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Abstract: According to the World Health Organization statistics, as of 25 October 2022, there have
been 625,248,843 confirmed cases of COVID-19, including 65,622,281 deaths worldwide. The spread
and severity of COVID-19 are alarming. The economy and life of countries worldwide have been
greatly affected. The rapid and accurate diagnosis of COVID-19 directly affects the spread of the
virus and the degree of harm. Currently, the classification of chest X-ray or CT images based on
artificial intelligence is an important method for COVID-19 diagnosis. It can assist doctors in making
judgments and reduce the misdiagnosis rate. The convolutional neural network (CNN) is very
popular in computer vision applications, such as applied to biological image segmentation, traffic
sign recognition, face recognition, and other fields. It is one of the most widely used machine
learning methods. This paper mainly introduces the latest deep learning methods and techniques for
diagnosing COVID-19 using chest X-ray or CT images based on the convolutional neural network. It
reviews the technology of CNN at various stages, such as rectified linear units, batch normalization,
data augmentation, dropout, and so on. Several well-performing network architectures are explained
in detail, such as AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. We analyzed and discussed the
existing CNN automatic COVID-19 diagnosis systems from sensitivity, accuracy, precision, specificity,
and F1 score. The systems use chest X-ray or CT images as datasets. Overall, CNN has essential
value in COVID-19 diagnosis. All of them have good performance in the existing experiments. If
expanding the datasets, adding GPU acceleration and data preprocessing techniques, and expanding
the types of medical images, the performance of CNN will be further improved. This paper wishes to
make contributions to future research.

Keywords: COVID-19; diagnosis; deep learning; convolutional neural networks; CT images; transfer
learning; X-ray images; classification

1. Introduction

WHO declared COVID-19 as a global pandemic in March 2020. The COVID-19 pandemic
has affected thousands of people. It has affected people’s ordinary lives and the global
economy. COVID-19 can cause respiratory, gastrointestinal, and neurological syndromes [1].
Cough, fever, and other respiratory issues are the most common symptoms [2].

Rapid COVID-19 diagnosis is essential during the pandemic. Currently, the commonly
used diagnostic methods include the molecular assay, chest computed tomography (CT)
scan combined with the evaluation of clinical symptoms [3], artificial intelligence (AI)
methods [4], potential electrochemical (EC) biosensors [5], surface plasmon resonance
(SPR)-based biosensors [6], field-effect transistor (FET)-based biosensors [7], etc. As a
frequently employed auxiliary detection technology, CT images can show the changes in
the lung caused by virus infection [8]. Compared with CT images, X-ray images are more
accessible to obtain. It is also an important means of medical detection.

The most common diagnostic measure for COVID-19 is through reverse transcription-
polymerase chain reaction (RT-PCR) assays of nasopharyngeal swabs [9]. However, the
high false negative rate of RT-PCR [10] may affect the timely treatment of infected patients.
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The X-ray and CT can image the lungs of patients with COVID-19. Lung imaging can reveal
the niduses’ spatial location and the infection’s extent. CT images have a fast turnaround
and excellent sensitivity [11]. They can visualize the degree of infection in the lung. Based
on the significant features of COVID-19 on X-ray or CT images, many researchers have
used artificial intelligence and computer vision to classify X-ray or CT images. These
images were classified into two categories: those without COVID-19 and those infected
with COVID-19. Other researchers divided the images into healthy, infected with COVID-19,
and infected with pneumonia. Some algorithms can detect the extent of infection based
on the features of X-ray or CT images. This research is meant to help doctors diagnose
COVID-19 accurately and quickly.

Artificial intelligence is widely used in medical [12–14]. Its accuracy rates and prediction
are high [15]. AI can be applied to multiple phases, such as prediction, diagnosis, virus
detection, response, prevention, and recovery, to accelerate research [16,17]. During the
COVID-19 epidemic, AI recognized chest X-rays or CT images. Features in X-ray or CT
images are extracted for COVID-19 diagnosis by segmenting regions of interest and capturing
fine structures. One of the important subfields of AI is machine learning (ML) [18]. It is already
widely applied to medical images [19–21]. Deep learning (DL) is a promising technology in
machine learning [22]. Deep learning has multiple hidden layers for learning and can perform
classification or detection tasks well [23,24]. The role of deep learning in image recognition
is vital [19,25–27]. The convolutional neural network (CNN) is a kind of deep network. It is
popular in computer vision applications. CNN has been successfully applied to biological
image segmentation [28], traffic sign recognition [29–31], face recognition [32,33], and other
fields. Later studies added rectified linear units, dropout, data augmentation, and other
techniques to CNN. This decreased the error rate of deep learning for image classification
tasks to less than 3% in 2016 [34] and exceeded human performance.

This paper mainly summarizes and discusses methods and experiments based on
convolutional neural networks, which classify chest X-ray or CT images into infected and
non-infected with COVID-19. All along, CNNs have been very widely used in medical
images [35–37]. The severity and spread of COVID-19 around the world are alarming.
CNN is used to extract features from chest X-rays or CT images. CNN, combined with
other algorithms or architectures, divided the images into two categories: infected with
COVID-19 and uninfected, or three categories: infected with COVID-19, infected with
other pneumonia, and uninfected [38–40]. The COVID-19 diagnosis based on convolutional
neural networks can assist doctors in making judgments quickly and accurately. We gave a
detailed explanation of CNN, its existing technologies, and network types. The following
contents also summarize, analyze and compare the automatic diagnosis systems established
by scholars based on convolutional neural networks. Finally, we suggested future research
on improving the performance of COVID-19 classification models.

The parts of this paper are organized as follows: Section 2 reviews the characteristics
of medical images currently commonly used for COVID-19 diagnosis. Section 3 introduces
convolutional neural networks (CNN) and current methods commonly used to improve
CNN. Section 4 introduces several mature and well-performing convolutional neural
networks. Section 5 analyzes and discusses the current experiments and methods of
applying CNN to COVID-19 diagnosis. Section 6 summarizes the full text and provides
suggestions for future research. To help understand more clearly, all abbreviations and full
names in this paper are shown in Table 1.
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Table 1. List of all abbreviations and terms.

Abbreviation Term

AI Artificial intelligence
ANN Artificial neural network
AT Angle transformation
AVNC Attention-based VGG-style network for COVID-19
BiLSTM Bidirectional long short-term memories
BN Batch normalization
CB Convolution block
CBAM Convolutional block attention module
CGAN Conditional generative adversarial net
CNN Convolution neural network
CO-IRv2 Optimized inceptionResNetV2 for COVID-19
COVID-19 Coronavirus disease 2019
CT Computed tomography
DA Data augmentation
DC-Net Deep COVID network
DCNN Deep convolutional neural network
DenseNet Dense convolutional network
DL Deep learning
DNN Deep neural network
EC Electrochemical
ELU Exponential linear unit
FCB Fully connected block
FET Field-effect transistor
FMP Fractional max pooling
GANs Generative adversarial networks
GGO Ground glass opacity
GoogleNet Google inception net
GPU Graphics processing unit
ICS Internal covariate shift
LReLU Leaky rectified linear unit
LSTM Long short-term memory
mAlexNet Modified AlexNet
ML Machine learning
PAM-DenseNet DenseNet with parallel attention module
PDF Probability density function
PReLU Parametric rectified linear unit
ReLU Rectified linear unit
ResNet Residual network
RICAP Random image cropping and patching
RReLU Randomized leaky rectified linear unit
RT-PCR Reverse transcription-polymerase chain reaction
RVFL Random vector functional-link net
SE block Squeeze and excitation blocks
SPEA-II Strength Pareto evolutionary algorithm-II
SPR Surface plasmon resonance
SRGAN Super-resolution generative adversarial network
TSA Tree seed algorithm
VGG Visual geometry group
VSBN VGG-style base network
WCNN4 Wavelet CNN-4

