accurately classify chest CT
images and X-ray images. This will help doctors diagnose COVID-19 quickly and accurately.

6.1. CNN Applied to CT Images

The papers mentioned in Table 2 used convolutional neural networks (CNN) to
analyze chest CT images and proposed various algorithms for COVID-19 diagnosis. These
algorithms modify the parameters and architecture of the convolutional neural network
(CNN) to obtain better accuracy.

Aslan et al. [165] improved the architecture of AlexNet to obtain mAlexNet. In
the mAlexNet architecture, the fully connected layer eight has 25 neurons instead of
1000 neurons. The features extracted by mAlexNet are given into the tree seed algorithm
(TSA) ANN structure for classification. The experimental comparison shows that the
performance of mAlexNet + TSA-ANN is more excellent. AlexNet and mAlexNet can
also obtain good performance by hybridizing other structures or algorithms [166,167].
Different total number of layers [168,169] in ResNet leads to different performance results.
Rahimzadeh et al. [170] modified ResNet50V2. This model can retain the data of small objects
and improve the classification accuracy of images containing small important objects. By
comparison, Loey et al. [171] found that among AlexNet, VGGNet16, VGGNet19, GoogleNet,
and ResNet50, the ResNet50 was the most appropriate deep learning model for using the
classical data augmentation and CGAN. Özdemir et al. [97] extended ResNet50 architecture
with a feature-wise attention layer and used the mixup data augmentation technique.
This architecture achieves higher accuracy. Mondal et al. [172] proposed the scheme of
optimized InceptionResNetV2 for COVID-19 (CO-IRv2). It combines InceptionNet with

J. Imaging 2023, 9, 1 20 of 31

ResNet with hyperparameter tuning. DenseNet-121 is a network with 121 layers [173].
DenseNet-121 D solves the problem of vanishing gradients, allows better feature reuse, and
reduces the number of parameters. It is more beneficial to the training of deep learning
models [174]. Xiao et al. [175] improved DenseNet with a parallel attention module (PAM-
DenseNet) which has spatial and channel attention modules. These make the net have better
classification performance and patient-wise prediction performance. The VGG network
alone [176], or together with other neural networks [177], has been used to classify chest
CT images with high accuracy. Wang et al. [178] proposed a VGG-style base network
(VSBN). Convolutional block attention module (CBAM) serves as the attention module
of VSBN. In order to solve the problem of artificial intelligence (AI) model overfitting,
VSBN uses an improved multiple-way data augmentation method. GoogleNet is retrained
over COVID-CT-Dataset [179]. GoogleNet learned the variations present in diverse types
of CT images. The system model GoogleNet-COD developed by Yu et al. [180] takes
GoogleNet as the backbone network. It removes the last top-two layers and replaces
them with four new layers, which include the dropout layer, two fully connected layers,
and the output layer. Zhang et al. improved the deep convolutional neural network
(DCNN) [181]: the pooling layer adopts stochastic pooling; construct a convolution block
(CB), which is obtained by combining the convolution layer with the batch normalization
layer; construct a fully connected block (FCB), which is obtained by combining the dropout
layer with the fully connected layer. Pham [182] uses multiple CNNS to classify CT images
collected from COVID-19 patients and non-COVID-19 subjects. Among them, the deepest
net, DenseNet201, has the best performance. Transfer learning with the direct input of
whole image slice and without using data augmentation provided better classification
rates. JavadiMoghaddam et al. [183] proposed a convolutional neural network structure
containing a wavelet and four convolutional layers. It optimizes convergence time using
batch normalization (BN) and Mish Functions. The Haar wavelet transform occurs at the
pooling layer. There are squeeze and Excitation blocks (SE blocks) after each dropout layer.

Table 2. Performances of CNN in COVID-19 Diagnosis using CT images.

Reference Method Performances Datasets

[165] mAlexNet
Accuracy: 97.92%, Sensitivity: 98.20%,
Specificity: 97.68%, Precision: 97.32%,

F1 score: 97.76%
SARS-CoV-2 Ct-Scan Dataset: 2482

chest CT scans

[165] mAlexNet + TSA-ANN
Accuracy: 98.54%, Sensitivity: 97.75%,
Specificity: 99.23%, Precision: 99.09%,

F1 score: 98.41%
[166] mAlexNet + BiLSTM Accuracy: 98.70% COVID-19 Radiography Database

[167] DC-Net-RVFL
Accuracy: 90.91%, Sensitivity: 85.68%,
Specificity: 96.13%, Precision: 95.70%,

F1 score: 90.41%

A Private Dataset: 296 lung
window images

[168] ResNet18 Accuracy: 86.70%, Precision: 80.80%,
Recall: 81.50%, F1 score: 81.10%

A Private Dataset: 618 chest
CT samples

[169] ResNet50 Accuracy: 76%, Specificity: 61.50%,
Recall: 81.10%, AUC: 0.8190

A Private Dataset: 495 chest CT
images

[170] Modified ResNet50V2 Accuracy: 98.49%, Recall: 96.83% COVID-Ctset: 63849 chest CT images

[171] ResNet50 + Data
augmentations + CGAN

Accuracy: 82.91%, Sensitivity: 77.66%,
Specificity: 87.62%.

COVID-19 CT Scan Digital Images
Dataset: 742 chest CT images

[97] ResNet50+Attention+mixup Accuracy: 95.57% COVID-CT Dataset: 1596 chest
CT images

J. Imaging 2023, 9, 1 21 of 31

Table 2. Cont.

Reference Method Performances Datasets

[172] CO-IRv2 Adam
Accuracy: 94.97%, Specificity: 96.52%,
Precision: 96.90%, F1-Score: 95.24%,

Recall: 93.63%, Execution Time(sec): 717 A New Dataset: 2481 chest CT images

[172] CO-IRv2 Nadam
Accuracy: 96.18%, Specificity: 95.08%,
Precision: 95.35%, F1-Score: 96.28%,

Recall: 97.23%, Execution Time(sec): 707

[172] CO-IRv2 RMSProp
Accuracy: 96.18%, Specificity: 99.18%,
Precision: 99.16%, F1-Score: 96.13%,

Recall: 93.28%, Execution Time(sec): 749

[173] DenseNet-121 Accuracy: 92%, Recall: 95% A Real Patient Image Dataset: 2482
chest CT images

[175] PAM-DenseNet Accuracy: 94.29%, Sensitivity: 95.74%,
Specificity: 96.77%, Precision: 93.75%

Dataset 1: A Lung CT Slices Dataset,
3530 chest CT slices

Dataset 2: A Lung CT Scans Dataset,
280 chest CT scans

[176] VGG-19 Accuracy: 94.52% COVID-19 CT Dataset: 738 chest CT
scan images

[177] SRGAN +VGG16 Accuracy: 98.0%, Sensitivity: 99.0%,
Specificity: 94.9%

COVID-CT-Dataset: 470 chest
CT images

[178] AVNC The sensitivity, precision, F1 all above 95% A Private Dataset: 1164 slice images

[179] GoogleNet Accuracy: 82.14% COVID-CT-Dataset: 349 chest
CT images

[180] GoogleNet-COD Accuracy: 87.50%, Sensitivity: 90.91%,
Specificity: 84.09%

A Private COVID-19 Dataset: 148
chests CT images

[181] 5L-DCNN-SP-C
Accuracy: 93.64%, Sensitivity: 93.28%,
Specificity: 94.00%, Precision: 93.96%,

