Journal of

Imaging

Article

Automatic Method for Vickers Hardness Estimation by
Image Processing

Jonatan D. Polanco !

and Manuel G. Forero 3*

check for
updates

Citation: Polanco, ].D.; Jacanamejoy-
Jamioy, C.; Mambuscay, C.L.; Piamba,
J.F,; Forero, M.G. Automatic Method
for Vickers Hardness Estimation by
Image Processing. J. Imaging 2023, 9,
8. https:/ /doi.org/10.3390/
jimaging9010008

Academic Editor: Silvia Liberata Ullo

Received: 17 November 2022
Revised: 20 December 2022

Accepted: 26 December 2022
Published: 30 December 2022

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Carlos Jacanamejoy-Jamioy (7, Claudia L. Mambuscay 1

and Jeferson F. Piamba 12

Semillero Lin, Grupo D+Tec, Faculty of Engineering, Universidad de Ibagué, Ibagué 730007, Colombia
2 Semillero NOVAMAT, Faculty of Natural Science and Mathematics, Universidad de Ibagué,

Ibagué 730007, Colombia

Professional School of Systems Engineering, Faculty of Engineering, Architecture and Urban Planning,
Universidad Sefior de Sipan, Chiclayo 14000, Lambayeque, Peru

*  Correspondence: mgforero@yahoo.es

Abstract: Hardness is one of the most important mechanical properties of materials, since it is used
to estimate their quality and to determine their suitability for a particular application. One method
of determining quality is the Vickers hardness test, in which the resistance to plastic deformation
at the surface of the material is measured after applying force with an indenter. The hardness is
measured from the sample image, which is a tedious, time-consuming, and prone to human error
procedure. Therefore, in this work, a new automatic method based on image processing techniques is
proposed, allowing for obtaining results quickly and more accurately even with high irregularities
in the indentation mark. For the development and validation of the method, a set of microscopy
images of samples indented with applied forces of 5N and 10N on AISI D2 steel with and without
quenching, tempering heat treatment and samples coated with titanium niobium nitride (TiNbN)
was used. The proposed method was implemented as a plugin of the Image] program, allowing for
obtaining reproducible Vickers hardness results in an average time of 2.05 seconds with an accuracy
of 98.3% and a maximum error of 4.5% with respect to the values obtained manually, used as a
golden standard.

Keywords: Vickers hardness; hardness estimation; image processing; steel heat treating; mechanics
of materials

1. Introduction

The study of the properties of materials is of great importance to determine their
behavior in specific applications. Mechanical properties such as hardness, ductility, or
stiffness can be studied from laboratory tests to determine the appropriate characteristics
for their use. Hardness is one of the most important mechanical properties of materials, as it
allows for determining the resistance to deformation by a harder material [1,2]. There are
different hardness tests and these vary depending on the type of material, e.g., the Brinell
hardness test is best suited to determine the hardness of wood-based materials, or materials
with relatively low hardnesses [3]. On other hand, the Mohs hardness is the most commonly
used to identify minerals [4], Shore hardness implemented in polymeric materials [5] and
Vickers hardness to determine the hardness of metals, ceramics, and other materials. Studies
have shown that modifications can be made to Vickers hardness equipment to determine
other properties such as elasticity or surface stresses of the material [6,7].

Materials such as steel used in automotive axles, cutting tools, among other applica-
tions, are subjected to constant forces or loads, which can cause deformation or breakage
of the material. The search for continuous improvement has led to the implementation of
materials in the form of thin films, which consist of improving the surface properties of
the substrate such as steel, providing high hardness, low coefficient of friction, and wear
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and corrosion resistance in chemically aggressive environments, allowing for increasing its
useful life and covering a wide field of applications [8-12].

There are different methods to modify the hardness of the material, either by heat
treatment such as quenching or tempering to modify the microstructure [11,12] or by
depositing thin film coatings on the surface of the base material. Among the most commonly
used coatings in the industry are Titanium Nitride (TiN) and Niobium Nitride (NbN).
In the present work, D2 steel samples with different heat treatments and steels with
Titanium Niobium Nitride (TiNbNXx) coatings were used, which are employed for industrial
applications as a cutting tool [13-15].