2. Imaging Modalities for COVID-19 Diagnosis

Computed tomography (CT), published in 1972 [41], has become a widely used tool
for diagnostic imaging. CT is a cross-sectional scan of a certain part of the human body one
by one. Its advantages include clear images and fast scanning. CT is widely used to detect
a variety of diseases. X-rays penetrate a person’s body and take an X-ray image. X-ray
images are also an important basis for diagnosing diseases.
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2.1. Chest Computed Tomography

CT takes images from different angles. One shot was taken for each rotation angle.
Using a large number of projection images taken from different angles, we back-calculated
a fault plane image by a mathematical algorithm. This is computed tomography. Many
scholars have studied the features of COVID-19 on CT images. In the study of patients in
Rome and Italy [8], ground glass opacity (GGO) was found in 100% of confirmed patients on
CT images. Ground-glass opacity (GGO) means that the density will be slightly increased
on high-resolution CT images, and the bronchovascular will still be visible. This sign is
often the manifestation of early lung disease. Timely detection and diagnosis of GGO are
important for clinical management. Multilobe and posterior lung involvement was present
in 93% of patients. Bilateral pneumonia occurred in 91% of patients. Cellina et al. [42]
concluded that GGO was more common bilaterally in the peripheral lung areas under
the pleura on CT images of COVID-19. During the disease, the number of consolidations
increases, forming fibrotic stripes. Consolidation refers to accumulating fluids, fibrin, and
cellular components in the alveolar airspaces. It reduces alveolar air content and increases
parenchymal density. Wang et al. [43] found that CT manifestations of mild/common-
type infection were multifocal lesions, GGO, involving multiple segments or lobes. CT
manifestations of heavy/critical-type infection show consolidation of multiple lesions
and interlobular septal thickening. In the paper [44], Bernheim et al. mentioned that
the CT image features of COVID-19 are consolidative pulmonary opacities and bilateral
and peripheral ground glass. The longer the onset of symptoms, the more findings on
CT images. These findings include bilateral and peripheral disease, consolidation, linear
opacities, greater total lung involvement, the “reverse halo” sign, and a “crazy-paving”
pattern. In Guan’s study [2], 56.4% of the COVID-19 subjects showed GGO.

2.2. Chest X-ray

X-rays are emitted from one end, passed through the body, and picked up by a detector
at the other end. What is received is a two-dimensional image. So X-ray imaging is fast
and cheap. Chest X-ray images of patients diagnosed with COVID-19 show air space
consolidation and the bilateral distribution of peripheral hazy lung opacities [45]. When
COVID-19 is suspected, the preferred imaging modality for the chest is the X-ray [46]. The
radiation dose of chest X-rays is lower than CT, and chest X-rays are cheaper [47]. Because
portable chest X-ray is easy to carry and clean, chest X-ray can reduce the risk of COVID-19
transmission during testing [48]. According to Oh [49], although the sensitivity of chest
X-ray results is not high (69%) [45], chest X-rays can be used to determine the sequence of
treatment for patients infected with COVID-19. Diagnosing chest X-rays can alleviate the
saturated healthcare system during the COVID-19 pandemic.

3. Convolutional Neural Networks

Convolutional neural networks (CNN) are widely applied to computer vision currently.
In the aspect of medical image processing about health, CNN performs outstanding [50].
CNN uses multi-layer superposition to extract from low-level features to high-level features.
It is like the hierarchical structure of the human brain function [51–54]. A CNN comprises an
input layer, an output layer, convolution layers, pooling layers, and fully connected layers.
Input the raw data in the input layer. Convolution operations are performed to extract
features in the convolution layers. The scale of parameters is further reduced in the pooling
layers. Fully connected layers connect all the features and output them to the classifier.

CNN is a kind of local perception. Divide the entire image into multiple small windows
that can overlap locally. The local features of the image are identified by utilizing sliding
windows. A window can be regarded as a filter, which is a neuron. The convolutional layer
has a set of such filters.

Figure 1 is a 6× 6 image. The size of filter one is 3× 3. Put filter one in the upper left
corner of the 6× 6 image to do the convolution operation, and obtain the result −1. The step
size of the sliding window is one. Filter one moves one step to the right and then performs the
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convolution operation, and the result is −2. Do convolution operation step by step from top
to bottom and from left to right, and a 4× 4 matrix can be obtained as shown in Equation (1).
Doing the same operation with filter2 will obtain another different 4× 4 matrix.

nout = floor
(

nin + 2 ∗ p− k
s

)
+ 1, (1)

where nin is the number of input features. p is the size of padding. k is the kernel size. s is
the stride. nout is the number of output features.
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Figure 1. Convolution operation.

The dimensionality of the convolution results can be further reduced in the pooling
layers. The location of the pooling layer is usually in the middle of the two convolutional
layers [55]. Pooling layers reduce the feature model size of the previous convolutional
layer, speed up the calculation, and reduce the probability of overfitting [56]. Pooling
operations divide the feature image into regions and choose a value in one pooling area to
replace. In this way, the data and parameters of the feature image are compressed. Average
pooling [57] and max pooling [58] are the two most typical pooling operations.

The fully connected layers come after the convolution layers and the pooling layers.
There may be one or more fully connected layers [59–61]. In the fully connected layers,
each neuron is fully connected to all neurons in the previous layer. The local features of the
previous outputs are integrated into global features through fully connected layers.

3.1. Batch Normalization

A deep neural network may have many hidden layers. When training each layer, the
parameters are updated, causing the input data distribution of the upper layer to change
accordingly. Layer-by-layer accumulation will cause the input distribution of the front
layer to change drastically. There will be changes not only in the input layer but also in the
hidden layers. The phenomenon is defined as Internal Covariate Shift (ICS) [62]. The front
layers should constantly adapt to the update of the parameters in the last layers, which
will reduce the training efficiency of the whole network.

Whitening the neural network’s input layer can make the network training converge
faster [63,64]. The whitening operation refers to linearly transforming the input data to
reach a normal distribution with means of 0 and variances of 1. Each neuron in hidden
layers can be seen as input to the next layer. Scholars can perform a whitening operation on
each hidden layer neuron to solve the ICS. Transform increasingly skewed data distributions
to more standard normal distributions. This is Batch Normalization (BN). BN is located
after the input linear activation and before the nonlinear transformation. That is, BN
is performed on the activation values ai of neurons in each hidden layer. If there are n
activation values in a mini-batch, the process of BN is as follows [62]:

(1) Calculate the mean µ, as shown in Equation (2);

µ =
1
n

n

∑
i=1

ai (2)



J. Imaging 2023, 9, 1 6 of 31

(2) Calculate the variance δ2, as shown in Equation (3);

δ2 =
1
n

n

∑
i=1

(ai − µ)2 (3)

(3) Normalize a∗i , as shown in Equation (4);

a∗i =
ai − µ√
δ2 + e

(4)

where e is a constant used to ensure numerical stability.
(4) Scale and shift, as shown in Equation (5).

BN(ai) = ϕa∗i + ω, (5)

ϕ is the parameter that scales the normalized value. ω is the parameter that shifts the
normalized value. These parameters are learnable. Simply normalizing the input may lead
to changing what the input represents. The addition of these parameters can restore the
representation of the network.

