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Abstract: The problem of gathering sufficiently representative data, such as those about human
actions, shapes, and facial expressions, is costly and time-consuming and also requires training robust
models. This has led to the creation of techniques such as transfer learning or data augmentation.
However, these are often insufficient. To address this, we propose a semi-automated mechanism
that allows the generation and editing of visual scenes with synthetic humans performing various
actions, with features such as background modification and manual adjustments of the 3D avatars
to allow users to create data with greater variability. We also propose an evaluation methodology
for assessing the results obtained using our method, which is two-fold: (i) the usage of an action
classifier on the output data resulting from the mechanism and (ii) the generation of masks of the
avatars and the actors to compare them through segmentation. The avatars were robust to occlusion,
and their actions were recognizable and accurate to their respective input actors. The results also
showed that even though the action classifier concentrates on the pose and movement of the synthetic
humans, it strongly depends on contextual information to precisely recognize the actions. Generating
the avatars for complex activities also proved problematic for action recognition and the clean and
precise formation of the masks.

Keywords: synthetic humans generation; 3D human body; pose estimation; data augmentation;
action recognition; computer vision

1. Introduction

The problem of inferring human activity from images is a long-standing problem in
computer vision [1]. Over the last two decades, researchers have tackled this problem via
the prediction of 2D content, such as keypoints, silhouettes, and part segmentations [2].
More recently, however, the interest has shifted toward retrieving 3D meshes of human
bodies, including facial and hand expressiveness, as a result of developments in statistical
body models [3]. Models of human bodies [3–6] are central to this trend due to their
flexibility in accurately representing a wide range of poses without being overly complex.
The use of these models of human bodies allows researchers to analyze and recreate intricate
human actions.

Human actions, behaviors, and interactions with the environment are highly diverse
due to the wide range of poses, motions, and facial expressions that humans are capable
of and how subtle changes in them can correspond to a wide range of actions. Therefore,
datasets must be substantial in size in order to be sufficiently representative of human
actions [7]. However, creating such large datasets is a costly and time-consuming task due
to the manual labor involved in labeling data. Techniques such as data augmentation help
alleviate this issue by artificially expanding modestly sized datasets into much larger and
richer datasets without further manual labeling. Nevertheless, we cannot disregard the
significant cost and privacy and legal issues arising from the presence of people. Hence, a
potential solution to overcome the issue of insufficient data is through transfer learning [8],
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which consists of pre-training models on large general-purpose datasets and subsequently
fine-tuning them on smaller datasets. By embedding the knowledge and experience of a
large-scale dataset in the pre-trained model, we reduce the number of data required for
the intended application. Data augmentation is a technique that alleviates the challenge
of annotating large numbers of data. It consists of artificially generating new labeled data
samples, thus enlarging the original dataset without further need for manual labeling.
An example of data augmentation is presented in [9], which introduces an augmentation
approach of datasets with annotated synthetic images exhibiting new poses. Another
example where data augmentation is applied indirectly, i.e., instead of artificially extending
a dataset, is SURREAL [10], which is a fully synthetic dataset. The dataset was created with
the Skinned Multi-Person Linear(SMPL) body model and driven by 3D motion captures,
where parameters were altered, such as illumination, camera viewpoint, and background,
to augment the diversity.

The usage of synthetic data is important in multiple scenarios and applications. For
instance, we can use accurate virtual humans for human motion analysis and recogni-
tion [11,12] and in other major application areas of 3D mesh reconstruction, such as virtual
and augmented reality, to create realistic, life-like avatars for interactive experiences [13];
ergonomic analysis [14]; and video games and animation [15,16]. Furthermore, there is also
an application in inserting real humans into virtual environments. A notable example of
this is using virtual production [17], where virtual and physical film-making techniques are
combined to produce media that include human actors in photo-realistic virtual environ-
ments, thus saving time and resources in post-production that would otherwise be required.
Nowadays, the usage of synthetic and virtual data is even more prominent, and we can see
it in all the television media. Another important aspect of this is the fact that synthetic data
can also be a valuable resource to train deep learning models. For instance, in [18], synthetic
datasets and real datasets augmented with synthetic humans were used as an experiment
to show that mixing synthetic humans with real backgrounds can indeed be used to train
pose-estimation networks. Another work in [19] explores the possibility of pre-training
an action-recognition network in purely synthetic datasets and then transfer-learning it
to real datasets with different categories from the ones on the synthetic datasets, showing
competitive results. A survey exploring application domains of synthetic data in human
analysis is presented in [20], which further highlights the practical usage of synthetic data
in multiple application scenarios.