As mentioned above, one way to determine the quality of the material is from tests such
as the Vickers hardness test (HV), allowing for estimating this property by measuring the
plastic deformation or imprint produced on its surface after applying a force with a square-
based, pyramid-shaped diamond indenter with face angles of 136° (see Figure 1) [16].
Thus, once the test has been performed, the impression is visualized through an optical
microscope and the indentation diagonals are measured to determine the Vickers hardness
value. This type of test is widely used for quality control, as it allows for determining if
a material is suitable for a given application. The equation for determining the Vickers
hardness value is given by:

P(N)
D?(mm?) @
where D represents the average diagonal distance (d1 and d2) of the indentation mark and
P the force applied to the indenter [16].

HV = 0.1891
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Figure 1. Indentation process of a material sample. (a) force applied with an indenter to the material;
(b) indentation mark.

Although simple, this measure is error-prone, as it is obtained manually. Moreover,
this task is tedious, repetitive, time-consuming, and results vary depending on the mea-
surement criteria of each observer. Therefore, several approaches have been proposed to
make its evaluation based on image processing and machine learning techniques. Sugimoto
and Kawaguchi proposed an automatic process to determine the Vickers hardness of three
types of samples, specular, etched specular, and rough finishes, using a method for the
determination of indentation edges and corners based on statistical moments, obtaining
the hardness measurement with a variable mean tolerance value depending on the ap-
plied force, being 4% when the applied force varies between 500 and 1000 g-force [17].
Dominguez and Wiederhold implemented an algorithm in which the image is binarized
based on its mean value, regardless of the shape of the histogram and determines the
vertices of the slit, using the Harris-Stephen corner detection method. The lengths of
the diagonals are then calculated to determine the Vickers hardness number, obtaining
a maximum error of 6% [18]. Fedotkin et al. proposed a method based on the compar-
ison of the optical properties inside and outside the indentation, for which a series of
circles are generated that allow information to be obtained from the histogram and the
Hue distributions inside and outside them. Subsequently, the circle that is closest to the

indentation area is selected, the value of the diagonals is determined and subsequently
the value of the hardness, presenting 95% confidence intervals [19]. On the other hand,
Privezentsev et al. developed a method to estimate a hardness value using neural networks,
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concluding that image processing techniques should be combined with neural networks to
obtain better results [20]. Likewise, Tanaka et al. implemented an automatic method based
on convolutional neural networks (CNN) using as inputs images with ideal indentation,
surface roughness, distorted indentations, and cracks to measure indentation diagonals and
Vickers hardness automatically and robustly, obtaining a maximum error of 6% according
to the reported results [21]. Jalilian and Uhl implemented deep learning techniques from a
fully convolutional neural network (FCN) to locate, segment the indentation trace, deter-
mine the position and value of the diagonals, and subsequently obtain the hardness value,
presenting high robustness to the size, location, and rotation of the indentation print, as well
as the brightness and surface defects contained in the image [22]. Li and Yin implemented
CNN to segment the indentation footprint of the image background, and, in turn, use a
bounding box to measure the length of the diagonals and determine the value of hardness
in different materials, showing maximum relative errors for the diagonals length of 0.39%
for TiO,, 1.67% Cu and 1.64% Nylon [23]. Cheng et al. used indentation images of medium
carbon chrome-molybdenum steel alloys (SCM 440) with revealed microstructure, making
it difficult to see the indentation trace. In addition, they implemented convolutional neural
networks with different backbones used to extract different characteristics, obtaining as a
result the hardness value, presenting an absolute error of about 10.2 [24].

Although machine learning techniques such as neural networks have been imple-
mented, they require a large amount of images for training and a high computational cost
for processing. In general, hardness estimation using image processing and machine learn-
ing approaches presents difficulties in application when the indentation trace is not well
defined or noisy. Therefore, this paper proposes a new indentation measurement method
that combines three different solutions, allowing for obtaining a higher accuracy, reducing
the analysis time and achieving reproducible results. The method was implemented as
a plugin of the Image] software, allowing for determining the Vickers hardness of the
indentation mark of D2 steel.

2. Materials and Methods
2.1. Materials

For the development of this work, 28 color images with different sizes of D2 steel in
initial state, quenching, tempering heat treatment, and TiNbN coating were acquired with
an optical microscope, as illustrated in Figure 2.