3.2. Dropout Technology

Between the input and the output layers, there are hidden layers. A deep neural
network (DNN) usually has many hidden layers. The training set can be modeled correctly
by adapting the weights on the incoming connections of the neurons in hidden layers [60].
However, the weight matrix performs poorly on the test set and has poor generalization
ability. This phenomenon is called overfitting.

Dropout can solve the problem of overfitting. Dropout means that some neurons in
the network are dropped out. However, instead of being deleted, they are temporarily
dropped out of the network, including their output and input connections [65], as shown
in Figure 2. The neurons that are dropped out are randomly selected. Each neuron is left
with a fixed probability p. The neurons that are left form new networks thinner than the
original network. These networks use the same weight matrix, so there is no increase in the
number of parameters.
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When the network is training, a neuron is left with probability p (p is randomly
generated from a Bernoulli distribution). It is connected to the next layer with a weight w.
Then the weight value is ultimately p× w. To make the weights connecting the neurons in
the next layer consistent with those during training, the neurons during testing are always
present, and the weights are reduced to p× w, as shown in Figure 3.
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The dropout operation of the neural network is as Equation (6) [65]:

d̃l = rl × dl

cl+1
i = wl+1

i × d̃l + bl+1
i

dl+1
i = f

(
cl+1

i

) (6)

where rl is a vector produced by the probability pl of the neurons in the hidden layer l. dl

is the output vector of hidden layer l. cl is the input vector of the hidden layer l. wl and bl

are the weights and biases of hidden layer l. f () is the activation function. d̃l is the output
vector of hidden layer l with the dropout. d̃l is processed to be used as the input of the
hidden layer l + 1.

3.3. ReLU Function and Its Variants
3.3.1. ReLU

As the activation function, ReLU functions increase the nonlinear relationship between
the layers of CNN to complete complex tasks. The neurons of each layer in the convolutional
neural network are weighted and shifted, then output to the next layer, as shown in
Equation (7).

y = wx + b, (7)

where x is the input vector, y is the output vector. w is the weight vector for the layer, and b
is the bias vector for the layer. If there are two hidden layers, the input is weighted and
biased twice to obtain the output, as shown in Equations (8) and (9).

y = w2(w1x + b1) + b2 (8)

y = w2w1x + w2b1 + b2 (9)

From Equation (9), it can be concluded that multiple hidden layers can be combined
into one layer if only linear transformations of weights and biases are applied to the input.
The linear expression ability is limited and insufficient to fit nonlinear neural networks.
The activation functions process the outputs of the neurons in the previous layers. The
processing results are passed as inputs to the neurons of the next layer. Activation functions
can add nonlinear factors. Rectified linear unit (ReLU) is a kind of activation function
commonly used in CNN. ReLU function is defined as Equation (10):

ReLU(m) =

{
0 m < 0
m m ≥ 0

(10)

ReLU is illustrated in Figure 4a. The ReLU function is a piecewise linear function. It has
unilateral inhibition, which enables sparse activation of neurons in a deep neural network.
Sparsity networks are more helpful for mining features. The ReLU function accelerates
the convergence, and the gradient vanishing problem is solved [66]. A large parameter
update may cause some ReLU neurons to never be activated. The phenomenon of “dying
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ReLU” appeared [67]. Variants of the ReLU function appeared to solve the problem, such
as LReLU (Figure 4b), PReLU (Figure 4c), RReLU (Figure 4d), ELU (Figure 4e), etc.
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3.3.2. Leaky ReLU

Leaky ReLU (LReLU) solves the dying ReLU problem using a small slope [68]. The
LReLU function is defined as Equation (11):

LReLU(m) =

{
βm m < 0
m m ≥ 0

. (11)

where β is generally 0.01. The LReLU has the advantage that if the input of the LReLU
activation function is less than zero, the gradient can also be calculated, unlike ReLU, which
keeps the gradient zero.

3.3.3. Parametric ReLU

Parametric rectified linear unit (PReLU) is a variant of LeakyReLU. The parameter β
of PReLU [69] is not set artificially but is obtained through training. The parameter is the
key to improving the classification performance. PReLU is defined as Equation (12):

PReLU(m) = max(0, m) + βmin(0, m) (12)

When β = 0, PReLU becomes ReLU. β controls the slope of the negative axis.
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3.3.4. Randomized Leaky ReLU

Randomized leaky rectified linear unit (RReLU) is another variant of LeakyReLU.
RReLU is defined as Equation (13). Parameter β is randomly valued during training and
becomes a fixed value during testing. During the training process, the distribution of β
satisfies the normal distribution with a standard deviation of 1 and a mean of 0. When
testing, Srivastava [70] et al. took an average of all β using the method of dropout. The
NDSB competitor suggested that it would be better if β is sampled from C (3,8).

RReLU(m) =

{
βm m < 0
m m ≥ 0

β ∼ C(x, y), x < y and x, y ∈ [0 , 1) (13)

3.3.5. Exponential Linear Unit

The exponential linear unit (ELU) is also an activation function. It has similarities and
differences with ReLU. ELU is an activation function with negative values, and it is defined
as Equation (14):

ELU(m) =

{
m m > 0

β(em − 1) m ≤ 0
, ELU′(m) =

{
1 m > 0

ELU(m) + β m ≤ 0
(β > 0) (14)

where β controls the saturation value for negative net input [71]. ELU solves the problem of
gradient vanishing. The mean values of the ELU output are close to zero, which makes the
convergence faster. Because ELU is nonzero for negative values, there is no “dying ReLU”
phenomenon. ELU is an unsaturated function, and there is no problem with vanishing
gradients or exploding gradients.

3.4. Pooling

Pooling usually follows the convolution operation. The essence of pooling is sampling.
The dimension of the input feature map can be reduced using pooling by choosing an
appropriate method. Pooling can reduce the operation’s complexity and improve the
operation’s speed. The addition of pooling layers in the architecture of CNN can reduce
the scale of weights and parameters [72], reducing the input’s dimensions and memory
consumption [73–75]. The use of pooling layers can also solve overfitting [76].

3.4.1. Max Pooling

Max pooling is an extensively applied pooling method in CNNs [58]. This method
is popular because it does not require tuning parameters. The max pooling technique is
to find the max element in the pooling region [77,78]. Max pooling can exhibit the max
value of the feature map in the k× k neighborhood. Not only the scale of the feature map
space is optimized, but also the translation invariance of the network is preserved by max
pooling [79].