In this paper, we propose a semi-automated framework to generate dynamic scenes
featuring synthetic humans performing diverse actions. The framework contains features
encompassing background manipulation, avatar size, and placement adjustments, facilitat-
ing the creation of datasets characterized by heightened variability and customization that
can aid users in creating mixed-reality or purely virtual datasets for specific human activity
tasks. We also propose an evaluation methodology for assessing the resulting synthetic
videos, as well as the synthetic human models. Experimental results showed that the action
classifier used to assess the framework results primarily relied on determining the pose and
kinetics of the avatars to determine a precise action identification. Still, the background and
the presence of objects in which the actors interact also affect the recognition of the action.
We also observed that the Part Attention REgressor (PARE) model also performs better
when activities are less complex and when there is less partial occlusion in input videos.

The remaining sections of this paper are organized as follows: Section 2 describes
the related work about 3D human pose estimation, reconstruction of human meshes, and
data augmentation, while Section 3 introduces our framework, explaining in detail each
component, how the PARE’s method generates the avatars, and the additional features
in our platform. Section 4 presents our evaluation methods, as well as their results and
interpretation. Lastly, in Section 5, we exhibit our main conclusions.
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2. Related Work

In this section, we explore works that target different areas related to generating
synthetic scenes with 3D humans in them. More specifically, we explore methods for 3D
human pose estimation, human mesh recovery, and, more broadly, data augmentation.

2.1. Three-Dimensional Human Pose Estimation

Three-dimensional human pose estimation is the process of estimating the position
and orientation of a person’s limbs and joints in 3D space from images or video. Three-
dimensional pose estimation has found applications in various domains [21–23], including
motion capture or animation for tracking human motion, analyzing human behavior and
posture, and generating virtual avatars for gaming or virtual reality. As a result of the
human body’s complexity and the variability in appearance and pose, 3D pose estimation
requires robust algorithms and careful calibration to handle challenges such as occlusions.

Human activity encompasses a wide range of intricate dynamics that go beyond static
positions. It includes the nuanced interplay of muscle activation, joint torques, and the
coordination of multiple body segments, resulting in fluid motions and gestures. So it is
important to note that 3D human pose estimationrefers to the orientation and position of
a human body in 3D space and not just the flat, 2D representation typically captured by
cameras or images. There are several approaches to 3D pose estimation, which can be split
into two categories: two-stage and direct estimation. The two-stage methodology consists
of the prediction of 2D joint locations using pose detectors or ground truth information,
followed by a prediction of 3D joint locations from the 2D locations or model fitting, where
a common approach exploits a learned dictionary of 3D poses [21]. Even though these
methods are more robust to domain shift, they rely too heavily on 2D joint detection for
estimating 3D pose and may discard valuable information about the RGB image. Direct
estimation consists of directly estimating the body pose from the data without using a
pre-defined model. This can be carried out using techniques such as deep learning or
geometry-based methods. In general, direct methods tend to be more accurate than model-
based methods, but they also require more data and computational resources.

The process of estimating a human pose is used in multiple highly regarded works
such as [21,24–29]. Furthermore, for additional work, we suggest the surveys [30–33]
to the reader. As we can see, using 3D information about objects and people has led to
numerous research works, which naturally stem from a wide range of practical applications
in multiple areas, namely, works on (i) posture tracking in clinical environments in the
medical field [34]; (ii) the capture of the real 3D motion of the hand using pose estimation
systems in the field of Human–Computer Interaction (HCI ) [35]; (iii) pose estimation as a
way to analyze the posture and movements of athletes in the field of sports [36].

We can also predict poses using frameworks or tools in other ways. For instance, action
classifiers also help to estimate human poses by providing insights into human actions and
movements. One notable framework for action classification is MMAction2 [37], which
combines state-of-the-art techniques in video understanding, including temporal modeling,
spatial-temporal alignment, and multi-modal fusion. These techniques enable MMAction2
to recognize and classify various human actions effectively, providing valuable input for
3D human pose estimation. Frameworks like Detectron2 [38] also enhance the accuracy
and robustness of pose-estimation systems by using robust object detection, Instance
Segmentation capabilities, and keypoint detection models.

