
Citation: Valente , J.; António, J.;

Mora, C.; Jardim, S. Developments in

Image Processing Using Deep

Learning and Reinforcement

Learning. J. Imaging 2023, 9, 207.

https://doi.org/10.3390/

jimaging9100207

Academic Editor: Antonio

Fernández-Caballero

Received: 1 August 2023

Revised: 24 September 2023

Accepted: 28 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Review

Developments in Image Processing Using Deep Learning and
Reinforcement Learning
Jorge Valente 1 , João António 1 , Carlos Mora 2 and Sandra Jardim 2,*

1 Techframe-Information Systems, SA, 2785-338 São Domingos de Rana, Portugal;
jorge.valente@techframe.pt (J.V.); joao.antonio@techframe.pt (J.A.)

2 Smart Cities Research Center, Polytechnic Institute of Tomar, 2300-313 Tomar, Portugal; carlos.mora@ipt.pt
* Correspondence: sandra.jardim@ipt.pt

Abstract: The growth in the volume of data generated, consumed, and stored, which is estimated to
exceed 180 zettabytes in 2025, represents a major challenge both for organizations and for society in
general. In addition to being larger, datasets are increasingly complex, bringing new theoretical and
computational challenges. Alongside this evolution, data science tools have exploded in popularity
over the past two decades due to their myriad of applications when dealing with complex data,
their high accuracy, flexible customization, and excellent adaptability. When it comes to images,
data analysis presents additional challenges because as the quality of an image increases, which
is desirable, so does the volume of data to be processed. Although classic machine learning (ML)
techniques are still widely used in different research fields and industries, there has been great interest
from the scientific community in the development of new artificial intelligence (AI) techniques. The
resurgence of neural networks has boosted remarkable advances in areas such as the understanding
and processing of images. In this study, we conducted a comprehensive survey regarding advances in
AI design and the optimization solutions proposed to deal with image processing challenges. Despite
the good results that have been achieved, there are still many challenges to face in this field of study.
In this work, we discuss the main and more recent improvements, applications, and developments
when targeting image processing applications, and we propose future research directions in this field
of constant and fast evolution.

Keywords: artificial intelligence; deep learning; reinforcement learning; image processing

1. Introduction

Images constitute one of the most important forms of communication used by so-
ciety and contain a large amount of important information. The human vision system
is usually the first form of contact with media and has the ability to naturally extract
important, and sometimes subtle, information, enabling the execution of different tasks,
from the simplest, such as identifying objects, to the more complex, such as the creation
and integration of knowledge. However, this system is limited to the visible range of the
electromagnetic spectrum. On the contrary, computer systems have a more comprehensive
coverage capacity, ranging from gamma to radio waves, which makes it possible to process
a wide spectrum of images, covering a wide and varied field of applications. On the other
hand, the exponential growth in the volume of images created and stored daily makes
their analysis and processing a difficult task to implement outside the technological sphere.
In this way, image processing through computational systems plays a fundamental role in
extracting necessary and relevant information for carrying out different tasks in different
contexts and application areas.

Image processing originated in 1964 with the processing of the images of the lunar
surface, and in a simple way, we can define the concept of image processing as an area
of signal processing dedicated to the development of computational techniques aimed at
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the analysis, improvement, compression, restoration, and extraction of information from
digital images. With a wide range of applications, image processing has been a subject of
great interest both from the scientific community and from industry. This interest, com-
bined with the technological evolution of computer systems and the need to have systems
with increasingly better levels of performance, both in terms of precision and reliability
and in terms of processing speed, has enabled a great evolution of image processing tech-
niques, moving from the use of nonlearning-based methods to the application of machine
learning techniques.

Having emerged in the mid-twentieth century, machine learning (ML) is a subset
of artificial intelligence (AI), a field of computer science that focuses on designing ma-
chines and computational solutions capable of executing, ideally automatically, tasks that
include, among others, natural language understanding, speech understanding, and image
recognition [1]. When providing new ways to design AI models [2], ML, such as other
scientific computing applications, commonly uses linear algebra operations on multidimen-
sional arrays, which are computational data structures for representing vectors, matrices,
and tensors of a higher order. ML is a data analysis method that automates the construction
of analytical models and computer algorithms, which are used in a large range of data
types [1] and are particularly useful for analyzing data and establishing potential patterns
to try and predict new information [3]. This suit of techniques has exploded in use and as a
topic of research over the past decade, to the point where almost everyone interacts with
modern AI models many times every day [4].