In Max pooling, the whole image is divided into several blocks of the same size that
do not overlap. We discard all other nodes and take only the max value in each block. For
example, there is a pooling region of size 4× 4. The pooling filter size is 2× 2, and the stride
is 2. These setups enable pooling to be applied to regions of the image that do not overlap.
The pooling filter selects the max value of each block to obtain the final output. Figure 5
shows the process of max pooling. Max pooling focuses on the max element and discards
the others. This may lead to wrong results of the disappearance of salient features [80].
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3.4.2. Average Pooling

The input sample is divided into multiple blocks of the same size and not overlapping
each other. Average pooling is to calculate the average value of all elements in each block
and present output. Use the input sample in Section 3.4.1. Similarly, the average pooling
filter size is 2× 2, and the stride is 2. The purpose is to ensure that the areas swept by
the pooling filter do not overlap. Calculate the average of all values in each 2× 2 pooling
block as the output. Figure 6 shows the process of average pooling. In average pooling,
if the averages are low, the contrast will be diminished [79]. The convolutional features
will be decreased [81] if most of the averages are zero. Wang et al. [82] proposed using a
rank-based average pooling module in the network for COVID-19 COVID-19 recognition
to avoid overfitting.
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3.4.3. Fractional Max Pooling

Fractional max pooling (FMP) is a special max pooling. It has an important parameter
µ called the pooled fraction. Because µ represents the ratio of the input-spatial size to the
output-spatial size of the pooling region, the image size can be reduced by setting µ. For
regular max pooling, µ is set to an integer. The size of the feature map is rapidly reduced.
For fractional max pooling, µ is set to a non-integer (a fraction). The decay rate of the
feature map will slow down. If the focus is on accuracy, set µ ∈ (1, 2), as shown in Figure 7.
Suppose the focus is on speed, set µ ∈ (2, 3) [83].
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There are two types of pooling regions: disjoint rectangular areas and overlapping
square areas. The pooling regions can be chosen in pseudorandom and random ways. FMP
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works better in a random way [83]. Wang et al. [84] used fractional max pooling (FMP)
instead of max pooling and average pooling in a network for COVID-19 recognition.

3.4.4. Other Popular Pooling Methods

Both average pooling and max pooling have disadvantages. Yu et al. [85] proposed
a way to mix the two. This method is called mixed pooling. The weights of average
pooling and max pooling are merged [86], which can overcome their shortcomings. In
many experiments, the performance of mixed pooling is better than that of max pooling
and average pooling in image classification [87–89].

Tree pooling [90] uses the data from pooling filters to learn and combines these learned
filters. The performance of tree pooling is better than that of average pooling, max pooling,
and mixed pooling. However, more parameters must be learned than mixed average and
max pooling [91]. Tree pooling is suitable for lower network layers focusing on functional
responses [92].

Fergus and Zeiler et al. [59] proposed stochastic pooling. Stochastic pooling randomly
selects values. It is not suitable for negative activations. With little training data, stochastic
pooling tends to generate strong activation, leading to overfitting. Rank-based stochastic
pooling [93] may solve this problem. It estimates the ranking of the activations within the
pooling region. Stochastic pooling needs to address issues related to scaling [94]. Wang
et al. [95] proposed the stochastic pooling module and a stochastic pooling neural network
for COVID-19 diagnosis. Zhang et al. [96] proposed a deep-learning model for COVID-19
diagnosis. It used stochastic pooling instead of max pooling and average pooling.

4. Data Augmentation

Data augmentation (DA) is an effective way to expand datasets. The larger the size
of the data, the better the generalization ability of the trained model. When the number
of samples in the dataset is relatively small, data augmentation increases the amount of
training data by modifying the existing training data [97]. Data augmentation is mainly
used to prevent overfitting, especially when the training dataset is small. There are many
ways for data augmentation [98–101].

4.1. Geometric Transforms

Geometric transforms are standard methods of data augmentation. Training data can
be effectively increased with geometric transforms [102]. Flipping is one of the easiest ways
to implement data augmentation [103]. Flipping is a mirror image reflected along a line.
Horizontal axis flipping is commonly used. Figure 8a shows the original image. Figure 8b
shows the image after horizontal flipping. Figure 9a shows the original image. Figure 9b
shows the image after vertical flipping. No matter what direction the image is flipped, the
image remains the same.
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Rotation augmentation rotates the image to the left or right according to the selected
angle. The image is rotated around a central point [104]. The angle of rotation should
be chosen appropriately. A wide rotation may make recognition unsafe [105]. Figure 10a
shows the original image. Figure 10b shows the result of a clockwise rotation of 10 degrees.
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Shear is the non-vertical projection effect of a plane object on the projected plane.
Horizontal shear and vertical shear are commonly used in data enhancement. If the
original coordinate of a point is (x, y), the coordinate after horizontal shear is

(
x′h, y′h

)
, as

shown in Equation (15),

[
x′h, y′h, 1

]
= [x, y, 1]×

 1 0 0
βh 1 0
0 0 1

 (15)

where βh is horizontal shear parameter. The coordinate after the vertical shear is (x′v, y′v),
as shown in Equation (16), where βv is vertical shear parameter.

[
x′v, y′v, 1

]
= [x, y, 1]×

1 βv 0
0 1 0
0 0 1

 (16)

Cropping cuts a portion of the input image. It is an effective tool for extracting
patches [106,107]. Images can be classified according to patches rather than the whole
image. An image can be cropped into several pieces. It does not lose important information
about the image when cropping.

4.2. Noise Injection

There are many ways for data augmentation using noise injection, such as Gaussian
noise, salt-and-pepper noise, speckle noise, etc. Noise injection has been successfully used in
plant leaf disease recognition [108], robot speech commands [109], fruit classification [110],
and so on. Gaussian noise injection is more popular. Gaussian noise follows the normal
distribution. The probability density function (PDF) f (x) of Gaussian noise can be expressed
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as Equation (17), where α2 is the variance and β is the mean value. Gaussian injection means
injecting random values from a Gaussian distribution into the pixels of the image.

f (x) =
1√

2πα2
e−

(x−β)2

2α2 (17)

In addition to adding noise to the input layer, you can also add noise to other layers.
DeVries et al. add noise to a learned feature space instead of the input space [111]. Xie
et al. [112] add noise to the loss layer. These prevent the network from overfitting.

4.3. Color Space

Implementing data augmentation in a color space is also a practical approach. The
transformations are based on gray or RGB color values [113]. Color augmentation can be
completed by isolating a color channel and converting an image into a representation in
one color channel. Color augmentation can be completed by manipulating the RGB values
to change the image’s brightness. Color augmentation can be completed by changing the
color histograms of the image [98].

4.4. Random Erasing

Random erasing means randomly selecting an area of the image, and its pixels are
erased by random or mean pixel values [114]. It can augment the recognition of occluded
images. Random erasing requires no parameters to learn and is easy to implement.

The size of the source image is M × N. The size of the randomly selected erasing
rectangle region is M′ × N′. Then, select randomly a point W = (x, y) in the source image
region. If x + M′ < M and y + N′ < N, S = (x, y, x + M′, y + N′) is the erasing region.
Each pixel in S is assigned a random value between 0 and 255. Finally, a new image with a
part of the regions erased is obtained.

4.5. Kernel Filters

Kernel filters can sharpen or blur images. The data augmentation can be obtained by
convolving the kernel filter with the image. A Gaussian blur filter [115] is used to slide
an n× n matrix across the image. A blurry image is yielded. An unsharp masking [116]
slides an n× n matrix over the image. A sharpened image is yielded. The blurred image
can resist motion blur. The sharpened image allows for more detail. Figure 11a shows the
original image. Figure 11b shows the image after sharpening. Figure 11c shows the image
after blurring.
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4.6. Mixing Images

Mixing images is a method for data augmentation of two or more images. Calculating
the average of the pixels can achieve a mixed image. This strategy of data augmentation
may seem irrational, but it is effective. Ionue [117] came up with Samplepaining technology.
Two images were randomly selected from the dataset, and one was overlaid on another.
A new sample is obtained by superimposing two images. This simple data augmentation
technology significantly improved classification accuracy. Summers and Dinneen [118]
mixed the images in a nonlinear manner. Takahashi et al. [119] generate a new training
image by mixing four images obtained through random image cropping and patching
(RICAP).