2.2. Reconstruction of Human Meshes

Human mesh reconstruction refers to the process of creating a 3D model of a human
body or body parts using a series of 2D images or a 3D scanner. This can be carried out using
various techniques and technologies, such as 3D scanning, computer vision algorithms,
and depth sensors. Regardless of the method used, human mesh reconstruction typically
involves several steps, including the pre-processing of the input data, the alignment of the
2D images or scans, and surface reconstruction to create the final 3D mesh model.
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Typically, the reconstruction/recovery of human meshes involves estimating the
3D shape and surface properties of a body, such as the position of the bones, muscles,
and skin, as well as the texture and appearance of the skin [39]. Pose estimation, on
the other hand, estimates the 3D orientation and position of the body relative to some
reference frame [39]. In some cases, human mesh reconstruction and pose estimation may
be performed separately, with the results of one process being used as input to the other.
For example, a 3D mesh model of a person’s body might be used to guide the estimation of
the pose of the person in an image or video [24]. Alternatively, the results of pose estimation
might be used to refine or improve a human mesh model [21].

As previously stated, there are two approaches to 3D human mesh reconstruction,
namely parametric and non-parametric. Both of these approaches can be categorized by
their outputs.

• Clothed Body Mesh: a 3D model of a person that is rigged (meaning it has a skeleton
and joints that allow it to move) with some clothing details on the surface of the model.

• Naked Body Mesh: a 3D model of a person’s body without any clothing details, only
a smoothed surface. These are often used as a base for creating clothed body meshes,
as they allow for the clothing to be added and draped over the body in a realistic way.

• Body Mesh with Motion: an animated naked or clothed body mesh, or an output body
model that tracks the body’s motion from input video data. These motion data can
include animations that depict the character walking, running, jumping, or performing
other actions.

One of the main reasons why human mesh reconstruction is so widely used is that it
allows for the creation of highly accurate and detailed 3D models of the human body. This
can be particularly useful in medical research, where accurate 3D models can be used to
study the human anatomy and assist in the diagnosis and treatment of various conditions
or to create digital avatars that can be used in video games, movies, and other interactive
experiences [40–42].

2.3. Body Models

Body models are representations of the human body that are used to analyze images
and videos of humans in order to extract information or perform tasks such as human pose
estimation and human mesh recovery. Due to their ability to create full bodies or parts
of bodies, they are used to represent features and keypoints extracted from visual input
data. Hence, every pose-estimation algorithm agrees upon a body model beforehand due
to advantageous characteristics, such as simplicity, efficiency, and the ability to be more
general and less specific to a particular individual. To enable customization and enhance
realism and expressiveness, we must use parameters in body models, since these play a
crucial role in accurately representing the shape, pose, and kinematics of the human body.
The important parameters commonly used in body models include the following.

• The shape template, which is a baseline representation of the body’s shape in a neutral
position. It is used as a reference to obtain variations in the shapes and sizes of the
body [4];

• The kinematic tree, which defines the hierarchical structure of the body model by
indicating the connectivity between different body parts and joints [21];

• The shape, to control the body’s proportions, height, and weight;
• Pose blend shapes, i.e., deformation patterns, which capture local changes in shape as

changes in pose occur. These blend shapes are typically defined based on the linear
combinations of pose-rotation matrices, allowing the model of the body to accurately
deform based on the desired pose [4,5];

• Blend weights determine the influence of different blend shapes on the final shape of
the body model [43,44];

• A joint regressor, which is a mapping function that estimates the locations of joints in
the body model based on the shape parameters [4,45];
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2.3.1. Skinned Multi-Person Linear (SMPL)

The Skinned Multi-Person Linear [4] model is not only compatible with existing
graphics software but is also used to represent, as realistically as possible, a broad of body
shape variations due to its high accuracy. To that end, the SMPL model can accurately
model various human body shapes, be pose-dependent, and display soft-tissue dynamics
and compatibility with existing rendering engines. The main characteristic of this model
is its simplicity, which enables learning with large amounts of data, leading to better
performance. Good-quality data is crucial, and the parameters of this model are learned
from 3D scans of different subjects in a wide variety of poses. The 3D scans also consist of
the mean template shape (rest pose), blend weights, pose-dependent blend shapes (a linear
function of pose rotation matrices), identity-dependent blend shapes, and a regressor from
shape to joint locations (to minimize the vertex error, i.e., the discrepancy between the actual
locations of the vertices in a 3D model and their corresponding desired or target positions).

SMPL is usually evaluated in two forms: model generalization and shape generaliza-
tion. The first type of error evaluates the model’s behavior for new people and poses, based
on how well it fits in their meshes, and the second is related to the capacity of forming
new poses. Thus, model and test registrations are compared using the mean absolute
vertex-to-vertex distances.