AI, in particular ML, has revolutionized many areas of technology. One of the areas
where the impact of such techniques is noticeable is image processing. The advancement
of algorithms and computational capabilities has driven and enabled the performance of
complex tasks in the field of image processing, such as facial recognition, object detection
and classification, generation of synthetic images, semantic segmentation, image restoration,
and image retrieval. The application of ML techniques in image processing brings a set
of benefits that impact different sectors of society. This technology has the potential to
optimize processes, improve the accuracy of data analysis, and provide new possibilities
in different areas. With ML techniques, it is possible to analyze and interpret images with
high precision. The advances that have been made in the use of neural networks have
made it possible to identify objects, recognize patterns, and carry out complex analyses on
images with a high accuracy rate. Pursuing ever-increasing precision is essential in areas
such as medicine, where accurate diagnosis can make a difference in patients’ lives.

By applying ML techniques and models to image processing, it is possible to automate
tasks that were previously performed manually. In this context, and as an example, we
have quality control processes in production lines, where ML allows for the identification
of defects in products quickly and accurately, eliminating the need for human inspection,
leading to an increase in process efficiency, as well as to a reduction in errors inherent to
the human factor and costs.

The recognized ability of ML models to extract valuable information from images
enables advanced analysis in several areas, namely public safety, where facial recognition
algorithms can be used to identify individuals, and scientific research, such as the inspection
of astronomical images, the classification of tissues or tumor cells, and the detection of
patterns in large volumes of data.

With so much new research and proposed approaches being published with high
frequency, it is a daunting task to keep up with current trends and new research topics,
especially if they occur in a research field one is not familiar with. For this purpose, we
propose to explore and review publications discussing the new techniques available and
the current challenges and point out some of the possible directions for the future. We
believe this research can prove helpful for future researchers and provide a modern vision
of this fascinating and vast research subject.

On the other hand, and as far as it was possible to verify from the analysis of works
published in recent years, there is a lack of studies that highlight machine learning tech-
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niques applied to image processing in different areas. There are several works that focus
on reviewing the work that has been developed in a given area, and the one that seems
to arouse the most interest is the area of medical imaging [5–9]. Therefore, this paper also
contributes to presenting an analysis and discussion of ML techniques in a broad context
of application.

This document is divided into sections, subsections, and details. Section 2—Introduction:
describes the research methodology used to carry out this review manuscript. Section 3—
Technical Background: presents an overview of the AI models most used in image pro-
cessing. Section 4—Image Processing Developments: describes related work and different
state-of-the-art approaches used by researchers to solve modern-day challenges. Section 5—
Discussion and Future Directions: presents the main challenges and limitations that still
exist in the area covered by this manuscript, pointing out some possible directions for the
evolution of the models proposed to date. Finally, Section 6 provides a brief concluding
remark with the main conclusions that can be taken from our study.

2. Methodology

In order to carry out this review, we considered a vast number of scientific publications
in the scope of ML, particularly those involving image processing methods using DL and
RL techniques and applied to real-world problems.

2.1. Search Process and Sources of Information

In order to guarantee the reliability of the documents, the information sources were
validated, having been considered reputable publication journals and university reposi-
tories. From the selected sources, we attempted to include research from multiple areas
and topics to provide a general and detailed representation of the ways image process-
ing research has developed and can be used. Nevertheless, some areas appear to have
developed a greater interest in some of the ML methods previously described. The search
process involved using a selection of keywords that are closely related to image processing
on popular scientific search engines such as Springer Science Direct, and Core. These search
engines were selected since they allowed us to make comparable searches, targeting specific
terms and filtering results by research area. In order to cover a broad range of topics and
magazines, the only search filter that we used was chosen to ensure that the subjects were
related to data science and/or artificial intelligence.

As of February 2023, a search using the prompt “image processing AI” returns
manuscripts related mostly to “Medicine”, “Computer science”, and “Engineering”. In fact,
while searching in the three different research aggregators, the results stayed somewhat
consistent. A summary of the results obtained can be observed in Figure 1.