4.7. Data Augmentation Methods Based on Deep Learning

There are some DA ways based on deep learning. The feature space in CNN is a
low-dimensional representation in high-level layers [98]. Feature space augmentation opens
up opportunities for many vector operations for data augmentation [111]. Adversarial
training helps to search the space for possible augmentations. It can improve the weakness
in the boundaries of learnable decisions. Generative Adversarial Networks (GANs) are a
way to obtain additional information from a dataset [120]. Figure 12 shows the architecture
of GAN.
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Neural style transfer transfers the style of an image created in CNN to another image
and preserves the original content [121]. Overfitting of the model can be prevented. Meta-
learning refers to optimizing neural networks with neural networks [122]. There is neural
augmentation [123], smart augmentation [124], and auto-augmentation [125].

5. Pretrained Models

With the development of CNN, many mature networks perform well in image recognition,
object recognition, natural language processing, and other fields. These networks include
AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. During the COVID-19 pandemic, these
networks could be fine-tuned and used to classify chest CT or chest X-ray images into different
categories (such as infection and health).

5.1. AlexNet

AlexNet contains five convolutional layers and three fully connected layers [66]. Compared
with LeNet, it uses more new technology [126]. Figure 13 is the structure of AlexNet.

J. Imaging 2023, 9, 1 15 of 32 
 

 

include AlexNet, ResNet, DenseNet, VGG, GoogleNet, etc. During the COVID-19 pan-

demic, these networks could be fine-tuned and used to classify chest CT or chest X-ray 

images into different categories (such as infection and health). 

5.1. AlexNet 

AlexNet contains five convolutional layers and three fully connected layers [66]. 

Compared with LeNet, it uses more new technology [126]. Figure 13 is the structure of 

AlexNet. 

(1) AlexNet uses ReLU as the activation function. ReLU solves the problem of gradient 

descent. 

(2) For fully connected layer training, AlexNet randomly ignores some neurons using 

dropout to avoid model overfitting. 

(3) AlexNet uses overlapping max pooling in CNN. The step size in AlexNet is smaller 

than the size of the pooling kernel, so overlapping pooling is obtained. 

(4) AlexNet uses the local normalization scheme, which is more helpful for generaliza-

tion. 

(5) AlexNet uses the computing power of parallel GPU, and the training of CNN is ac-

celerated. 

(6) Two different forms of data augmentation are used in AlexNet. The first form of data 

augmentation is the translation and horizontal reflection. The second form of data 

augmentation is the change in the intensity of the image color channel. 

 

Figure 13. Structure of AlexNet.  

5.2. ResNet 

ResNet is developed and optimized based on AlexNet. One of the advantages of re-

sidual neural networks is identity mapping. ResNet has 152 layers. Simply increasing the 

depth of the network can lead to the problem of vanishing gradients or exploding gradi-

ents [127,128]. This problem has been addressed by normalized initialization 

[63,69,128,129] and intermediate normalization layers. However, with the network layers 

stacking, the accuracy of the training dataset saturates or even descends. That is the deg-

radation. The degradation is not due to overfitting. Stacking layers in the deep model will 

make the training error larger [130,131]. ResNet uses a deep residual learning framework 

to mitigate the degradation [132]. 

The shallow network gradually stacks layers to make it a deep network. In a deep 

network, if the stacked layers are identity mapping, and the other layers copy the shallow 

network, the performance can be almost the same as the shallow network. A few stacked 

layers are called a block. x is the input to the first layer of the block. The expected mapping 

is 𝐺(𝑥). The fitting function of the block is Equation (18): 

𝐷(𝑥) = 𝐺(𝑥) − 𝑥. (18) 

So 𝐺(𝑥) is recast into 𝐷(𝑥) + 𝑥. It is easier to approximate 𝐷(𝑥) to 𝐺(𝑥) − 𝑥 than to 

approximate 𝐷(𝑥) to 𝐺(𝑥). 𝐺(𝑥) − 𝑥 is the residual mapping. To the extreme, the iden-

tity mapping 𝐺(𝑥) = 𝑥 can be obtained by pushing the residual 𝐷(𝑥) to zero. Figure 14 

shows that feedforward neural networks with shortcut connections can achieve 𝐷(𝑥) + 𝑥. 

Input Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 FC 6 FC 7 FC 8

227×227×3 55×55×96 27×27×256 13×13×384 13×13×384 13×13×256 4096 4096 1000

Max 

Pooling

Max 

Pooling

Max 

Pooling

Filter 

11× 11

Filter 

5×5

Filter 

3×3

Filter 

3×3

Filter 

3×3

Figure 13. Structure of AlexNet.



J. Imaging 2023, 9, 1 15 of 31

(1) AlexNet uses ReLU as the activation function. ReLU solves the problem of
gradient descent.

(2) For fully connected layer training, AlexNet randomly ignores some neurons using
dropout to avoid model overfitting.

(3) AlexNet uses overlapping max pooling in CNN. The step size in AlexNet is smaller
than the size of the pooling kernel, so overlapping pooling is obtained.

(4) AlexNet uses the local normalization scheme, which is more helpful for generalization.
(5) AlexNet uses the computing power of parallel GPU, and the training of CNN

is accelerated.
(6) Two different forms of data augmentation are used in AlexNet. The first form of data

augmentation is the translation and horizontal reflection. The second form of data
augmentation is the change in the intensity of the image color channel.

5.2. ResNet

ResNet is developed and optimized based on AlexNet. One of the advantages of residual
neural networks is identity mapping. ResNet has 152 layers. Simply increasing the depth of
the network can lead to the problem of vanishing gradients or exploding gradients [127,128].
This problem has been addressed by normalized initialization [63,69,128,129] and intermediate
normalization layers. However, with the network layers stacking, the accuracy of the training
dataset saturates or even descends. That is the degradation. The degradation is not due to
overfitting. Stacking layers in the deep model will make the training error larger [130,131].
ResNet uses a deep residual learning framework to mitigate the degradation [132].

The shallow network gradually stacks layers to make it a deep network. In a deep
network, if the stacked layers are identity mapping, and the other layers copy the shallow
network, the performance can be almost the same as the shallow network. A few stacked
layers are called a block. x is the input to the first layer of the block. The expected mapping
is G(x). The fitting function of the block is Equation (18):

D(x) = G(x)− x. (18)

So G(x) is recast into D(x) + x. It is easier to approximate D(x) to G(x)− x than to
approximate D(x) to G(x). G(x)− x is the residual mapping. To the extreme, the identity
mapping G(x) = x can be obtained by pushing the residual D(x) to zero. Figure 14 shows
that feedforward neural networks with shortcut connections can achieve D(x) + x.
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5.3. DenseNet

All the front layers in DenseNet are densely connected to the back layers. Each layer
connects to every other layer. One of its characteristics is that the connection of features on
channels enables feature reuse. DenseNet has fewer parameters, faster computation, and
better performance.

DenseNet is a densely connected convolutional network. Feature maps from all
preceding layers are concatenated as additional inputs to this layer. Its feature maps are
passed on as inputs to all subsequent layers, which preserves the feedforward nature of
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the network. If DenseNet has N layers, there are N(N + 1)/2 connections. x0 is the input
image of a DenseNet. xn is the output of the network at layer n. Layer n receives feature
maps from all preceding layers as inputs (19):

xn = Fn([x0, x1, · · · , xn−1]), (19)

where Fn() is a nonlinear transformation function of layer n. It is a composite function
of operations [133]. It includes batch normalization (BN), rectified linear units (ReLU),
pooling [126], or convolution.