F1 score:93.62%

A Private Dataset: 320 chest
CT images

[182] AlexNet
Accuracy: 86.85%, Sensitivity: 80.25%,

Specificity: 94.29%, F1 score: 0.85,
AUC: 0.94

COVID-CT-Dataset: 349 chest
CT images

[182] GoogleNet
Accuracy: 93.83%, Sensitivity: 96.71%,

Specificity: 90.57%, F1 score: 0.94,
AUC: 0.96

[182] ResNet-18
Accuracy: 95.44%, Sensitivity: 98.99%,

Specificity: 91.43%, F1 score: 0.96,
AUC: 0.98

[182] ResNet-50
Accuracy: 93.62%, Sensitivity: 95.57%,

Specificity: 91.43%, F1 score: 0.94,
AUC: 0.98

[182] ResNet-101
Accuracy: 93.29%, Sensitivity: 96.20%,

Specificity: 90.00%, F1 score: 0.94,
AUC: 0.98

[182] Inception-ResNet-v2
Accuracy: 88.59%, Sensitivity: 89.24%,

Specificity: 87.86%, F1 score: 0.89,
AUC: 0.96

[182] VGG-16
Accuracy: 89.26%, Sensitivity: 92.83%,

Specificity: 85.24%, F1 score: 0.90,
AUC: 0.96

[182] VGG-19
Accuracy: 90.16%, Sensitivity: 87.34%,

Specificity: 93.33%, F1 score: 0.90,
AUC: 0.97

[182] DenseNet-201
Accuracy: 96.20%, Sensitivity: 95.78%,

Specificity: 96.67%, F1 score: 0.96,
AUC: 0.98

[183] WCNN4 Accuracy: 99.03% COVID-19 CT Dataset: 19685 chest
CT images

J. Imaging 2023, 9, 1 22 of 31

As can be seen from Table 2, there have been many suggestions, proposals, and
implementations for applying CNN to COVID-19 diagnosis by analyzing chest CT images.
For example, some researchers focus on adjusting the architecture of the network. Some
focus on adjusting the number of layers of the network, some on improving existing
algorithms, and some on mixing several structures.

Many schemes listed above have achieved accuracy higher than 90% when implemented.
However, there are a lot of CNN networks that have a huge space for improvement:

(1) It can be concluded from the results that the modified AlexNet can obtain better
accuracy. When combined with other structures, the network is improved so that the
accuracy is higher for COVID-19 diagnosis.

(2) Different accuracy will be obtained from different depths of ResNet. Common ones
include ResNet18, ResNet50, ResNet101, etc. However, according to the results of the
above experiments, ResNet18 performs the best. ResNet can be modified to improve
accuracy. The modified ResNet or ResNet combined with other networks could
achieve more than 90% accuracy. ResNet50 is often used with other architectures or
algorithms for COVID-19 diagnosis. Moreover, we found that the larger the dataset
ResNet applied, the higher the accuracy.

(3) With DenseNet, the accuracy was close to 95%. DenseNet has a better performance
than other networks on the same dataset. The dataset size does not affect DenseNet
accuracy as much as the depth of the network. DenseNet201 shows excellent perfor-
mance for COVID-19 diagnosis.

(4) Even on small datasets, VGG combined with other structures or algorithms can
achieve more than 95% accuracy. VGG19 and VGG16 performed similarly.

(5) The accuracy of GoogleNet for COVID-19 diagnosis is not good enough, generally
less than 90%. Try tweaking the architecture of GoogleNet or combining GoogleNet
with other networks to improve classification accuracy.

(6) For almost all networks, accuracy increases as the dataset become larger. Private datasets
are generally smaller than public datasets. When there are more than 1000 images in the
dataset, almost all networks or models can achieve more than 95% accuracy.

6.2. CNN Applied to X-ray Images

The papers mentioned in Table 3 use the architecture or technology of convolutional
neural networks (CNNs) to analyze chest X-ray images and establish various training
models for COVID-19 diagnosis. Through optimizations, these automatic diagnosis systems
have achieved better performance. Chest X-ray images were more readily available. So
COVID-19 diagnosis systems could be more widely used by analyzing chest X-ray images
in areas with inadequate medical systems.

Cortés et al. [184] applied to learn transfer to AlexNet and fine-tuned it. The first
layer of AlexNet is replaced for images in a single intensity. Kaur et al. [185] used the
improved AlexNet architecture. Strength Pareto evolutionary algorithm-II (SPEA-II) is used
to optimize parameters. Narin et al. [186] compared different layers of ResNet to classify
chest X-ray images. ResNet50 provides the highest classification performance. In the study
of Chowdhury et al. [187], DenseNet201 performed well in classifying chest X-ray images
with image augmentation. In the study, Hernandez et al. applied transfer learning through
ResNet, DenseNet, and VGG and fine-tuned them, which achieved higher accuracy [188].
Sitaula et al. [189] added the attention module to the appropriate convolution layer of
VGG16. Classification experiments were performed on three COVID-19 chest X-ray image
datasets. Haritha et al. [190] used GoogleNet to classify X-ray images and predict COVID-19.
Kaya et al. [191] first applied the angle transformation (AT) on X-ray images. Then these
images are trained using GoogleNet combined with LSTM. Finally, they obtained a better
accuracy rate.

J. Imaging 2023, 9, 1 23 of 31

Table 3. Performances of CNN in COVID-19 Diagnosis using X-ray images.

Reference Method Performances Datasets

[184] AlexNet
Accuracy: 96.5%,
Sensitivity: 98.0%,
Specificity: 91.7%

Six Public Databases:
11,312 chest X-ray images

[185] mAlexNet + SPEA-II
Accuracy: 99.130%,
Sensitivity: 99.476%,
Specificity: 99.154%

Dataset 1: Kaggle Dataset,
3050 chest X-ray images

Dataset 2: 1203 chest
X-ray scans

[186] ResNet50

Accuracy: 99.7%,
Specificity: 99.8%,
Precision: 98.3%,
F1 score: 98.5%,

Recall: 98.8%

Dataset 1: GitHub
Dataset, 341 chest

X-ray images
Dataset 2: ChestX-ray8

Database, 2800 chest
X-ray images

Dataset 3: Kaggle Dataset,
4265 chest X-ray images

[186] ResNet101

Accuracy: 94.7%,
Specificity: 99.9%,
Precision: 98.9%,
F1 score: 68.6%,

Recall: 52.5%

[186] ResNet152

Accuracy: 92.8%,
Specificity: 98.0%,
Precision: 75.7%,
F1 score: 60.9%,

Recall: 51.0%

[187] DenseNet201

Accuracy: 97.94%,
Sensitivity: 97.94%,
Specificity: 98.80%,
Precision: 97.95%,
F1 score: 97.94%

Dataset 1: COVID-19
Database, 423 chest

X-ray images Dataset 2:
1579 normal chest

X-ray images Dataset 3:
1485 viral pneumonia

chest X-ray images

[188] ResNet50 + fine tuning

Accuracy: 90.63%,
Precision: 90.00%,
F1 score: 90.72%,

Recall: 91.67%

Italian Society of Medical
and Interventional

Radiology and ChexPert
Dataset, 27000 chest

X-ray images[188] DenseNet121 + fine
tuning

Accuracy: 83.4%,
Precision: 89%,

F1 score: 76.19%,
Recall: 67%

[188] VGG16 + fine tuning

Accuracy: 82.29%,
Precision: 80.39%,
F1 score: 82.82%,

Recall: 85.41%

[189]
VGG-16 + attention

module + convolution
module

Accuracy: 79.58%
(Dataset 1), 85.43%
(Dataset 2), 87.49%

(Dataset 3)

Dataset 1: Public
Databases, 1125 chest

X-ray images
Dataset 2: Public

Databases, 1638 chest
X-ray images

Dataset 3: Public
Databases, 2138 chest

X-ray images

[190] GoogleNet Training Accuracy: 99%,
Testing Accuracy: 98.5%

Public Dataset: 1824 chest
X-ray images

[191] AT + GoogleNet + LSTM Accuracy: 98.97% Mendeley Database: 1824
chest X-ray images

As can be seen from Table 3, there have also been many suggestions, proposals, and
implementations for applying CNN to COVID-19 diagnosis by analyzing chest X-ray
images. The researchers focused on tweaking the number of layers in the network and

J. Imaging 2023, 9, 1 24 of 31

mixing CNNS with other network structures. They divided datasets into several classes for
training and validation. Many automatic diagnosis systems can achieve accuracy higher
than 90%. However, there is a huge space for improvement.