TiNbN Coating D2 Tempered D2 Quenched
i '."'.,\;"’“.{, .2'_\‘ .
A \

Figure 2. Example of indentation images used for the development of the proposed technique.
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An expert obtained the hardness value of each sample by zooming in on the image
to determine the corners of the indentation more accurately. These values were used as a
golden standard for the validation of the proposed method.

For the development of the application, an Intel Core (TM) i5 8300H CPU @ 2.30 GHz
computer with 12 GB RAM, running on the x64 bits Windows 10 platform, was employed.
The method was implemented in Java language as a plugin of the free access application
Image].

2.2. Methods

As shown in Figure 3, the indentation images have poorly defined edges and corners.
In addition, there are elements (noise) in the background that do not correspond to the
object of interest, which affects its detection, so the result depends on the perspective of
the observer. Therefore, to improve accuracy and reduce measurement time and result
variation, a method based on image processing and computer vision is proposed that
automatically detects indentation and estimates the Vickers hardness value. The flowchart
describing the process is shown in Figure 4.

The corresponding algorithm works, in essence, as shown in the pseudocode below,
obtaining the indentation region using thresholding in the color channel that has maximum
entropy. Then, the corners of the indentation are obtained using three different methods,
and the best one is selected according to the index proposed in this work as follows:

Figure 3. Details of the indentation image that affect the hardness measurement. Corner and edge
defects and background noise.
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Figure 4. Flowchart.

Pseudocode

Input:
Color image Q
1. Find indentation mark
Get color channels R,G,B from Q
Find channel A with Maximun entropy
Binarize A, using the proposed method
Fill holes and remove noise using mathematical morphology
Label objects
Select larger object
2. Indentation corner detection:
Using local maximum radius:
Find corners Cg
Get Quadrature index Qg
Using indentation perimeter:
Find corners Cp
Get Quadrature index Qp
Using Hough transform:
Find corners Cy
Get Quadrature index Qg
3. Find best indentation result:
if (Qr +0.05> Qp && Qg +0.05> Qp) {
Select local maximum radius solution }
else if (Qp +0.05> Qy && Qp + 0.05 > Q) {
Select Perimeter solution }
else{
Select Hough solution }
4. Calculate hardness estimation HV.

Output: HV
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Since color does not provide relevant information for the study of microindentation,
the channel with the highest entropy was chosen as it contains the most information for
further processing.

Once the channel to be processed is selected, the region of interest (ROI) is separated
from the background. As can be seen, the indentation area has a darker color with respect to
the surrounding background. Therefore, the use of a thresholding method for segmentation
is appropriate.

However, since the size of the ROl is small with respect to the image background and
the gray levels between the background and the ROI are similar, the corresponding mode
of the ROl is not clearly defined (see Figure 5). Therefore, the use of classical thresholding
techniques such as Otsu or maximum entropy are not appropriate in this case, as they do
not always give correct segmentation results (see Figure 6).

a) b)

h 1
0 th mr 255 g tl mf 2545

Figure 5. Histogram (a) bimodal, find the minimum point; (b) modal, find the change in slope.

Comparison

8-bit image i

Otsu Proposed

X

Figure 6. Threshold techniques evaluation. The comparison section shows Otsu (in white) and the
proposed method (in green) after the filter by area process.

Hence, a new thresholding method was developed based on the histogram character-
istics. As can be seen, the mode corresponding to the ROl is next to the one corresponding
to the background and is not always distinguishable. Therefore, the following thresholding
procedure was designed.

Initially, the highest value of the histogram is searched for, which allows for identifying
the mode () corresponding to the background. Since the mode corresponding to the ROI
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is below my, and is distinguished from m; by a local minimum that appears between them,
this value is identified as the upper threshold (th) of the mode (see Figure 5a). In other
histograms, the ROI is much smaller and no mode corresponding to it appears. In this case,
the threshold is detected by the change of slope, as shown in Figure 5b. The low threshold
(t1) is located at the point where a new slope change is found. Once the image has been
segmented, some holes are visible in the RO], to fill them, a mathematical morphology
method called fill holes is used (see Figure 7).