Pooling and convolution in CNN will change the size of feature maps. In DenseNet,
only feature maps of the same size can be densely connected. To resolve this contradiction,
DenseNet divides the network into several dense blocks. The feature maps of each layer in
one dense block have the same size. They are densely connected. Between two adjacent
dense blocks are transition layers. Pooling and convolution in the transition layer make the
feature map smaller. Figure 15 is the structure of DenseNet.
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5.4. VGG

Visual Geometry Group (VGG) won first place in localization and second place in
the classification on ImageNet Challenge in 2014. VGG is an improvement on AlexNet by
deepening the depth of the network. VGG uses 3× 3 convolution filters in all layers. It
enables the network to add more convolutional layers. Increasing the depth of the network
leads to better performance. Figure 16 is the structure of VGG16.
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VGG uses a stack of three 3× 3 convolution kernels. Three 3× 3 convolution kernels
have the same receptive field of 7× 7. The three nonlinear rectification layers make the
decision function more discriminative. Then, the number of parameters is decreased. If the
input and the output of three 3× 3 convolution layers both have X channels, the number
of parameters is 3× 32 × X2 = 27X2. One 7× 7 convolution layer has the parameters is
72 × X2 = 49X2, 81% more parameters [61].

VGG uses the max pooling layer. The size of the pooling kernel is 2×2, with stride 2.
Smaller pooling kernels can capture more details of the information. Max pooling is easier
to capture the changes in the image and obtain more differences in local information.

5.5. GoogleNet

GoogleNet believes that increasing the number of layers (depth) or the number of
neurons at each layer (width) of the networks can improve the performance of the networks.
Increasing the size of a network has two drawbacks:

(1) Larger sizes of networks generate more parameters. When the data in the training set
is small, too many parameters will cause the network to overfit.

(2) Larger size of networks increases computation dramatically. Adding a convolution
layer will result in a quadratic increase in computation.

To overcome the two drawbacks, GoogleNet uses a sparse connection instead of
a full connection. Inception architecture is constructed in GoogleNet to realize sparse
connections [134]. The idea of Inception is to find the optimal local sparse structure in the
network and repeat it. The filter sizes of Inception are 1× 1, 3× 3, and 5×5. The output
filter banks concatenate into a single vector as the input of the next step. At the same time,
it is also necessary to add an alternative parallel pooling path in each stage, as shown in
Figure 17.
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But in Inception architecture, the outputs of the convolutional layer and the pooling
layer will increase. It can become expensive and a computational blow-up. Dimension
reductions and projections can solve this problem. Using 1× 1 convolutions can reduce the
computation before 3× 3 and 5×5 convolutions and rectify linear activation, as shown in
Figure 18.
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5.6. Transfer Learning

In some cases, it is not easy to obtain training data that matches the feature space of
the test data [135]. If a test dataset is related to a training dataset that has already been
trained, the parameters of the trained model (pre-trained model) can be transferred to the
target model, as shown in Figure 19. This avoids training the target model from scratch. It
speeds up and optimizes the learning of the target model. Transfer learning can provide
related but not identical existing datasets for the target model.
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Transfer learning has been applied to include text sentiment classification [136], image
classification [137–139], human activity classification [140], software defect classification [141],
and multi-language text classification [142–144]. The networks that can be used as pre-trained
are also the focus of research.

The feature space of the source domain is Fs, and the feature space of the target domain
is Ft. If Ft = Fs, this is homogeneous transfer learning. If Ft 6= Fs, this is heterogeneous
transfer learning. The strategies adopted by homogeneous transfer learning [135] include
correcting the difference in the marginal distribution in the source, correcting the difference
in the conditional distribution in the source, or correcting the difference between the
marginal and conditional distribution in the source. Heterogeneous transfer learning [135]
uses strategies that align the input spaces of the source and target domains. If the domain
distributions are still unequal, further modulations are needed.

There are three strategies for transfer learning: (i) inductive transfer learning,
(ii) transductive transfer learning, and (iii) unsupervised transfer learning [145,146]. There
are two common types of inductive learning. One is to use the source domain to obtain
a trained learning model and fine-tune different target layers [147]. Another is multi-
task—learning multiple tasks simultaneously from the same input [148]. The target task
is similar to the source task in transductive transfer learning, but the domains differ. The
factors affecting transductive transfer learning include domain adaptation [149], sample
selection bias [150], and covariate shift [151]. Unsupervised transfer learning mainly solves
unsupervised learning tasks in the target domain.

There are four kinds of approaches to transfer learning [145]. The first is instance-based
transfer learning. A common approach is to reweight instances of the source domain [152–154].
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These worked best when the conditional distributions were the same in the source domain and
target domain. The second is feature-based transfer learning. The standard methods include
asymmetric feature transformation [155] and symmetric feature transformation [156]. The
third is parameter-based transfer learning. Source tasks and target tasks share the parameters
of the models [157,158]. Target learners are formed by optimally combining the reweighted
source learners [158–160]. The last one is relational-based transfer learning [161–163]. If the
source and target data have similar relationships, the relationship among the data can be
transferred. Figure 20 shows the classification of transfer learning.
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6. Application, Analysis, and Discussion

Currently, the diagnosis of COVID-19 mainly relies on epidemiological history, clinical
symptoms, laboratory results, chest imaging findings, nucleic acid testing, or homologous
comparison of gene sequencing [164]. COVID-19 is highly contagious and has an incubation
period. It needs repeated testing over some time to determine infection. It is difficult for
doctors to diagnose COVID-19 quickly and accurately. Chest computed tomography (CT)
and chest X-ray images can reflect whether the patient’s lung is infected and the degree of
damage. However, doctors rely on experience to judge CT images, and X-ray images can
also lead to misdiagnosis. Popular artificial intelligence (AI) systems can quickly analyze
large amounts of image data. After learning, the system can accurately classify chest CT
images and X-ray images. This will help doctors diagnose COVID-19 quickly and accurately.

6.1. CNN Applied to CT Images

The papers mentioned in Table 2 used convolutional neural networks (CNN) to
analyze chest CT images and proposed various algorithms for COVID-19 diagnosis. These
algorithms modify the parameters and architecture of the convolutional neural network
(CNN) to obtain better accuracy.