The SMPL model was trained on thousands of scans of different people with varying
poses and is capable of learning shape parameters from large numbers of data while directly
minimizing vertex reconstruction error.

SMPL-X [3] and SMPLify [46] represent notable advancements built upon the founda-
tional SMPL model, each addressing specific human body-modeling and analysis aspects.
SMPL-X extends the original framework by incorporating a higher degree of expressive-
ness, allowing it to encompass a more comprehensive array of body shapes and facial
expressions by integrating the Faces Learned with an Articulated Model and Expressions
(FLAME) and Model with Articulated and Non-rigid defOrmations (MANO) models. This
enhanced model permits more detailed and nuanced animations and can directly regress
parameters from images. On the other hand, SMPLify enhances the fitting process of the
SMPL model to real-world data. Leveraging optimization techniques, SMPLify focuses on
accurately aligning the SMPL model to real-world 2D images. This iterative fitting process
involves fine-tuning pose and shape parameters to minimize the disparity between the
projected SMPL model and the observed data.

2.3.2. Model with Articulated and Non-Rigid defOrmations (MANO)

While many methods treat the 3D modeling and tracking of bodies and hands sepa-
rately, the Model with Articulated and Non-rigid defOrmations [5] hand model is focused
on the creation of an approach to capture the 4D motion of hands and body together. When
it comes to body scanners, it can be very hard to resolve hands, especially fingers, which
can result in noise and “webbing” between the fingers, i.e., two or more fingers fused. This
leads to the occlusion of the hand and the body, which often results in significant missing
data. For this reason, MANO deals with noise and missing data and is combined with
a parameterized 3D body model (SMPL). This combination enables natural performance
capture even under severely noisy measurements.

As previously explained, the need for more and richer training datasets (for example,
using dynamic 4D scan sequences instead of static 3D scans) will continuously be an issue,
since they are crucial for improving the accuracy of robust body models. Thus, the database
created to train this model consisted of a collection of detailed hand scans from 31 persons
doing different poses, in which some interacted with objects. MANO learns from similar
parameters to those in SMPL, such as template shape, kinematic tree, shape, pose blend
shapes, blend weights, and a joint regressor. With this said, MANO is built as a statistical
hand model to minimize the vertex error in the training set, just like the SMPL model.
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2.3.3. Faces Learned with an Articulated Model and Expressions (FLAME)

Faces Learned with an Articulated Model and Expressions [6] is a fully articulated
head model, which means that it can generate faces with different poses and expressions.
The model learns from thousands of accurately aligned 3D facial scans in order to minimize
facial-reconstruction errors. FLAME is compatible with existing rendering systems and
is easy to fit to data; i.e., it can accurately capture the patterns in the data using just a
few parameters.

The 3D face modeling field has a large gap between high-end and low-end methods
(terms used to refer to the complexity and computational cost of different techniques of
creation or rendering of 3D objects). High-end methods are known for having the best facial
animation (more realistic) due to more complex algorithms, extensive manual labor, and
specialized equipment, such as high-resolution cameras, depth sensors, and motion capture
systems with many markers. On the other hand, low-end methods are simpler and more
accessible techniques that focus on capturing basic facial expressions and movements with
less complexity and resource requirements. FLAME is able to learn a model of facial shape
and expression based on sequences of 3D scans and is more expressive than other models,
such as the FaceWarehouse [47] and the Basel Face [48] models. The FaceWarehouse model
is a database of 3D scans of facial expression of individuals, and the Basel Face model is a
3D morphable model of faces that captures variations in the shapes and textures of human
faces. The three models were compared according to their ability to account for unseen
data by fitting them to static and dynamic 3D data that are not part of the training using
the same optimization method.

As a result of FLAME’s ability to transfer expressions, one can synthesize new motion
sequences by transferring facial expressions from source actors to target actors while
preserving the subject-specific details of the target face.

2.4. Pose and Human Mesh Estimators

Pose and human mesh estimators are algorithms used to estimate the pose and shape
of a human body in images and videos. Overall, these algorithms are important tools
for understanding and analyzing the movements and behaviors of humans in images
and videos.

2.4.1. Human Mesh Recovery (HMR)

Human mesh recovery [21] is an end-to-end framework that produces a richer and
more useful mesh representation of a human body in 3D through a single RGB image. This
framework uses the SMPL model to parametrize meshes based on the joint angles and
shapes (through a low-dimensional linear space).