Threshold Fill holes B ‘ Denoising

Figure 7. Thresholding, fill holes, and denoising.

Due to the fact that heat treatment processes were applied to the material, the image
shows stains in the indentation zone, which translates into noise or unnecessary elements
in the zone of interest (ROI). In order to reduce this noise, mathematical morphology
techniques based on erosion and dilation operations were used, performing an opening
process in order to obtain the lowest possible noise without modifying the shape and size
of the indentation mark as seen in Figure 7.

Since the indented area corresponds to the largest object, to obtain the indentation
trace, all objects were labeled and the largest one, i.e., that composed of the highest number
of pixels, was selected, as seen in Figure 8.

Labeling Histogram Filter by area

|

[
0 2
N: 1425636 Min: 0

Mean: 3.949 Max: 32

StdDev: 7.825 Mode: 0 (1103849)

Bins: 256 BinWidth: 0.125

Value: --- Count: -

Figure 8. Label and area filter.

In order to evaluate the shape of the indentation mark, it is necessary to obtain the
edges of the figure. For this purpose, mathematical morphology techniques are used by
performing the difference between the image filtered by area, and this same image but
eroded by one pixel. (see Figure 9 first section).

The indentation mark can take different shapes depending on the type of material
and the force exerted on it by the indenter. Due to this, in many cases, it is not possible
to approximate the shape of the indentation to a square. Therefore, three solutions are
proposed to detect the corners of the indentation:
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(a) Solution by local maximum radius: This solution works in the case where the
shape of the indentation trace can be approximated to a square. If this is the case,
the centroid of the figure is calculated and the four major diagonals are found, which
would correspond to the four corners. In this solution, the distances of the pixels
of the perimeter to the centroid of the figure are found, in such a way that, to find
the corners, it is taken into account that their distance is a local maximum in the
function of distances with respect to the centroid. This strategy is a rather simplified
version of the method used to recognize figures from the distances relative to the
centroid [25].

(b)  Perimeter solution: In the case that the region of interest is affected by “noise” that
may be due to the heat treatment applied or the type of material, this solution would
be useful. For this solution, we calculate the perimeter of the figure, and perform
a linear regression using least squares for each side. The intersections of these
regressions would correspond to the four corners of the indentation mark. If the
edge of the figure is “broken” or open, there would be the disadvantage of an infinite
diagonal, which makes it impossible to calculate the perimeter of the figure.

(o) Solution by Hough transform: this solution has the advantage that the pixels do not
need to be contiguous to determine a line; therefore, it favors the detection under
a certain level of noise. It also does not limit us to obtain a single solution as in
the case of a linear regression; with this transform, multiple lines can be drawn by
adjusting to the irregularity of the object of interest [26].

To select the best solution (see Figure 10), the quadrature index (Q) given by Equation (2)
was used. The proposed index allows for quantifying from the coordinates of four corners
their correspondence to a square; this is achieved by taking a value between one and zero,
being one for the case of an approximation to a perfect square, and decreasing towards zero
as it moves away from the ideal case. Two normalized error coefficients between zero and
one, Maximum Absulute Error (MaAE) and Dice Coefficient (DC), are used to take into
account two characteristics of a square, the perimeter and area, respectively:

MaAE + DC
Q=1- MHATEDE @
MaAE = miax 5= ®)
i=1 S
pe — 2lsa =5l @)
S, 45

The MaAE arises as a measure of the maximum absolute error normalized to Equation (3).
Knowing the coordinates of the four corners, the distance from each side, s;, and the average
side, 5, are calculated. In this way, the value of MaAE reflects the maximum error encountered
when estimating the sides as the perimeter divided into four parts. If all sides are equal, the er-
ror given by MaAE is zero, although this does not guarantee that it is indeed a square; for this
reason, the estimation of the sides taking into account the area is also taken into account.
The coefficient DC is proposed as a measure of the error associated with the estimation of the
sides assuming that the area corresponds to a square; such side is denoted as s;, and is equal
to the square root of the area defined by the four corners. Formula (4) is used to calculate DC,
which is based on the Dice Score formula.
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Edges detection Selected solution Composite

Figure 9. Edge detection and solution selected by the algorithm.