Aslan et al. [165] improved the architecture of AlexNet to obtain mAlexNet. In
the mAlexNet architecture, the fully connected layer eight has 25 neurons instead of
1000 neurons. The features extracted by mAlexNet are given into the tree seed algorithm
(TSA) ANN structure for classification. The experimental comparison shows that the
performance of mAlexNet + TSA-ANN is more excellent. AlexNet and mAlexNet can
also obtain good performance by hybridizing other structures or algorithms [166,167].
Different total number of layers [168,169] in ResNet leads to different performance results.
Rahimzadeh et al. [170] modified ResNet50V2. This model can retain the data of small objects
and improve the classification accuracy of images containing small important objects. By
comparison, Loey et al. [171] found that among AlexNet, VGGNet16, VGGNet19, GoogleNet,
and ResNet50, the ResNet50 was the most appropriate deep learning model for using the
classical data augmentation and CGAN. Özdemir et al. [97] extended ResNet50 architecture
with a feature-wise attention layer and used the mixup data augmentation technique.
This architecture achieves higher accuracy. Mondal et al. [172] proposed the scheme of
optimized InceptionResNetV2 for COVID-19 (CO-IRv2). It combines InceptionNet with
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ResNet with hyperparameter tuning. DenseNet-121 is a network with 121 layers [173].
DenseNet-121 D solves the problem of vanishing gradients, allows better feature reuse, and
reduces the number of parameters. It is more beneficial to the training of deep learning
models [174]. Xiao et al. [175] improved DenseNet with a parallel attention module (PAM-
DenseNet) which has spatial and channel attention modules. These make the net have better
classification performance and patient-wise prediction performance. The VGG network
alone [176], or together with other neural networks [177], has been used to classify chest
CT images with high accuracy. Wang et al. [178] proposed a VGG-style base network
(VSBN). Convolutional block attention module (CBAM) serves as the attention module
of VSBN. In order to solve the problem of artificial intelligence (AI) model overfitting,
VSBN uses an improved multiple-way data augmentation method. GoogleNet is retrained
over COVID-CT-Dataset [179]. GoogleNet learned the variations present in diverse types
of CT images. The system model GoogleNet-COD developed by Yu et al. [180] takes
GoogleNet as the backbone network. It removes the last top-two layers and replaces
them with four new layers, which include the dropout layer, two fully connected layers,
and the output layer. Zhang et al. improved the deep convolutional neural network
(DCNN) [181]: the pooling layer adopts stochastic pooling; construct a convolution block
(CB), which is obtained by combining the convolution layer with the batch normalization
layer; construct a fully connected block (FCB), which is obtained by combining the dropout
layer with the fully connected layer. Pham [182] uses multiple CNNS to classify CT images
collected from COVID-19 patients and non-COVID-19 subjects. Among them, the deepest
net, DenseNet201, has the best performance. Transfer learning with the direct input of
whole image slice and without using data augmentation provided better classification
rates. JavadiMoghaddam et al. [183] proposed a convolutional neural network structure
containing a wavelet and four convolutional layers. It optimizes convergence time using
batch normalization (BN) and Mish Functions. The Haar wavelet transform occurs at the
pooling layer. There are squeeze and Excitation blocks (SE blocks) after each dropout layer.

Table 2. Performances of CNN in COVID-19 Diagnosis using CT images.

Reference Method Performances Datasets

[165] mAlexNet
Accuracy: 97.92%, Sensitivity: 98.20%,
Specificity: 97.68%, Precision: 97.32%,

F1 score: 97.76%
SARS-CoV-2 Ct-Scan Dataset: 2482

chest CT scans

[165] mAlexNet + TSA-ANN
Accuracy: 98.54%, Sensitivity: 97.75%,
Specificity: 99.23%, Precision: 99.09%,

F1 score: 98.41%
[166] mAlexNet + BiLSTM Accuracy: 98.70% COVID-19 Radiography Database

[167] DC-Net-RVFL
Accuracy: 90.91%, Sensitivity: 85.68%,
Specificity: 96.13%, Precision: 95.70%,

F1 score: 90.41%

A Private Dataset: 296 lung
window images

[168] ResNet18 Accuracy: 86.70%, Precision: 80.80%,
Recall: 81.50%, F1 score: 81.10%

A Private Dataset: 618 chest
CT samples

[169] ResNet50 Accuracy: 76%, Specificity: 61.50%,
Recall: 81.10%, AUC: 0.8190

A Private Dataset: 495 chest CT
images

[170] Modified ResNet50V2 Accuracy: 98.49%, Recall: 96.83% COVID-Ctset: 63849 chest CT images

[171] ResNet50 + Data
augmentations + CGAN

Accuracy: 82.91%, Sensitivity: 77.66%,
Specificity: 87.62%.

COVID-19 CT Scan Digital Images
Dataset: 742 chest CT images

[97] ResNet50+Attention+mixup Accuracy: 95.57% COVID-CT Dataset: 1596 chest
CT images
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Table 2. Cont.

Reference Method Performances Datasets

[172] CO-IRv2 Adam
Accuracy: 94.97%, Specificity: 96.52%,
Precision: 96.90%, F1-Score: 95.24%,

Recall: 93.63%, Execution Time(sec): 717 A New Dataset: 2481 chest CT images

[172] CO-IRv2 Nadam
Accuracy: 96.18%, Specificity: 95.08%,
Precision: 95.35%, F1-Score: 96.28%,

Recall: 97.23%, Execution Time(sec): 707

[172] CO-IRv2 RMSProp
Accuracy: 96.18%, Specificity: 99.18%,
Precision: 99.16%, F1-Score: 96.13%,

Recall: 93.28%, Execution Time(sec): 749

[173] DenseNet-121 Accuracy: 92%, Recall: 95% A Real Patient Image Dataset: 2482
chest CT images

[175] PAM-DenseNet Accuracy: 94.29%, Sensitivity: 95.74%,
Specificity: 96.77%, Precision: 93.75%

Dataset 1: A Lung CT Slices Dataset,
3530 chest CT slices

Dataset 2: A Lung CT Scans Dataset,
280 chest CT scans

[176] VGG-19 Accuracy: 94.52% COVID-19 CT Dataset: 738 chest CT
scan images

[177] SRGAN +VGG16 Accuracy: 98.0%, Sensitivity: 99.0%,
Specificity: 94.9%

COVID-CT-Dataset: 470 chest
CT images

[178] AVNC The sensitivity, precision, F1 all above 95% A Private Dataset: 1164 slice images

[179] GoogleNet Accuracy: 82.14% COVID-CT-Dataset: 349 chest
CT images

[180] GoogleNet-COD Accuracy: 87.50%, Sensitivity: 90.91%,
Specificity: 84.09%

A Private COVID-19 Dataset: 148
chests CT images

[181] 5L-DCNN-SP-C
Accuracy: 93.64%, Sensitivity: 93.28%,
Specificity: 94.00%, Precision: 93.96%,

F1 score:93.62%

A Private Dataset: 320 chest
CT images

[182] AlexNet
Accuracy: 86.85%, Sensitivity: 80.25%,

Specificity: 94.29%, F1 score: 0.85,
AUC: 0.94

COVID-CT-Dataset: 349 chest
CT images

[182] GoogleNet
Accuracy: 93.83%, Sensitivity: 96.71%,

Specificity: 90.57%, F1 score: 0.94,
AUC: 0.96

[182] ResNet-18
Accuracy: 95.44%, Sensitivity: 98.99%,

Specificity: 91.43%, F1 score: 0.96,
AUC: 0.98

[182] ResNet-50
Accuracy: 93.62%, Sensitivity: 95.57%,

Specificity: 91.43%, F1 score: 0.94,
AUC: 0.98

[182] ResNet-101
Accuracy: 93.29%, Sensitivity: 96.20%,

Specificity: 90.00%, F1 score: 0.94,
AUC: 0.98

[182] Inception-ResNet-v2
Accuracy: 88.59%, Sensitivity: 89.24%,

Specificity: 87.86%, F1 score: 0.89,
AUC: 0.96

[182] VGG-16
Accuracy: 89.26%, Sensitivity: 92.83%,

Specificity: 85.24%, F1 score: 0.90,
AUC: 0.96

[182] VGG-19
Accuracy: 90.16%, Sensitivity: 87.34%,

Specificity: 93.33%, F1 score: 0.90,
AUC: 0.97

[182] DenseNet-201
Accuracy: 96.20%, Sensitivity: 95.78%,

Specificity: 96.67%, F1 score: 0.96,
AUC: 0.98

[183] WCNN4 Accuracy: 99.03% COVID-19 CT Dataset: 19685 chest
CT images
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As can be seen from Table 2, there have been many suggestions, proposals, and
implementations for applying CNN to COVID-19 diagnosis by analyzing chest CT images.
For example, some researchers focus on adjusting the architecture of the network. Some
focus on adjusting the number of layers of the network, some on improving existing
algorithms, and some on mixing several structures.