Even though most approaches focus on recovering 3D joint locations, the estimation
of the full body pose is non-trivial since the location of the joints does not define all the
degrees of freedom at each joint [21]. HMR implicitly learns the joint angle limits from
datasets of 3D body models. Thus, the framework begins by receiving an image, then infers
the 3D mesh parameters, which minimize the joint reprojection error, before projecting the
3D keypoints to match the annotated 2D keypoints.

HMR is intended to overcome challenges such as the lack of large-scale datasets with
reliable 3D annotations of images in nature since they do not provide enough information
for models to generalize images well in the real world. Moreover, it addresses inherent
ambiguities when working with 2D-to-3D mapping, or to be more specific, depth ambiguity,
where there are multiple 3D body configurations for the same 2D projections.

2.4.2. Video Inference for Body Pose and Shape Estimation (VIBE)

A body’s motion tells us about its behavior in the world, but previous temporal models
of human motion do not capture the complexity of real human motions due to insufficient
training data [49]. VIBE (Video Inference for Body Pose and Shape Estimation) [24] is
a framework intended to exploit temporal information to more accurately estimate the
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3D motion of the body from monocular video, through a temporal neural network and
training approach.

The VIBE framework was inspired by the HMR framework, as it learns to estimate
sequences of 3D body shape poses from in-the-wild videos such that a discriminator cannot
distinguish the estimated motions from the motions in the AMASS dataset [50].

2.4.3. Part Attention REgressor (PARE)

The Part Attention REgressor uses information about the visibility of individual body
parts to regress 3D human pose and shape and gain robustness to occlusion by learning
from body-part-guided attention masks. In other words, PARE introduces a soft attention
mechanism that predicts attention masks guided using body parts; thus, by exploiting
information about the visibility of individual body parts, it is possible to predict obstructed
parts. This method uses deep convolutional neural networks to solve a difficulty presented
in most of these types of models: occlusion. The convolutional neural network (CNN)
will take an input image to extract its volumetric features, allowing the verification of the
visibility of the body parts, checking if their locations are visible or occluded. The 2D
Body Branch learns the attention weights for each body part, where each pixel corresponds
to a region in the image and stores its correspondent height and width values. The 3D
Body Branch predicts the 3D positions of the body joints (through an SMPL regression)
based on the weighted input features. Both branches are followed by a module devoted to
training attention maps that highlight the relevant regions of the input image for each of the
estimated body joints. These attention maps weigh the input features at each pixel, allowing
the network to focus on the most important parts of the image when making its predictions.
Therefore, the final feature is exploited for a regression of the parameters of a human body
model (such as SMPL) and the camera parameters (3D position and orientation).

PARE’s main contribution is the analysis around the influence of occlusion sensitivity
in the global pose. By taking advantage of information about the visibility of individ-
ual body parts and information from neighboring body parts to predict occluded parts,
this soft attention mechanism can overcome issues such as the reliance on global feature
representations, making them sensitive to even small occlusions.

2.4.4. DensePose

DensePose [26] establishes dense relationships between 2D images and the 3D repre-
sentation of the human body by mapping each pixel in the RGB image to a specific location
on the surface of the human body. The method is fully supervised and collects correspon-
dences between the persons appearing in the images from the COCO dataset [51] and a
surface of a parametric model of the human body, the SMPL model. Thus, an annotation
process that allowed the yield of a new dataset, DensePose-COCO [26], was developed
with the help of the obtained ground truth correspondences.

The DensePose architecture starts with the feature extraction of the input image using
the ResNet50 FPN (Feature Pyramid Network). This CNN accurately locates and identifies
the different parts of the body from the input image. The extracted features are then aligned
by the RoIAlign (Region of Interest Align) module, allowing for more accurate and robust
object detection and pose estimation. The output of the RoIAlign module feeds a series of
auxiliary neural network layers for other tasks, such as keypoint estimation and Instance
Segmentation. Overall, the combination of these layers is responsible for predicting the
3D coordinates of each pixel in the input image and mapping them to the surface of the
human body; i.e., they allow an accurate estimation of the U, V body coordinates. U, V
coordinates correspond to the coordinates of a 2D plane to represent a 3D mesh to further
texture the model [2].

2.4.5. PoseBERT

PoseBERT [27] is a transformer-based module for the pose sequence modeling of
monocular RGB videos, designed to train without the need for any cumbersome RGB
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image or frame pose annotations. PoseBERT was intended to exploit several of the motion-
capture datasets for training better temporal models. Based on the BERT (Bidirectional
Encoder Representations from Transformers) model [52], parameters are trained through a
masked modeling task, to learn temporal dynamics, i.e., the poses that change over time as
they move or perform an action. This learning leads to the correct interpolation of the pose
from the previous frame. PoseBERT extracts the input poses more efficiently, even with
frames with missing predictions, and can be trained for both body or hand 3D models due
to the use of the SMPL [4] and MANO [5] models, respectively.