7. Conclusions

In this paper, we reviewed and summarized convolutional neural networks in COVID-19
diagnosis. We introduced various technologies related to CNN and some mature CNN networks
with excellent performance. Then, we analyzed and compared various suggestions of other
researchers on the application of CNN for COVID-19 diagnosis. Here are a few conclusions
and suggestions:

(1) At present, rapid and accurate COVID-19 diagnosis is vital. The classification method
of chest CT or chest X-ray images based on CNN plays an important role.

(2) The current experiment has limited datasets. It is necessary to collect more data or
explore better methods for small datasets.

(3) Most experiments do not consider the execution time problem. It is necessary to
shorten the execution time with appropriate data preprocessing [192–195] strategies
or GPU acceleration.

(4) The experiments discussed in this paper use chest CT or chest X-ray images as the
input datasets of CNN and have achieved good performance. Although X-ray image
is not as good as CT in performance, it has low cost, low radiation dose, and easy-
to-operate in general hospitals [196]. Future research could consider more types of
medical image forms. The application of the CNN method on medical images has
potential value for COVID-19 diagnosis.

Author Contributions: X.H.: Conceptualization, Software, Investigation, Data Curation, Writing—
Original Draft, Visualization. Z.H.: Methodology. Software, Formal analysis, Investigation, Writing—
Review and Editing, Visualization, Project administration. S.W.: Methodology, Validation, Formal
analysis, Resources, Writing—Review and Editing, Supervision, Project administration, Funding
acquisition. Y.Z.: Conceptualization. Software, Validation, Resources, Writing—Original Draft,
Writing—Review and Editing, Supervision, Project administration, Funding acquisition. All authors
have read and agreed to the published version of the manuscript.

Funding: The paper is partially supported by British Heart Foundation Accelerator Award, UK
(AA/18/3/34220); Royal Society International Exchanges Cost Share Award, UK (RP202G0230);
Hope Foundation for Cancer Research, UK (RM60G0680); Medical Research Council Confidence in
Concept Award, UK (MC_PC_17171); Sino-UK Industrial Fund, UK (RP202G0289); Global Challenges
Research Fund (GCRF), UK (P202PF11); LIAS Pioneering Partnerships award, UK (P202ED10); Data
Science Enhancement Fund, UK (P202RE237); Fight for Sight, UK (24NN201).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Manigandan, S.; Wu, M.-T.; Ponnusamy, V.K.; Raghavendra, V.B.; Pugazhendhi, A.; Brindhadevi, K. A systematic review on recent

trends in transmission, diagnosis, prevention and imaging features of COVID-19. Process Biochem. 2020, 98, 233–240. [CrossRef]
[PubMed]

2. Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S. Clinical characteristics of
coronavirus disease 2019 in China. New Engl. J. Med. 2020, 382, 1708–1720. [CrossRef] [PubMed]

3. Nour, M.; Cömert, Z.; Polat, K. A novel medical diagnosis model for COVID-19 infection detection based on deep features and
Bayesian optimization. Appl. Soft Comput. 2020, 97, 106580. [CrossRef] [PubMed]

4. Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron. 2020,
165, 112349. [CrossRef] [PubMed]

http://doi.org/10.1016/j.procbio.2020.08.016
http://www.ncbi.nlm.nih.gov/pubmed/32843849
http://doi.org/10.1056/NEJMoa2002032
http://www.ncbi.nlm.nih.gov/pubmed/32109013
http://doi.org/10.1016/j.asoc.2020.106580
http://www.ncbi.nlm.nih.gov/pubmed/32837453
http://doi.org/10.1016/j.bios.2020.112349
http://www.ncbi.nlm.nih.gov/pubmed/32510340

J. Imaging 2023, 9, 1 25 of 31

5. Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S. Multiplex reverse transcription loop-mediated
isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens.
Bioelectron. 2020, 166, 112437. [CrossRef]

6. Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly
accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14, 5268–5277. [CrossRef]

7. Sengupta, J.; Hussain, C.M. Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A
perspective in view of COVID-19. Carbon Trends 2021, 2, 100011. [CrossRef]

8. Caruso, D.; Zerunian, M.; Polici, M.; Pucciarelli, F.; Polidori, T.; Rucci, C.; Guido, G.; Bracci, B.; De Dominicis, C.; Laghi, A. Chest
CT features of COVID-19 in Rome, Italy. Radiology 2020, 296, 201237. [CrossRef]

9. Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for typical 2019-nCoV pneumonia: Relationship to negative
RT-PCR testing. Radiology 2020, 296, 200343. [CrossRef]

10. Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S. A familial cluster of
pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.
Lancet 2020, 395, 514–523. [CrossRef]

11. Hussain, L.; Nguyen, T.; Li, H.; Abbasi, A.A.; Lone, K.J.; Zhao, Z.; Zaib, M.; Chen, A.; Duong, T.Q. Machine-learning classification
of texture features of portable chest X-ray accurately classifies COVID-19 lung infection. BioMedical Eng. OnLine 2020, 19, 88.
[CrossRef]

12. Górriz, J.M.; Ramírez, J.; Ortíz, A.; Martínez-Murcia, F.J.; Segovia, F.; Suckling, J.; Leming, M.; Zhang, Y.-D.; Álvarez-Sánchez, J.R.;
Bologna, G. Artificial intelligence within the interplay between natural and artificial computation: Advances in data science,
trends and applications. Neurocomputing 2020, 410, 237–270. [CrossRef]

13. Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Yin, M.; Gao, J. Artificial intelligence (AI) for medical imaging to combat coronavirus
disease (COVID-19): A detailed review with direction for future research. Artif. Intell. Rev. 2022, 55, 1409–1439. [CrossRef]

14. Yang, L.; Li, Z.; Ma, S.; Yang, X. Artificial intelligence image recognition based on 5G deep learning edge algorithm of Digestive
endoscopy on medical construction. Alex. Eng. J. 2022, 61, 1852–1863. [CrossRef]

15. Gorriz, J.M.; Ramirez, J.; Suckling, J.; Martínez-Murcia, F.J.; Illán, I.; Segovia, F.; Ortiz, A.; Salas-Gonzalez, D.; Castillo-Barnes, D.;
Puntonet, C.G. A semi-supervised learning approach for model selection based on class-hypothesis testing. Expert Syst. Appl.
2017, 90, 40–49. [CrossRef]

16. Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the
forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 1–10. [CrossRef]

17. Górriz, J.M.; Ramírez, J.; Segovia, F.; Martínez, F.J.; Lai, M.-C.; Lombardo, M.V.; Baron-Cohen, S.; Consortium, M.A.; Suckling, J. A
machine learning approach to reveal the neurophenotypes of autisms. Int. J. Neural Syst. 2019, 29, 1850058. [CrossRef]

18. Satapathy, S.; Loganathan, D.; Kondaveeti, H.K.; Rath, R. Performance analysis of machine learning algorithms on automated
sleep staging feature sets. CAAI Trans. Intell. Technol. 2021, 6, 155–174. [CrossRef]

19. Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J.
Radiol. 2017, 18, 570–584. [CrossRef]

20. Varoquaux, G.; Cheplygina, V. Machine learning for medical imaging: Methodological failures and recommendations for the
future. NPJ Digit. Med. 2022, 5, 1–8. [CrossRef]

21. Elyan, E.; Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-García, C.F.; Jayne, C.; Sarker, M.K. Computer
vision and machine learning for medical image analysis: Recent advances, challenges, and way forward. Artif. Intell. Surg. 2022,
2, 24–25. [CrossRef]

22. Gasparin, A.; Lukovic, S.; Alippi, C. Deep learning for time series forecasting: The electric load case. CAAI Trans. Intell. Technol.
2022, 7, 1–25. [CrossRef]

23. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
24. Mukherjee, S.; Sadhukhan, B.; Sarkar, N.; Roy, D.; De, S. Stock market prediction using deep learning algorithms. CAAI Trans.