Many schemes listed above have achieved accuracy higher than 90% when implemented.
However, there are a lot of CNN networks that have a huge space for improvement:

(1) It can be concluded from the results that the modified AlexNet can obtain better
accuracy. When combined with other structures, the network is improved so that the
accuracy is higher for COVID-19 diagnosis.

(2) Different accuracy will be obtained from different depths of ResNet. Common ones
include ResNet18, ResNet50, ResNet101, etc. However, according to the results of the
above experiments, ResNet18 performs the best. ResNet can be modified to improve
accuracy. The modified ResNet or ResNet combined with other networks could
achieve more than 90% accuracy. ResNet50 is often used with other architectures or
algorithms for COVID-19 diagnosis. Moreover, we found that the larger the dataset
ResNet applied, the higher the accuracy.

(3) With DenseNet, the accuracy was close to 95%. DenseNet has a better performance
than other networks on the same dataset. The dataset size does not affect DenseNet
accuracy as much as the depth of the network. DenseNet201 shows excellent perfor-
mance for COVID-19 diagnosis.

(4) Even on small datasets, VGG combined with other structures or algorithms can
achieve more than 95% accuracy. VGG19 and VGG16 performed similarly.

(5) The accuracy of GoogleNet for COVID-19 diagnosis is not good enough, generally
less than 90%. Try tweaking the architecture of GoogleNet or combining GoogleNet
with other networks to improve classification accuracy.

(6) For almost all networks, accuracy increases as the dataset become larger. Private datasets
are generally smaller than public datasets. When there are more than 1000 images in the
dataset, almost all networks or models can achieve more than 95% accuracy.

6.2. CNN Applied to X-ray Images

The papers mentioned in Table 3 use the architecture or technology of convolutional
neural networks (CNNs) to analyze chest X-ray images and establish various training
models for COVID-19 diagnosis. Through optimizations, these automatic diagnosis systems
have achieved better performance. Chest X-ray images were more readily available. So
COVID-19 diagnosis systems could be more widely used by analyzing chest X-ray images
in areas with inadequate medical systems.

Cortés et al. [184] applied to learn transfer to AlexNet and fine-tuned it. The first
layer of AlexNet is replaced for images in a single intensity. Kaur et al. [185] used the
improved AlexNet architecture. Strength Pareto evolutionary algorithm-II (SPEA-II) is used
to optimize parameters. Narin et al. [186] compared different layers of ResNet to classify
chest X-ray images. ResNet50 provides the highest classification performance. In the study
of Chowdhury et al. [187], DenseNet201 performed well in classifying chest X-ray images
with image augmentation. In the study, Hernandez et al. applied transfer learning through
ResNet, DenseNet, and VGG and fine-tuned them, which achieved higher accuracy [188].
Sitaula et al. [189] added the attention module to the appropriate convolution layer of
VGG16. Classification experiments were performed on three COVID-19 chest X-ray image
datasets. Haritha et al. [190] used GoogleNet to classify X-ray images and predict COVID-19.
Kaya et al. [191] first applied the angle transformation (AT) on X-ray images. Then these
images are trained using GoogleNet combined with LSTM. Finally, they obtained a better
accuracy rate.
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Table 3. Performances of CNN in COVID-19 Diagnosis using X-ray images.

Reference Method Performances Datasets

[184] AlexNet
Accuracy: 96.5%,
Sensitivity: 98.0%,
Specificity: 91.7%

Six Public Databases:
11,312 chest X-ray images

[185] mAlexNet + SPEA-II
Accuracy: 99.130%,
Sensitivity: 99.476%,
Specificity: 99.154%

Dataset 1: Kaggle Dataset,
3050 chest X-ray images

Dataset 2: 1203 chest
X-ray scans

[186] ResNet50

Accuracy: 99.7%,
Specificity: 99.8%,
Precision: 98.3%,
F1 score: 98.5%,

Recall: 98.8%

Dataset 1: GitHub
Dataset, 341 chest

X-ray images
Dataset 2: ChestX-ray8

Database, 2800 chest
X-ray images

Dataset 3: Kaggle Dataset,
4265 chest X-ray images

[186] ResNet101

Accuracy: 94.7%,
Specificity: 99.9%,
Precision: 98.9%,
F1 score: 68.6%,

Recall: 52.5%

[186] ResNet152

Accuracy: 92.8%,
Specificity: 98.0%,
Precision: 75.7%,
F1 score: 60.9%,

Recall: 51.0%

[187] DenseNet201

Accuracy: 97.94%,
Sensitivity: 97.94%,
Specificity: 98.80%,
Precision: 97.95%,
F1 score: 97.94%

Dataset 1: COVID-19
Database, 423 chest

X-ray images Dataset 2:
1579 normal chest

X-ray images Dataset 3:
1485 viral pneumonia

chest X-ray images

[188] ResNet50 + fine tuning

Accuracy: 90.63%,
Precision: 90.00%,
F1 score: 90.72%,

Recall: 91.67%

Italian Society of Medical
and Interventional

Radiology and ChexPert
Dataset, 27000 chest

X-ray images[188] DenseNet121 + fine
tuning

Accuracy: 83.4%,
Precision: 89%,

F1 score: 76.19%,
Recall: 67%

[188] VGG16 + fine tuning

Accuracy: 82.29%,
Precision: 80.39%,
F1 score: 82.82%,

Recall: 85.41%

[189]
VGG-16 + attention

module + convolution
module

Accuracy: 79.58%
(Dataset 1), 85.43%
(Dataset 2), 87.49%

(Dataset 3)

Dataset 1: Public
Databases, 1125 chest

X-ray images
Dataset 2: Public

Databases, 1638 chest
X-ray images

Dataset 3: Public
Databases, 2138 chest

X-ray images

[190] GoogleNet Training Accuracy: 99%,
Testing Accuracy: 98.5%

Public Dataset: 1824 chest
X-ray images

[191] AT + GoogleNet + LSTM Accuracy: 98.97% Mendeley Database: 1824
chest X-ray images

As can be seen from Table 3, there have also been many suggestions, proposals, and
implementations for applying CNN to COVID-19 diagnosis by analyzing chest X-ray
images. The researchers focused on tweaking the number of layers in the network and
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mixing CNNS with other network structures. They divided datasets into several classes for
training and validation. Many automatic diagnosis systems can achieve accuracy higher
than 90%. However, there is a huge space for improvement.

7. Conclusions

In this paper, we reviewed and summarized convolutional neural networks in COVID-19
diagnosis. We introduced various technologies related to CNN and some mature CNN networks
with excellent performance. Then, we analyzed and compared various suggestions of other
researchers on the application of CNN for COVID-19 diagnosis. Here are a few conclusions
and suggestions:

(1) At present, rapid and accurate COVID-19 diagnosis is vital. The classification method
of chest CT or chest X-ray images based on CNN plays an important role.

(2) The current experiment has limited datasets. It is necessary to collect more data or
explore better methods for small datasets.

(3) Most experiments do not consider the execution time problem. It is necessary to
shorten the execution time with appropriate data preprocessing [192–195] strategies
or GPU acceleration.

(4) The experiments discussed in this paper use chest CT or chest X-ray images as the
input datasets of CNN and have achieved good performance. Although X-ray image
is not as good as CT in performance, it has low cost, low radiation dose, and easy-
to-operate in general hospitals [196]. Future research could consider more types of
medical image forms. The application of the CNN method on medical images has
potential value for COVID-19 diagnosis.
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