2.5. Data Augmentation

Human poses contain critical information that describes the interaction between
human behavior and the surrounding environment. Therefore, identifying human poses
over time is crucial for understanding and generating data. Data labeling becomes a
challenge as data collection increases, which can be alleviated through data augmentation,
i.e., by synthetically increasing the size and diversity of datasets that would otherwise
be insufficient.

The authors of [9] proposed a data augmentation methodology for 3D pose estimation
that is divided into four phases. In the first phase, 2D and 3D data are collected, where
the 2D data consist of in-the-wild images of humans in various poses where the joints are
manually labeled, and the 3D data consist of motion capture data. Then, for each 3D pose, a
random image from the dataset is selected for each joint with a matching pose. The random
images of each 3D pose are then stitched together as a new image. Finally, this process is
repeated multiple times for each 3D pose in order to obtain a larger dataset. Another case
of data augmentation is SURREAL [10], which is a large scale dataset with synthetically
generated but realistic images of people. The synthetic bodies are created using the SMPL
model [4] to later on be deformed and rendered. This results in variations in the actions
captured from 3D sequences of human motion capture data. Since SMPL is compatible
with Blender [53], the parameters of the created body can be altered and rendered on top of
other scenes.

Although the use of synthetic data seems like an appealing solution, it also brings some
challenges. These challenges revolve around the plausibility of the actions portrayed in the
generated avatars. Another challenge is seamlessly integrating a 3D human model into a
chosen background to achieve realism, which can be non-trivial. For such a combination to
work, creating images that accurately capture color, texture, context, and shadows while
accommodating variations in poses, body structure, clothing, and environmental settings
is required.

3. Avatar Generation Application

Nowadays, the usage of synthetic data has become prominent in multiple application
scenarios, ranging from virtual and augmented reality to training data that can be used
successfully to train machine learning models. When looking particularly into human
behavior analysis and related topics, it is noticeable how important it is to have sufficiently
large and variate datasets so that models can better generalize using these data. With this
in mind, we propose a framework for the semi-automatic manipulation and generation of
visual scenes with synthetic humans performing actions.

Our framework allows users to select input videos with people performing actions and
automatically extracts their pose to generate a virtual avatar performing the same actions.
The users can then manipulate these synthetic humans and place them in arbitrary visual
or virtual scenes by means of a web application. Figure 1 illustrates the workflow of the
designed web application, showing the possible use cases. The process starts by processing
an input video that contains a person performing an action and performs human detection,
tracking and synthesis, also caching these results. The users can then manipulate the scene
and manipulate the synthetic human extracted from the input video.
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Figure 1. Schematic of the Avatar-Generation Application.

For synthetic human generation, we chose to use the PARE algorithm, as it uses the
well-known Resnet-50 [54] backbone and is partially robust to occlusion. This algorithm
starts by first performing human detection and tracking and then rendering each detected
human in its original place. This way, the synthetic humans generated by our mechanism
replicate the exact actions and positions observed in the input video relative to the captured
actor. Internally, the algorithm takes the tracking of each actor and performs a regression
of SMPL parameters, which describe the body shape and pose of the synthetic human.
Additionally, the PARE model comprises two integral components: learning to regress 3D
body parameters and learning attention weights per body part. Firstly, we initialize the
frames and the stored bounding boxes to pass them through the PARE model, which yields
the predicted camera parameters, 3D vertex coordinates of the SMPL model, predicted pose
and shape parameters, and 2D and 3D joint positions. Then, the model learns attention
weights for each body part, which serve as a guide, allowing the model to focus on specific
regions of interest within the input image. By directing attention to particular body parts,
the model can extract more accurate and detailed information, enhancing the overall quality
of the generated synthetic humans.

With these data, we are able to render synthetic human bodies like the one depicted
in Figure 2. By making use of the predicted camera parameters, shape and pose, we are
able to manipulate the resulting avatars and place then on the image plane. We can then
make use of our web application to change the size and position of the generated synthetic
human, as well as the background where they can be placed. As the algorithm supports the
detection of multiple humans, this allows users to even manipulate and generate crowded
scenes with synthetic humans.