Intell. Technol. 2021. early view. [CrossRef]
25. Serte, S.; Serener, A.; Al-Turjman, F. Deep learning in medical imaging: A brief review. Trans. Emerg. Telecommun. Technol. 2022,

33, e4080. [CrossRef]
26. Tsuneki, M. Deep learning models in medical image analysis. J. Oral Biosci. 2022, 64, 312–320. [CrossRef]
27. Liu, X.; Yang, L.; Chen, J.; Yu, S.; Li, K. Region-to-boundary deep learning model with multi-scale feature fusion for medical

image segmentation. Biomed. Signal Process. Control 2022, 71, 103165. [CrossRef]
28. Ning, F.; Delhomme, D.; LeCun, Y.; Piano, F.; Bottou, L.; Barbano, P.E. Toward automatic phenotyping of developing embryos

from videos. IEEE Trans. Image Process. 2005, 14, 1360–1371. [CrossRef]
29. CireAan, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-column deep neural network for traffic sign classification. Neural Netw.

2012, 32, 333–338. [CrossRef]
30. Abdel-Salam, R.; Mostafa, R.; Abdel-Gawad, A.H. RIECNN: Real-time image enhanced CNN for traffic sign recognition. Neural

Comput. Appl. 2022, 34, 6085–6096. [CrossRef]
31. Karthika, R.; Parameswaran, L. A novel convolutional neural network based architecture for object detection and recognition

with an application to traffic sign recognition from road scenes. Pattern Recognit. Image Anal. 2022, 32, 351–362. [CrossRef]

http://doi.org/10.1016/j.bios.2020.112437
http://doi.org/10.1021/acsnano.0c02439
http://doi.org/10.1016/j.cartre.2020.100011
http://doi.org/10.1148/radiol.2020201237
http://doi.org/10.1148/radiol.2020200343
http://doi.org/10.1016/S0140-6736(20)30154-9
http://doi.org/10.1186/s12938-020-00831-x
http://doi.org/10.1016/j.neucom.2020.05.078
http://doi.org/10.1007/s10462-021-09985-z
http://doi.org/10.1016/j.aej.2021.07.007
http://doi.org/10.1016/j.eswa.2017.08.006
http://doi.org/10.1186/s41747-018-0061-6
http://doi.org/10.1142/S0129065718500582
http://doi.org/10.1049/cit2.12042
http://doi.org/10.3348/kjr.2017.18.4.570
http://doi.org/10.1038/s41746-022-00592-y
http://doi.org/10.20517/ais.2021.15
http://doi.org/10.1049/cit2.12060
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1049/cit2.12059
http://doi.org/10.1002/ett.4080
http://doi.org/10.1016/j.job.2022.03.003
http://doi.org/10.1016/j.bspc.2021.103165
http://doi.org/10.1109/TIP.2005.852470
http://doi.org/10.1016/j.neunet.2012.02.023
http://doi.org/10.1007/s00521-021-06762-5
http://doi.org/10.1134/S1054661822020110

J. Imaging 2023, 9, 1 26 of 31

32. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

33. Du, H.; Shi, H.; Zeng, D.; Zhang, X.-P.; Mei, T. The elements of end-to-end deep face recognition: A survey of recent advances.
ACM Comput. Surv. (CSUR) 2022, 54, 1–42. [CrossRef]

34. Large Scale Visual Recognition Challenge 2016 (ILSVRC2016) Results. Available online: http://image-net.org/challenges/
LSVRC/2016/ (accessed on 1 April 2022).

35. Dhiman, G.; Juneja, S.; Viriyasitavat, W.; Mohafez, H.; Hadizadeh, M.; Islam, M.A.; El Bayoumy, I.; Gulati, K. A novel machine-
learning-based hybrid CNN model for tumor identification in medical image processing. Sustainability 2022, 14, 1447. [CrossRef]

36. Tiwari, P.; Pant, B.; Elarabawy, M.M.; Abd-Elnaby, M.; Mohd, N.; Dhiman, G.; Sharma, S. Cnn based multiclass brain tumor
detection using medical imaging. Comput. Intell. Neurosci. 2022, 2022, 1830010. [CrossRef]

37. Chen, S.; Gamechi, Z.S.; Dubost, F.; van Tulder, G.; de Bruijne, M. An end-to-end approach to segmentation in medical images
with CNN and posterior-CRF. Med. Image Anal. 2022, 76, 102311. [CrossRef]

38. Aslan, M.F.; Sabanci, K.; Durdu, A.; Unlersen, M.F. COVID-19 diagnosis using state-of-the-art CNN architecture features and
Bayesian Optimization. Comput. Biol. Med. 2022, 142, 105244. [CrossRef]

39. De Sousa, P.M.; Carneiro, P.C.; Oliveira, M.M.; Pereira, G.M.; da Costa Junior, C.A.; de Moura, L.V.; Mattjie, C.; da Silva, A.M.M.;
Patrocinio, A.C. COVID-19 classification in X-ray chest images using a new convolutional neural network: CNN-COVID. Res.
Biomed. Eng. 2022, 38, 87–97. [CrossRef]

40. Fan, X.; Feng, X.; Dong, Y.; Hou, H. COVID-19 CT image recognition algorithm based on transformer and CNN. Displays 2022,
72, 102150. [CrossRef]

41. Hounsfield, G.N. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 1973,
46, 1016–1022. [CrossRef]

42. Cellina, M.; Orsi, M.; Valenti Pittino, C.; Toluian, T.; Oliva, G. Chest computed tomography findings of COVID-19 pneumonia:
Pictorial essay with literature review. Jpn. J. Radiol. 2020, 38, 1012–1019. [CrossRef] [PubMed]

43. Wang, J.; Xu, Z.; Feng, R.; An, Y.; Ao, W.; Gao, Y.; Wang, X.; Xie, Z. CT characteristics of patients infected with 2019 novel
coronavirus: Association with clinical type. Clin. Radiol. 2020, 75, 408–414. [CrossRef] [PubMed]

44. Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z.A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K. Chest CT findings in
coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology 2020, 295, 200463. [CrossRef] [PubMed]

45. Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.-T.; Leung, S.T.; Chin, T.W.-Y.; Lo, C.S.Y.; Lui, M.M.-S.; Lee, J.C.Y.; Chiu, K.W.-H.; Chung, T.W.-H.
Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 2020, 296, E72–E78. [CrossRef]
[PubMed]

46. Jokerst, C.; Chung, J.H.; Ackman, J.B.; Carter, B.; Colletti, P.M.; Crabtree, T.D.; de Groot, P.M.; Iannettoni, M.D.; Maldonado, F.;
McComb, B.L. ACR Appropriateness Criteria® acute respiratory illness in immunocompetent patients. J. Am. Coll. Radiol. 2018,
15, S240–S251. [CrossRef]

47. Ball, L.; Vercesi, V.; Costantino, F.; Chandrapatham, K.; Pelosi, P. Lung imaging: How to get better look inside the lung. Ann.
Transl. Med. 2017, 5, 294. [CrossRef]

48. Dennie, C.; Hague, C.; Lim, R.S.; Manos, D.; Memauri, B.F.; Nguyen, E.T.; Taylor, J. Canadian Society of Thoracic Radiol-
ogy/Canadian Association of Radiologists consensus statement regarding chest imaging in suspected and confirmed COVID-19.
Can. Assoc. Radiol. J. 2020, 71, 470–481. [CrossRef]

49. Oh, Y.; Park, S.; Ye, J.C. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans. Med. Imaging 2020,
39, 2688–2700. [CrossRef]

50. Loraksa, C.; Mongkolsomlit, S.; Nimsuk, N.; Uscharapong, M.; Kiatisevi, P. Effectiveness of Learning Systems from Common
Image File Types to Detect Osteosarcoma Based on Convolutional Neural Networks (CNNs) Models. J. Imaging 2021, 8, 2.
[CrossRef]

51. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE
Trans. Image Process. 2017, 26, 4509–4522. [CrossRef]

52. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

53. Zhao, Y.; Wang, L. The application of convolution neural networks in sign language recognition. In Proceedings of the 2018 Ninth
International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11 November 2018;
pp. 269–272.

54. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 525–542.

55. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

56. Jiang, X.; Satapathy, S.C.; Yang, L.; Wang, S.-H.; Zhang, Y.-D. A Survey on Artificial Intelligence in Chinese Sign Language
Recognition. Arab. J. Sci. Eng. 2020, 45, 9859–9894. [CrossRef]

57. Wang, T.; Wu, D.J.; Coates, A.; Ng, A.Y. End-to-end text recognition with convolutional neural networks. In Proceedings of the
21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3304–3308.

http://doi.org/10.1145/3507902
http://image-net.org/challenges/LSVRC/2016/
http://image-net.org/challenges/LSVRC/2016/
http://doi.org/10.3390/su14031447
http://doi.org/10.1155/2022/1830010
http://doi.org/10.1016/j.media.2021.102311
http://doi.org/10.1016/j.compbiomed.2022.105244
http://doi.org/10.1007/s42600-020-00120-5
http://doi.org/10.1016/j.displa.2022.102150
http://doi.org/10.1259/0007-1285-46-552-1016
http://doi.org/10.1007/s11604-020-01010-7
http://www.ncbi.nlm.nih.gov/pubmed/32588277
http://doi.org/10.1016/j.crad.2020.04.001
http://www.ncbi.nlm.nih.gov/pubmed/32327229
http://doi.org/10.1148/radiol.2020200463
http://www.ncbi.nlm.nih.gov/pubmed/32077789
http://doi.org/10.1148/radiol.2020201160
http://www.ncbi.nlm.nih.gov/pubmed/32216717
http://doi.org/10.1016/j.jacr.2018.09.012
http://doi.org/10.21037/atm.2017.07.20
http://doi.org/10.1177/0846537120924606
http://doi.org/10.1109/TMI.2020.2993291
http://doi.org/10.3390/jimaging8010002
http://doi.org/10.1109/TIP.2017.2713099
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1007/s13369-020-04758-2

J. Imaging 2023, 9, 1 27 of 31

58. Boureau, Y.-L.; Ponce, J.; LeCun, Y. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 111–118.

59. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on
Computer Vision, Zürich, Switzerland, 5–12 September 2014; pp. 818–833.

60. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

61. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
62. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
63. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 9–48.
64. Wiesler, S.; Ney, H. A convergence analysis of log-linear training. In Proceedings of the Advances in Neural Information

Processing Systems 24 (NIPS 2011), Granada, Spain, 12–15 December 2011; Volume 24.
65. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 929–1958.
66. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
67. Gao, H.; Cai, L.; Ji, S. Adaptive convolutional relus. In Proceedings of the Conference on Artificial Intelligence, New York, NY,

USA, 7–12 February 2020; pp. 3914–3921.
68. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the

International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013; p. 3.
69. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
70. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015,

arXiv:1505.00853.
71. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv

2015, arXiv:1511.07289.
72. Wu, H.; Gu, X. Towards dropout training for convolutional neural networks. Neural Netw. 2015, 71, 1–10. [CrossRef]
73. Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-all: Train one network and specialize it for efficient deployment. arXiv

2019, arXiv:1908.09791.
74. Yildirim, O.; Baloglu, U.B.; Tan, R.-S.; Ciaccio, E.J.; Acharya, U.R. A new approach for arrhythmia classification using deep coded

features and LSTM networks. Comput. Methods Programs Biomed. 2019, 176, 121–133. [CrossRef] [PubMed]
75. Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.-H.; Srivastava, M.; Gupta, R.; Zhang, Z. Accelerating binarized convolutional

neural networks with software-programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 15–24.

76. Murray, N.; Perronnin, F. Generalized max pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2473–2480.

77. He, Z.; Shao, H.; Zhong, X.; Zhao, X. Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating
machinery cross working conditions. Knowl.-Based Syst. 2020, 207, 106396. [CrossRef]

78. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level particle swarm optimized hyperparameters of
convolutional neural network. Swarm Evol. Comput. 2021, 63, 100863. [CrossRef]

79. Zafar, A.; Aamir, M.; Mohd Nawi, N.; Arshad, A.; Riaz, S.; Alruban, A.; Dutta, A.K.; Almotairi, S. A Comparison of Pooling
Methods for Convolutional Neural Networks. Appl. Sci. 2022, 12, 8643. [CrossRef]

80. Li, Y.; Bao, J.; Chen, T.; Yu, A.; Yang, R. Prediction of ball milling performance by a convolutional neural network model and
transfer learning. Powder Technol. 2022, 403, 117409. [CrossRef]

81. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault
diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]

82. Wang, S.-H.; Attique, K.M.; Vishnuvarthanan, G. Deep rank-based average pooling network for COVID-19 recognition. Comput.
Mater. Contin. 2022, 70, 2797–2813. [CrossRef]

83. Graham, B. Fractional max-pooling. arXiv 2014, arXiv:1412.6071.
84. Wang, S.-H.; Satapathy, S.C.; Anderson, D.; Chen, S.-X.; Zhang, Y.-D. Deep fractional max pooling neural network for COVID-19

recognition. Front. Public Health 2021, 9, 726144. [CrossRef]
85. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed pooling for convolutional neural networks. In Proceedings of the International

Conference on Rough Sets and Knowledge Technology, Shanghai, China, 24–26 October 2014; pp. 364–375.
86. Zhou, Q.; Qu, Z.; Cao, C. Mixed pooling and richer attention feature fusion for crack detection. Pattern Recognit. Lett. 2021,

145, 96–102. [CrossRef]
87. Nayak, D.R.; Dash, R.; Majhi, B. Automated Diagnosis of Multi-class Brain Abnormalities using MRI Images: A Deep Convolu-

tional Neural Network based Method. Pattern Recognit. Lett. 2020, 138, 385–391. [CrossRef]
88. Deliège, A.; Istasse, M.; Kumar, A.; De Vleeschouwer, C.; Van Droogenbroeck, M. Ordinal pooling. arXiv 2021, arXiv:2109.01561.

http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.neunet.2015.07.007
http://doi.org/10.1016/j.cmpb.2019.05.004
http://www.ncbi.nlm.nih.gov/pubmed/31200900
http://doi.org/10.1016/j.knosys.2020.106396
http://doi.org/10.1016/j.swevo.2021.100863
http://doi.org/10.3390/app12178643
http://doi.org/10.1016/j.powtec.2022.117409
http://doi.org/10.1016/j.ymssp.2017.06.022
http://doi.org/10.32604/cmc.2022.020140
http://doi.org/10.3389/fpubh.2021.726144
http://doi.org/10.1016/j.patrec.2021.02.005
http://doi.org/10.1016/j.patrec.2020.04.018

J. Imaging 2023, 9, 1 28 of 31

89. Skourt, B.A.; El Hassani, A.; Majda, A. Mixed-pooling-dropout for convolutional neural network regularization. J. King Saud
Univ.-Comput. Inf. Sci. 2022, 34, 4756–4762. [CrossRef]

90. Lee, C.-Y.; Gallagher, P.W.; Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In
Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 464–472.

91. Bello, M.; Nápoles, G.; Sánchez, R.; Bello, R.; Vanhoof, K. Deep neural network to extract high-level features and labels in
multi-label classification problems. Neurocomputing 2020, 413, 259–270. [CrossRef]

92. Blonder, B.; Both, S.; Jodra, M.; Xu, H.; Fricker, M.; Matos, I.S.; Majalap, N.; Burslem, D.F.; Teh, Y.A.; Malhi, Y. Linking functional
traits to multiscale statistics of leaf venation networks. New Phytol. 2020, 228, 1796–1810. [CrossRef]

93. Xu, Q.; Zhang, M.; Gu, Z.; Pan, G. Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs.
Neurocomputing 2019, 328, 69–74. [CrossRef]

94. Chen, Y.; Ming, D.; Lv, X. Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale
parameter estimation. Earth Sci. Inform. 2019, 12, 341–363. [CrossRef]

95. Wang, S.-H.; Zhang, Y.; Cheng, X.; Zhang, X.; Zhang, Y.-D. PSSPNN: PatchShuffle stochastic pooling neural network for an
explainable diagnosis of COVID-19 with multiple-way data augmentation. Comput. Math. Methods Med. 2021, 2021, 6633755.
[CrossRef]

96. Zhang, Y.-D.; Satapathy, S.C.; Zhu, L.Y.; Górriz, J.M.; Wang, S. A seven-layer convolutional neural network for chest CT-based
COVID-19 diagnosis using stochastic pooling. IEEE Sens. J. 2022, 22, 17573–17582. [CrossRef]

97. Özdemir, Ö.; Sönmez, E.B. Attention mechanism and mixup data augmentation for classification of COVID-19 Computed
Tomography images. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 6199–6207. [CrossRef]

98. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
99. Yan, J.; Feng, K.; Zhao, H.; Sheng, K. Siamese-Prototypical Network with Data Augmentation Pre-training for Few-shot Medical

Image Classification. In Proceedings of the 2022 2nd International Conference on Frontiers of Electronics, Information and
Computation Technologies (ICFEICT), Wuhan, China, 19–21 August 2022; pp. 387–391.