Figure 10. Result of corner detection.

3. Results and Discussion

Tables 1 and 2 show the Vickers hardness results obtained manually (M) and with
the proposed method (A), as well as the Error Rate, defined in Equation (5) and execution
time of the algorithm to determine the corners of the indentation mark selected by the
technique. To choose the best corner detection solution, the highest quadrature index is
selected. In order to improve the accuracy in the selection of these solutions, a threshold of
0.05 is set for the cases in which the values of these indices are close to each other. For one
of the solutions to be selected, its index value must be at least 0.05 above the other two
quadrature indices. If this condition is not met, the Maximum Local Radius solution (Qg)
is given priority for selection:

(M — A

Error Rate = * 100 (5)
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Table 1. Vickers hardness results with 5N applied force, where “Steel” corresponds to steel in its
initial state, Qp to the quadrature index of the solution by Hough, Qp to the quadrature index of the
solution by Perimeter and Qg to the quadrature index of the Local Maximum Radius.

Material Algorithm (HV) Manual (HV) Error Rate Runtime (s) Qn Qp QOr Selected Solution
Tempered-1 620.46 625.49 0.80 1.39 0.971 0.979 0.975 Max radius
Tempered-2 609.32 610.61 0.21 1.42 0.981 0.981 0.980 Max radius
Tempered-3 632.88 626.54 1.01 1.40 0.968 0.178 0.970 Max radius

TiNbN-1 1105.00 1104.74 0.02 1.34 0.978 0.423 0.926 Hough

TiNbN-2 1125.77 1172.74 4.00 1.36 0.989 0.934 0.939 Hough

TiNbN-3 1127.42 1157.46 2.60 0.83 0.984 0413 0.928 Hough

TiNbN-4 1122.60 1150.30 241 0.97 0.983 0.087 0.497 Hough

Steel-1 174.54 168.70 3.46 4.74 0.922 0.949 0.955 Max radius
Steel-2 169.71 164.59 3.11 4.72 0.947 0.954 0.959 Max radius
Steel-3 177.11 172.65 2.58 4.76 0.963 0.961 0.965 Max radius
Quenched-1 742.65 711.03 4.45 1.99 0.954 0.972 0.970 Max radius
Quenched-2 659.97 640.88 2.98 1.14 0.959 0.966 0.969 Max radius
Quenched-3 628.92 620.36 1.38 1.61 0.598 0.961 0.822 Perimeter
Table 2. Vickers hardness results with 10N applied force, where “Steel” corresponds to steel in its
initial state, Qp to the quadrature index of the solution by Hough, Qp to the quadrature index of the
solution by Perimeter and Qg to the quadrature index of the Local Maximum Radius.

Material Algorithm (HV) Manual (HV) Error Rate Runtime (s) QOn Qp Or Selected Solution
Tempered-1 604.27 599.50 0.80 0.93 0.971 0.979 0.980 Max radius
Tempered-2 612.89 609.86 0.50 0.92 0.981 0.973 0.974 Max radius
Tempered-3 593.55 595.47 0.32 0.89 0.974 0.975 0.977 Max radius

TiNbN-1 1060.26 1075.99 1.46 0.74 0.973 0.970 0.969 Max radius

TiNbN-2 1074.71 1069.96 0.44 0.86 0.991 0.678 0.551 Hough

TiNbN-3 1145.3 1113.35 2.87 0.89 0.982 0.990 0914 Perimeter

TiNbN-4 950.06 931.23 2.02 0.96 0.933 0.895 0.977 Max radius

TiNbN-5 899.22 910.07 1.19 0.97 0.984 0.879 0.930 Hough

TiNbN-6 917.31 908.14 1.01 0.90 0.983 0.518 0.874 Hough

Steel-1 267.16 261.84 2.03 474 0.970 0.971 0.969 Max radius
Steel-2 269.78 264.61 1.95 473 0.969 0.958 0.962 Max radius
Steel-3 273.06 271.75 0.48 4.86 0.945 0.958 0.960 Max radius
Quenched-1 1020.45 1029.43 0.87 3.55 0.968 0.982 0.962 Max radius
Quenched-2 980.49 967.21 1.37 1.70 0.953 0.968 0.969 Max radius
Quenched-3 967.41 943.70 251 2.26 0.954 0.964 0.966 Max radius

As shown in Tables 1 and 2, the proposed method presents an error between 0.21%
and 4.45% when using the algorithm based on the local maximum radius, between 1.38%
and 2.87% for the perimeter solution, and between 0.02% and 4.00% for the Hough trans-
form one.