Figure 2. Example of a 3D mesh.
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Overall, our proposal makes use of existing technology and provides a tool that allows
users to semi-automatically generate visual data with synthetic humans performing actions
based on real scenes. This allows a significant reduction in the manual effort required for
data retrieval or collection, which also allows the training and testing of machine learning
models in diverse simulated environments that can be crucial in many application scenarios.

4. Results

We employed two evaluation methods to assess the quality and usability of the data
obtained from our web application: (i) the usage of an action-recognition algorithm on our
outputs and (ii) the evaluation of the avatars, in terms of body resemblance, through
segmentation. We conducted extensive experiments using publicly available videos,
each containing one of the following actions: basketball dribble, archery, boxing, and
pushups. The basketball video was from the 3DPW [55] dataset, the archery and box-
ing videos were from the UCF101 [56] dataset, and the pushups videos were from the
HMBD51 [57] dataset (the resulting videos obtained by inserting synthetic humans can
be found at https://mct.inesctec.pt/synthesizing-human-activity-for-data-generation, ac-
cessed on 26 September 2023).

4.1. Action Recognition

For the first experimental phase, we used MMAction2 [37], which is a framework
designed for action recognition that gives, as output, the top five labels of its predictions
and the respective scores. MMAction2 is known for supporting a comprehensive set of
pre-trained models for action recognition and for being flexible and easy to use. Among
the several pre-trained action-recognition models available within the framework, we
selected the Temporal Segment Networks (TSN) model due to its operability on short video
segments to capture spatial and temporal cues. Lastly, all of the frames presented in Table 1
represent the cases in which we tested the action-recognition algorithm.

Table 1. First frame from the output video containing the generated avatar in the input video’s
background (first row); the output video containing the generated avatar in a new background
(second row); the output video containing the generated avatar in different sizes and positions
(third row).

Video
Action Basketball

Dribble Archery Boxing Push-Up

Avatar
Original

Background

Avatar
Different

Background

Re-adjusted
Avatar

https://mct.inesctec.pt/synthesizing-human-activity-for-data-generation
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Table 2 displays the scores for each label given by the MMAction2 that we considered
correct, i.e., that corresponded to the action performed by the actors in the original videos
and the scores of the avatars substituting the respective actors. It is essential to highlight
that the scores presented in the Table are among the top five, not necessarily the top one,
score. The MMAction2 was unsuccessful with any cases containing new backgrounds; i.e.,
it could not predict correctly between the top five action predictions.

We also performed a particular test regarding the basketball-dribbling video, where
the ball was not present, due to the unsuccessful attempt to remove the objects which the
actor interacted with in the remaining videos. Hence, we observed that in this test case,
the action classifier was not able to correctly predict the labels we accepted for this action:
dribbling basketball and playing basketball. Thus, the remaining tests concerning this
video used the background where the ball appears.

Table 2. Scores (in percentages) of the correct labels of the original four videos and of videos
containing the avatars in the original background.

Action Basketball Dribble Archery Boxing Push-Up

Correct label(s) Dribbling
basketball

Playing
basketball Archery Punching bag Push-up

Original 66.7 26.7 99.9 99.99 99.9
Avatar (Original

Background) 56.7 20.5 19.1 99.97 89.8

The last stage of this evaluation method consisted of re-adjusting the avatars in terms
of placement and size; i.e., for three different sizes for the synthetic humans (original,
smaller, and bigger), they were placed more to the left, more to the right, upwards, and
downwards. Table 3 exhibits the scores of the action labels given by the MMAction2 (which
we considered correct) for the cases of the final part of this evaluation phase, where the cells
colored in grey represent cases where the action classifier was unsuccessful in none of its
top five predictions. We used the results of the experimental outputs regarding the avatars
with the same size and placement as the input actors and on the original background as a
reference value. It is visible that the results of the basketball-dribbling and boxing videos
were very similar to the respective reference values. Overall, the archery video improved
the scores for the avatars with smaller sizes and three other exceptions compared to the
avatar with the actual size in the original position. A possible explanation for these results
was due to perspective and visual hints; i.e., placing the avatars in different locations
and sizes may alter the understatement about what is happening, allowing the model to
be more confident about the prediction of the action. Even so, the avatars with a larger
size, placed upwards and downwards, showed inferior results but were analogous to the
first experiment’s output. Lastly, the classifier could only correctly label two between the
twelve cases for the push-up video, namely when we placed the avatar more to the left and
upwards, with a bigger size. The explanation for these two deviations could be that they
stand out more in the frame due to their size and placement.
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Table 3. Scores (in percentage) of the correct labels given by the MMAction2 to all the experiments
regarding the avatars.