100. Monshi, M.M.A.; Poon, J.; Chung, V.; Monshi, F.M. CovidXrayNet: Optimizing data augmentation and CNN hyperparameters
for improved COVID-19 detection from CXR. Comput. Biol. Med. 2021, 133, 104375. [CrossRef] [PubMed]

101. Barshooi, A.H.; Amirkhani, A. A novel data augmentation based on Gabor filter and convolutional deep learning for improving
the classification of COVID-19 chest X-Ray images. Biomed. Signal Process. Control 2022, 72, 103326. [CrossRef] [PubMed]

102. Banerjee, S.; Chipman, R.; Otani, Y. Simultaneous balancing of geometric transformation and linear polarizations using six-fold-
mirror geometry over the visible region. Opt. Lett. 2020, 45, 2510–2513. [CrossRef] [PubMed]

103. D’Cunha, N.W.; Birajdhar, S.A.; Manikantan, K.; Ramachandran, S. Face recognition using Homomorphic Filtering as a pre-
processing technique. In Proceedings of the 2013 International Conference on Emerging Trends in Communication, Control,
Signal Processing and Computing Applications (C2SPCA), Bangalore, India, 10–11 October 2013; pp. 1–6.

104. Morita, M.; Fujii, Y.; Sato, T. The Width Underestimation of 3D Objects with Image Rotation. In I-Perception, Proceedings of the 15th
Asia-Pacific Conferenceon Vision (APCV), Osaka, Japan, 29 July–1 August 2019; Sage Publications Ltd.: London, UK; p. 43.

105. Wang, S.; Celebi, M.E.; Zhang, Y.-D.; Yu, X.; Lu, S.; Yao, X.; Zhou, Q.; Miguel, M.-G.; Tian, Y.; Gorriz, J.M.; et al. Advances in Data
Preprocessing for Biomedical Data Fusion: An Overview of the Methods, Challenges, and Prospects. Inf. Fusion 2021, 76, 376–421.
[CrossRef]

106. Gawedzinski, J.; Schmeler, K.M.; Milbourne, A.; Ramalingam, P.; Moghaddam, P.A.; Richards-Kortum, R.; Tkaczyk, T.S. Toward
development of a large field-of-view cancer screening patch (CASP) to detect cervical intraepithelial neoplasia. Biomed. Opt.
Express 2019, 10, 6145–6159. [CrossRef]

107. Leyh-Bannurah, S.-R.; Wolffgang, U.; Schmitz, J.; Ouellet, V.; Azzi, F.; Tian, Z.; Helmke, B.; Graefen, M.; Budäus, L.; Karakiewicz, P.I.
MP19-20 State-of-the-Art Weakly Supervised Automated Classification of Prostate Cancer Tissue Microarrays via Deep Learning:
Can Sufficient Accuracy Be Achieved without Manual Patch Level Annotation? J. Urol. 2020, 203, e306. [CrossRef]

108. Pandian, J.A.; Geetharamani, G.; Annette, B. Data augmentation on plant leaf disease image dataset using image manipulation
and deep learning techniques. In Proceedings of the 2019 IEEE 9th International Conference on Advanced Computing (IACC),
Tiruchirappalli, India, 13–14 December 2019; pp. 199–204.

109. Tada, Y.; Hagiwara, Y.; Tanaka, H.; Taniguchi, T. Robust understanding of robot-directed speech commands using sequence to
sequence with noise injection. Front. Robot. AI 2020, 6, 144. [CrossRef]

110. Zhang, Y.-D.; Dong, Z.; Chen, X.; Jia, W.; Du, S.; Muhammad, K.; Wang, S.-H. Image based fruit category classification by 13-layer
deep convolutional neural network and data augmentation. Multimed. Tools Appl. 2019, 78, 3613–3632. [CrossRef]

111. DeVries, T.; Taylor, G.W. Dataset augmentation in feature space. arXiv 2017, arXiv:1702.05538.
112. Xie, L.; Wang, J.; Wei, Z.; Wang, M.; Tian, Q. Disturblabel: Regularizing cnn on the loss layer. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4753–4762.
113. Sebastian, S.; Manimekalai, M. Color image compression Using JPEG2000 with adaptive color space transform. In Proceedings of

the 2014 International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 13–14 February 2014;
pp. 1–5.

114. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 13001–13008.

http://doi.org/10.1016/j.jksuci.2021.05.001
http://doi.org/10.1016/j.neucom.2020.06.117
http://doi.org/10.1111/nph.16830
http://doi.org/10.1016/j.neucom.2018.03.080
http://doi.org/10.1007/s12145-019-00383-2
http://doi.org/10.1155/2021/6633755
http://doi.org/10.1109/JSEN.2020.3025855
http://doi.org/10.1016/j.jksuci.2021.07.005
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1016/j.compbiomed.2021.104375
http://www.ncbi.nlm.nih.gov/pubmed/33866253
http://doi.org/10.1016/j.bspc.2021.103326
http://www.ncbi.nlm.nih.gov/pubmed/34777557
http://doi.org/10.1364/OL.390026
http://www.ncbi.nlm.nih.gov/pubmed/32356803
http://doi.org/10.1016/j.inffus.2021.07.001
http://doi.org/10.1364/BOE.10.006145
http://doi.org/10.1097/JU.0000000000000852.020
http://doi.org/10.3389/frobt.2019.00144
http://doi.org/10.1007/s11042-017-5243-3

J. Imaging 2023, 9, 1 29 of 31

115. Singhal, P.; Verma, A.; Garg, A. A study in finding effectiveness of Gaussian blur filter over bilateral filter in natural scenes
for graph based image segmentation. In Proceedings of the 2017 4th International Conference on Advanced Computing and
Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–6.

116. Blessy, P.S.S.A.; Sulochana, H.C. Enhanced Homomorphic Unsharp Masking method for intensity inhomogeneity correction in
brain MR images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 40–48.

117. Inoue, H. Data augmentation by pairing samples for images classification. arXiv 2018, arXiv:1801.02929.
118. Summers, C.; Dinneen, M.J. Improved mixed-example data augmentation. In Proceedings of the 2019 IEEE Winter Conference on

Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1262–1270.
119. Takahashi, R.; Matsubara, T.; Uehara, K. Data augmentation using random image cropping and patching for deep CNNs. IEEE

Trans. Circuits Syst. Video Technol. 2019, 30, 2917–2931. [CrossRef]
120. Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, A.D.; Valdés Hernández, M.; Wardlaw, J.; Rueckert, D.