As already mentioned, manual measurement is prone to errors because the results are
variable and depend on the observer, the condition of the samples, the difficulty in detecting
corners, and the number of measurements to be performed. The time required to determine
the hardness manually is an estimated 4 min per sample, including the identification
and measurement of the diagonals under the microscope and the determination of the
hardness. The proposed method reduces the measurement time, has no variable results,
and can be adapted to perform multiple measurements from the images of the indentation
marks. The proposed thresholding method allows for good indentation region separation
to be obtained in most cases, but it can fail if the acquisition protocol used is inadequate,
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producing poorly focused images, shadows, or the region of interest being too small with
respect to the background.

Figure 11 illustrates the cases for which one of the three solutions works. For the first
case, when the edge detection processing is performed, we notice that a rather irregular
figure is obtained since the illumination gradient is taken into account when thresholding,
which does not allow for defining the corners correctly. For this case, the solution by
local maximum radius would be imprecise and also the solution by perimeter since, if it
is evaluated from the centroid of the figure, it would take into account the deformities
within it.

@) (@) 3)
Hough transform Local maximum r. Perimeter
-
]
on
<
£
=
g
2
-
o
=
.8
3]
8
(5}
<
[
)
<
83}
=
=
wn
(0]
-
=
R=
=

Figure 11. Example of proposed solutions. Column 1. Sample TiNbN-2; Column 2. Sample Steel-3;
and Column 3. Sample TiNbN-3 with applied force of 10N.

The second case is the ideal case, since the figure can be very close to a square, so this
is the solution automatically chosen by the algorithm.

In the third case, it is observed that in one of the corners there is a small deformation
due to the characteristics of the material and its coating. If evaluated with the solution by
local maximum radii, the end of this deformation would be taken as a local maximum (see
section on edge detection) since it is evaluated from the centroid of the figure, which makes
the calculation of the hardness of the material imprecise. If the Hough transform is used
instead, more processing time will be required.

Despite the fact that the images contain an irregular surface such as pores, scratches or
microdroplets, the algorithm did not present any problems in determining the hardness of
the material (see Appendix A), which shows the results obtained, thus validating its high
robustness. Compared to other methods, these have been developed with marks that by
their shape can be approximated to a square; this one proposes three different solutions
depending on the characteristics of the figure given by the indentation mark.
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The execution time for the tested images was an average of 2.05 s, taking into account
that this time varies depending on the selected solution and the resolution of each image.

4. Conclusions

In this work, a new automatic method based on image processing is proposed to
determine the Vickers hardness of AISI D2 steel in different thermal conditions such as:
steel with and without quenching, tempering heat treatment and samples coated with
titanium niobium nitride (TiNbN). The algorithm includes three options to determine the
corners of the indentation pattern by automatically selecting the best one according to
the calculated squareness indices, which allows for obtaining good results in the presence
of background noise such as spots or pores on the surface and irregularities present in
the indentation pattern. The proposed method allows for obtaining reproducible Vickers
hardness results in an average time of 2.05 s with an accuracy of 98.3% and a maximum
error of 4.5% with respect to the values measured manually, used as a gold standard,
surpassing the results achieved in other previously published works.
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Appendix A
Corner Detection Results on 24 Images

Figure A1l. Corner detection on Tempering samples at 5N applied force.


http://doi.org/10.13140/RG.2.2.31695.15529
http://dx.doi.org/10.13140/RG.2.2.14917.93921

J. Imaging 2023, 9, 8 13 of 15

10 ym 10 pm

Figure A2. Corner detection on TiNbN samples at 5N applied force.

Figure A4. Corner detection on Quenched samples at 5N applied force.

Figure A5. Corner detection on Tempering samples at 10N applied force.
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Figure A6. Corner detection on TiNbN samples at 10N applied force.

Figure A8. Corner detection on Quenched samples at 10N applied force.
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