Basketball Dribble Archery Boxing Push-Up
Reference Values 56.7 19.1 99.97 89.8

Original Size

More to the left 50.8 36.9 99.99 -
More to the right 57.8 5.9 99.996 -

Upwards 63.5 59.4 99.99 -
Downwards 50.5 12.3 99.99 -

Smaller Size

More to the left 46.1 40.7 99.99 -
More to the right 60.4 43.5 99.6 -

Upwards 67.5 73.8 99.99 -
Downwards 56.5 42.4 99.99 -

Bigger Size

More to the left 56.0 35.4 99.98 2.3
More to the right 22.0 - 99.9 -

Upwards 39.9 8.9 99.998 1.3
Downwards 26.6 9.2 99.9 -

4.2. Segmentation

The next experimental phase consisted of the evaluation of the segmentation results to
evaluate the fit of PARE’s model analytically. We generated masks of the actors and avatars
using Detectron2 [38] by employing two models for segmentation already included in the
framework: Instance Segmentation and Panoptic Segmentation. For Instance Segmentation,
we utilized the Mask R-CNN [58] architecture with the ResNet-50 backbone, while for
Panoptic Segmentation, we employed the Panoptic FPN architecture [59] with the ResNet-
101 backbone. Table 4 illustrates the segmentation results of the four aforementioned cases.

Table 4. Generated mask of the actor and avatar in the first frame from the original video (first row)
and from the output video containing the generated avatar in the input video’s background (second
row) using Detectron2.

Video
Action Basketball

Dribble Archery Boxing Push-Up

Original
Instant

Segmentation

Avatar
Instant

Segmentation
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Table 4. Cont.

Video
Action Basketball

Dribble Archery Boxing Push-Up

Original
Panoptic

Segmentation

Avatar
Panoptic

Segmentation

Afterward, we calculated the IoU metric since it allows us to quantify the accuracy
and efficacy of our segmentation process. Table 5 displays the results we obtained for the
masks of the four videos.

Table 5. IoU results using the Instance and Panoptic Segmentation.

Basketball Dribble Archery Boxing Push-Up

Instance Segmentation (%) 58.53 12.08 47.88 4.28

Panoptic Segmentation (%) 61.86 16.40 47.09 14.69

Table 6 exhibits the positive effect of storing the avatar’s information in the four actions
we tested using a GTX 1080 graphics processing unit (GPU).

Table 6. Process time for the avatar generation, before and after the avatars are cached, using a GTX
1080 GPU.

Basketball Dribble Archery Boxing Push-Up

Before caching avatars (seconds) 39.85 31.67 42.39 35.99

After caching avatars (seconds) 17.26 6.77 8.59 8.02

Improvement percentage (%) 56.7 78.6 79.7 77.7

5. Conclusions

In this article, we propose a semi-automated mechanism that generates scenes with
synthetic humans performing various actions. To achieve this, we implemented a web
application that allows users to select input videos with humans performing actions and
automatically extract a 3D model of the person that can be inserted into other videos or
backgrounds, where the generation of the synthetic humans was performed by employing
the PARE algorithm. The application also allows users to manipulate the 3D model’s
position and scale, allowing further customization of the output scene.

We also introduced two evaluation methodologies to assess our proposal. The first
assesses the ability of our outputs to be considered for a video with actual humans per-
forming actions. To do so, we employed the MMAction2 framework for videos processed
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using our proposal and analyzed if the predicted actions were in fact the original actions of
the extracted input videos. The results showed that for simple actions, this was achieved.
However, it failed in cases where the actions involved interaction with other objects. The
second evaluation methodology consisted of assessing the PARE models by comparing
segmentation masks. We observed that in complex actions, the resulting segmentation
masks could not be correctly used to assess the 3D models. However, for simpler actions,
it is evident that this type of assessment can indeed be used. The avatars’ appearance
may be visually similar to the background or other objects in the scene, leading to possible
confusion for the algorithm and difficulties in accurately segmenting the avatars. This
suggests that further research on assessment methodologies for objectively evaluating the
quality of 3D-generated models is required.

Lastly, our contribution extends beyond works like SURREAL by providing a unique
platform combining personalization, realism, and flexibility. Furthermore, our platform
goes beyond the capabilities of SURREAL’s work by empowering users to generate realistic
content that reflects their personal preferences and creative vision. We understand that each
user has unique requirements and desires when creating virtual content, and our platform
embraces this diversity by offering a wide range of customization options. By providing a
more personalized approach, we enable users to tailor their generated content to specific
scenarios or styles.
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