GAN augmentation: Augmenting training data using generative adversarial networks. arXiv 2018, arXiv:1810.10863.
121. Gatys, L.A.; Ecker, A.S.; Bethge, M. A neural algorithm of artistic style. arXiv 2015, arXiv:1508.06576. [CrossRef]
122. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.
123. Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621.
124. Lemley, J.; Bazrafkan, S.; Corcoran, P. Smart Augmentation Learning an Optimal Data Augmentation Strategy. IEEE Access 2017,

5, 5858–5869. [CrossRef]
125. Ekin, D.C.; Barret, Z.; Dandelion, M.; Vijay, V.; Quoc, V.L. AutoAugment: Learning augmentation policies from data. arXiv 2019,

arXiv:1805.09501.
126. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
127. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
128. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.
129. Saxe, A.M.; McClelland, J.L.; Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.

arXiv 2013, arXiv:1312.6120.
130. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.
131. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway networks. arXiv 2015, arXiv:1505.00387.
132. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
133. Huang, G.; Liu, Z.; Laurens, V.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
134. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

135. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
136. Wang, C.; Mahadevan, S. Heterogeneous domain adaptation using manifold alignment. In Proceedings of the Twenty-Second

International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.
137. Duan, L.; Xu, D.; Tsang, I. Learning with augmented features for heterogeneous domain adaptation. arXiv 2012, arXiv:1206.4660.
138. Kulis, B.; Saenko, K.; Darrell, T. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms.

In Proceedings of the IEEE 2011 Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25
June 2011.

139. Zhu, Y.; Chen, Y.; Lu, Z.; Pan, S.J.; Xue, G.-R.; Yu, Y.; Yang, Q. Heterogeneous transfer learning for image classification.
In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011;
Volume 2.

140. Harel, M.; Mannor, S. Learning from multiple outlooks. arXiv 2010, arXiv:1005.0027.
141. Nam, J.; Kim, S. Heterogeneous defect prediction. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, Bergamo, Italy, 30 August–4 September 2015; pp. 508–519.
142. Peter, P.; Benno, S. Cross-language text classification using structural correspondence learning. In Proceedings of the 48th Annual

Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 11–16 July 2010; pp. 1118–1127.
143. Zhou, J.; Pan, S.; Tsang, I.; Yan, Y. Hybrid heterogeneous transfer learning through deep learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; pp. 2213–2219.
144. Zhou, J.; Tsang, I.; Pan, S.; Tan, M. Heterogeneous domain adaptation for multiple classes. In Proceedings of the 17th International

Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp. 1095–1103.
145. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
146. Sarkar, D.; Bali, R.; Ghosh, T. Hands-On Transfer Learning with Python: Implement Advanced Deep Learning and Neural Network Models

Using TensorFlow and Keras; Packt Publishing Ltd.: Birmingham, UK, 2018.

http://doi.org/10.1109/TCSVT.2019.2935128
http://doi.org/10.1167/16.12.326
http://doi.org/10.1109/ACCESS.2017.2696121
http://doi.org/10.1109/5.726791
http://doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://doi.org/10.1186/s40537-016-0043-6
http://doi.org/10.1109/TKDE.2009.191

J. Imaging 2023, 9, 1 30 of 31

147. Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. Spottune: Transfer learning through adaptive fine-tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15 June–20 June
2019; pp. 4800–4809.

148. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
149. Daume III, H.; Marcu, D. Domain adaptation for statistical classifiers. J. Artif. Intell. Res. 2006, 26, 101–126. [CrossRef]
150. Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In Proceedings of the Twenty-First International

Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 114.
151. Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan.

Inference 2000, 90, 227–244. [CrossRef]
152. Huang, J. Correcting sample selection bias by unlabeled data. Adv. Neural Inf. Processing Systems 2007, 19, 601–608.
153. Jakob, N.; Gurevych, I. Extracting opinion targets in a single and cross-domain setting with conditional random fields. In

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, USA, 9–11 October
2010; pp. 1035–1045.

154. Moreno-Torres, J.G.; Raeder, T.; Alaiz-Rodríguez, R.; Chawla, N.V.; Herrera, F. A unifying view on dataset shift in classification.
Pattern Recognit. 2012, 45, 521–530.

155. Pan, S.J.; Kwok, J.T.; Yang, Q. Transfer learning via dimensionality reduction. In Proceedings of the AAAI, Chicago, IL, USA,
13–17 July 2008; pp. 677–682.

156. Blitzer, J.; McDonald, R.; Pereira, F. Domain adaptation with structural correspondence learning. In Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing, Sydney, Australia, 22–23 July 2006; pp. 120–128.

157. Ribani, R.; Marengoni, M. A survey of transfer learning for convolutional neural networks. In Proceedings of the 2019 32nd
SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), Rio de Janeiro, Brazil, 28–31 October 2019;
pp. 47–57.

158. Gao, J.; Fan, W.; Jiang, J.; Han, J. Knowledge transfer via multiple model local structure mapping. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 283–291.

159. Bonilla, E.V.; Chai, K.; Williams, C. Multi-task Gaussian process prediction. In Proceedings of the 20th International Conference
on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 153–160.

160. Evgeniou, T.; Pontil, M. Regularized multi-task learning. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004; pp. 109–117.

161. Liang, R.-Z.; Xie, W.; Li, W.; Wang, H.; Wang, J.J.-Y.; Taylor, L. A novel transfer learning method based on common space
mapping and weighted domain matching. In Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial
Intelligence (ICTAI), San Jose, CA, USA, 6–8 November 2016; pp. 299–303.

162. Li, F.; Pan, S.J.; Jin, O.; Yang, Q.; Zhu, X. Cross-domain co-extraction of sentiment and topic lexicons. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics, Jeju Island, Korea, 8–14 July 2012; pp. 410–419.

163. Mihalkova, L.; Mooney, R.J. Transfer learning from minimal target data by mapping across relational domains. In Proceedings of
the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009; pp. 1163–1168.

164. Chang, Z.; Zhan, Z.; Zhao, Z.; You, Z.; Liu, Y.; Yan, Z.; Fu, Y.; Liang, W.; Zhao, L. Application of artificial intelligence in COVID-19
medical area: A systematic review. J. Thorac. Dis. 2021, 13, 7034–7053. [CrossRef]

165. Aslan, M.F.; Sabanci, K.; Ropelewska, E. A New Approach to COVID-19 Detection: An ANN Proposal Optimized through
Tree-Seed Algorithm. Symmetry 2022, 14, 1310. [CrossRef]

166. Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning–BiLSTM network: A novel approach for
COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [CrossRef]

167. Zhang, X.; Lu, S.; Wang, S.-H.; Yu, X.; Wang, S.-J.; Yao, L.; Pan, Y.; Zhang, Y.-D. Diagnosis of COVID-19 pneumonia via a novel
deep learning architecture. J. Comput. Sci. Technol. 2022, 37, 330–343. [CrossRef]

168. Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Ni, Q.; Chen, Y.; Su, J. A deep learning system to screen novel coronavirus
disease 2019 pneumonia. Engineering 2020, 6, 1122–1129. [CrossRef]

169. Wu, X.; Hui, H.; Niu, M.; Li, L.; Wang, L.; He, B.; Yang, X.; Li, L.; Li, H.; Tian, J. Deep learning-based multi-view fusion model for
screening 2019 novel coronavirus pneumonia: A multicentre study. Eur. J. Radiol. 2020, 128, 109041. [CrossRef]

170. Rahimzadeh, M.; Attar, A.; Sakhaei, S.M. A fully automated deep learning-based network for detecting COVID-19 from a new
and large lung CT scan dataset. Biomed. Signal Process. Control 2021, 68, 102588. [CrossRef]

171. Loey, M.; Manogaran, G.; Khalifa, N.E.M. A deep transfer learning model with classical data augmentation and CGAN to detect
COVID-19 from chest CT radiography digital images. Neural Comput. Appl. 2020, 32, 1–13. [CrossRef]

172. Mondal, M.R.H.; Bharati, S.; Podder, P. CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images.
PLoS ONE 2021, 16, e0259179. [CrossRef] [PubMed]

173. Hasan, N.; Bao, Y.; Shawon, A.; Huang, Y. DenseNet convolutional neural networks application for predicting COVID-19 using
CT image. SN Comput. Sci. 2021, 2, 389. [CrossRef] [PubMed]

174. Roy, S.; Kiral-Kornek, I.; Harrer, S. ChronoNet: A deep recurrent neural network for abnormal EEG identification. In Proceedings
of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, 26–29 June 2019; pp. 47–56.

http://doi.org/10.1023/A:1007379606734
http://doi.org/10.1613/jair.1872
http://doi.org/10.1016/S0378-3758(00)00115-4
http://doi.org/10.21037/jtd-21-747
http://doi.org/10.3390/sym14071310
http://doi.org/10.1016/j.asoc.2020.106912
http://doi.org/10.1007/s11390-020-0679-8
http://doi.org/10.1016/j.eng.2020.04.010
http://doi.org/10.1016/j.ejrad.2020.109041
http://doi.org/10.1016/j.bspc.2021.102588
http://doi.org/10.1007/s00521-020-05437-x
http://doi.org/10.1371/journal.pone.0259179
http://www.ncbi.nlm.nih.gov/pubmed/34710175
http://doi.org/10.1007/s42979-021-00782-7
http://www.ncbi.nlm.nih.gov/pubmed/34337432

J. Imaging 2023, 9, 1 31 of 31

175. Xiao, B.; Yang, Z.; Qiu, X.; Xiao, J.; Wang, G.; Zeng, W.; Li, W.; Nian, Y.; Chen, W. PAM-DenseNet: A deep convolutional neural
network for computer-aided COVID-19 diagnosis. IEEE Trans. Cybern. 2021, 52, 12163–12174. [CrossRef] [PubMed]

176. Shah, V.; Keniya, R.; Shridharani, A.; Punjabi, M.; Shah, J.; Mehendale, N. Diagnosis of COVID-19 using CT scan images and deep
learning techniques. Emerg. Radiol. 2021, 28, 497–505. [CrossRef] [PubMed]

177. Tan, W.; Liu, P.; Li, X.; Liu, Y.; Zhou, Q.; Chen, C.; Gong, Z.; Yin, X.; Zhang, Y. Classification of COVID-19 pneumonia from chest
CT images based on reconstructed super-resolution images and VGG neural network. Health Inf. Sci. Syst. 2021, 9, 10. [CrossRef]
[PubMed]

178. Wang, S.-H.; Fernandes, S.L.; Zhu, Z.; Zhang, Y.-D. AVNC: Attention-based VGG-style network for COVID-19 diagnosis by
CBAM. IEEE Sens. J. 2021, 22, 17431–17438. [CrossRef]

179. Alsharman, N.; Jawarneh, I. GoogleNet CNN neural network towards chest CT-coronavirus medical image classification.
J. Comput. Sci. 2020, 16, 620–625. [CrossRef]

180. Yu, X.; Wang, S.-H.; Zhang, X.; Zhang, Y.-D. Detection of COVID-19 by GoogLeNet-COD. In Intelligent Computing Theories and
Application: 16th International Conference, ICIC 2020, Bari, Italy, 2–5 October 2020, Proceedings, Part I; Springer: Cham, Switzerland,
2020; pp. 499–509.

181. Zhang, Y.D.; Satapathy, S.C.; Liu, S.; Li, G.R. A five-layer deep convolutional neural network with stochastic pooling for chest
CT-based COVID-19 diagnosis. Mach. Vis. Appl. 2021, 32, 14. [CrossRef]

182. Pham, T.D. A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional
neural networks. Sci. Rep. 2020, 10, 16942. [CrossRef]

183. JavadiMoghaddam, S.; Gholamalinejad, H. A novel deep learning based method for COVID-19 detection from CT image. Biomed.
Signal Process. Control 2021, 70, 102987. [CrossRef]

184. Cortés, E.; Sánchez, S. Deep Learning Transfer with AlexNet for chest X-ray COVID-19 recognition. IEEE Lat. Am. Trans. 2021,
19, 944–951. [CrossRef]

185. Kaur, M.; Kumar, V.; Yadav, V.; Singh, D.; Kumar, N.; Das, N.N. Metaheuristic-based deep COVID-19 screening model from chest
X-ray images. J. Healthc. Eng. 2021, 2021, 8829829. [CrossRef]

186. Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional
neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [CrossRef]

187. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al
Emadi, N. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

188. Hernandez, D.; Pereira, R.; Georgevia, P. COVID-19 detection through X-Ray chest images. In Proceedings of the 2020 International
Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 1–3 October 2020; pp. 1–5.

189. Sitaula, C.; Hossain, M.B. Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl. Intell. 2021, 51,
2850–2863. [CrossRef]

190. Haritha, D.; Swaroop, N.; Mounika, M. Prediction of COVID-19 Cases Using CNN with X-rays. In Proceedings of the 2020 5th
International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; pp. 1–6.

191. Kaya, Y.; Yiner, Z.; Kaya, M.; Kuncan, F. A new approach to COVID-19 detection from X-ray images using angle transformation
with GoogleNet and LSTM. Meas. Sci. Technol. 2022, 33, 124011. [CrossRef]

192. Khanday, N.Y.; Sofi, S.A. Deep insight: Convolutional neural network and its applications for COVID-19 prognosis. Biomed.
Signal Process. Control 2021, 69, 102814. [CrossRef]

193. Abdulah, H.; Huber, B.; Abdallah, H.; Palese, L.L.; Soltanian-Zadeh, H.; Gatti, D.L. A Hybrid Pipeline for COVID-19 Screening
Incorporating Lungs Segmentation and Wavelet Based Preprocessing of Chest X-Rays. medRxiv 2022. [CrossRef]

194. Georgiadis, A.; Babbar, V.; Silavong, F.; Moran, S.; Otter, R. ST-FL: Style transfer preprocessing in federated learning for COVID-19
segmentation. In Proceedings of the Medical Imaging 2022: Imaging Informatics for Healthcare, Research, and Applications, SPIE
Medical Imaging, San Diego, CA, USA, 4 April 2022; pp. 13–27.

195. Maity, A.; Nair, T.R.; Chandra, A. Image Pre-processing techniques comparison: COVID-19 detection through Chest X-Rays via
Deep Learning. Int. J. Sci. Res. Sci. Technol. 2020, 7, 113–123. [CrossRef]

196. Heidari, M.; Mirniaharikandehei, S.; Khuzani, A.Z.; Danala, G.; Qiu, Y.; Zheng, B. Improving the performance of CNN to predict
the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Int. J. Med. Inform. 2020, 144, 104284.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TCYB.2020.3042837
http://www.ncbi.nlm.nih.gov/pubmed/34428169
http://doi.org/10.1007/s10140-020-01886-y
http://www.ncbi.nlm.nih.gov/pubmed/33523309
http://doi.org/10.1007/s13755-021-00140-0
http://www.ncbi.nlm.nih.gov/pubmed/33643612
http://doi.org/10.1109/JSEN.2021.3062442
http://doi.org/10.3844/jcssp.2020.620.625
http://doi.org/10.1007/s00138-020-01128-8
http://doi.org/10.1038/s41598-020-74164-z
http://doi.org/10.1016/j.bspc.2021.102987
http://doi.org/10.1109/TLA.2021.9451239
http://doi.org/10.1155/2021/8829829
http://doi.org/10.1007/s10044-021-00984-y
http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.1007/s10489-020-02055-x
http://doi.org/10.1088/1361-6501/ac8ca4
http://doi.org/10.1016/j.bspc.2021.102814
http://doi.org/10.1101/2022.03.13.22272311
http://doi.org/10.32628/IJSRST207614
http://doi.org/10.1016/j.ijmedinf.2020.104284

	Introduction
	Imaging Modalities for COVID-19 Diagnosis
	Chest Computed Tomography
	Chest X-ray

	Convolutional Neural Networks
	Batch Normalization
	Dropout Technology
	ReLU Function and Its Variants
	ReLU
	Leaky ReLU
	Parametric ReLU
	Randomized Leaky ReLU
	Exponential Linear Unit

	Pooling
	Max Pooling
	Average Pooling
	Fractional Max Pooling
	Other Popular Pooling Methods

	Data Augmentation
	Geometric Transforms
	Noise Injection
	Color Space
	Random Erasing
	Kernel Filters
	Mixing Images
	Data Augmentation Methods Based on Deep Learning

	Pretrained Models
	AlexNet
	ResNet
	DenseNet
	VGG
	GoogleNet
	Transfer Learning

	Application, Analysis, and Discussion
	CNN Applied to CT Images
	CNN Applied to X-ray Images

	Conclusions
	References