Since there is more research available on some topics, the cases described ahead can
also have a higher prevalence when compared to others.

2.2. Inclusion and Exclusion Criteria for Article Selection

The research carried out in the different repositories resulted in a large number of
research works proposed by different authors. By considering the constant advances
made in this subject and the amount of research developed, we opted to mainly focus on
research developed in the last 5 years. We analyzed and selected the research sources that
provided novel and/or interesting applications of ML in image processing. The objective
was to present a broad representation of the recent trends in ML research and provide the
information in a more concise form.
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Figure 1. Main research areas for the tested search inputs for three different academic engines.

3. Technical Background

The growing use of the internet in general, and social networks in particular, has led
to the availability of a large increase in digital images; being privileged means being able
to express emotions and share information, which enables many diverse applications [10].
Identifying the interesting parts of a scene is a fundamental step for recognizing and inter-
preting an image [11]. To understand how the different techniques are applied in processing
images and extracting their features, as well as explaining the main concepts and technical-
ities of the different types of AI models, we will provide a general technical background
review of machine learning and image processing, which will help provide relevant context
to the scope of this review, as well as guide the reader through the covered topics.

3.1. Graphics Processing Units

Many advances covered in this paper, along with classical ML and scalable general-
purpose graphics processing unit (GPU) computing, have become critical components of
AI [1,10], enabling the processing of massive amounts of data generated each day and
lowering the barrier to adoption [1]. In particular, the usage of GPUs revolutionized the
landscape of classical ML and DL models. From the 1990s to the late 2000s, ML research
was predominantly focused on SVM, which was considered state-of-the-art [1]. In the
following decade, starting in 2010, GPUs brought new life into the field of DL, jumpstarting
a high amount of research and development [1]. State-of-the-art DL algorithms tend to
have higher computational complexity, requiring several iterations to make the parameters
converge to an optimal value [12,13]. However, the relevance of DL has only become
greater over the years, as this technology has gradually become one of the main focuses of
ML research [14].

While research into the use of ML on GPUs predates the recent resurgence of DL,
the usage of general-purpose GPUs for computing (GPGPU) became widespread when
CUDA was released in 2007 [1]. Shortly after, CNN started to be implemented on top of
GPUs, demonstrating dramatic end-to-end speedup, even over highly optimized CPU
implementations. CNNs are a subset of methods that can be used, for example, for image
restoration, which has demonstrated outstanding performance [1]. Some studies have
shown that, when compared with traditional neural networks and SVM, the accuracy of
recognition using CNNs is notably higher [12].

Some of these performance gains were accomplished even before the existence of
dedicated GPU-accelerated BLAS libraries. The release of the first CUDA Toolkit brought
new life to general-purpose parallel computing with GPUs, with one of the main benefits of
this approach being the ability of GPUs to enable a multithreaded single-instruction (SIMT)
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programming paradigm, higher throughput, and more parallel models when compared
to SIMD. This process makes several blocks of multiprocessors available, each with many
parallel cores (threads), allowing access to high-speed memory [1].

3.2. Image Processing

For humans, an image is a visual and meaningful arrangement of regions and ob-
jects [11]. Recent advances in image processing methods find application in different
contexts of our daily lives, both as citizens and in the professional field, such as compres-
sion, enhancement, and noise removal from images [10,15]. In classification tasks, an image
can be transformed into millions of pixels, which makes data processing very difficult [2].
As a complex and difficult image-processing task, segmentation has high importance and
application in several areas, namely in automatic visual systems, where precision affects
not only the segmentation results but also the results of the following tasks, which, directly
or indirectly, depend on it [11]. In segmentation, the goal is to divide an image into its
constituent parts (or objects)—sometimes referred to as regions of interest (ROI)—without
overlapping [16,17], which can be achieved through different feature descriptors, such as
the texture, color, and edges, as well as a histogram of oriented gradients (HOG) and a
global image descriptor (GIST) [11,17]. While the human vision system segments images on
a natural basis, without special effort, automatic segmentation is one of the most complex
tasks in image processing and computer vision [16].

Given its high applicability and importance, object detection has been a subject of
high interest in the scientific community. Depending on the objective, it may be necessary
to detect objects with a significant size compared to the image where they are located
or to detect several objects of different sizes. The results of object detection in images
vary depending on their dimensions and are generally better for large objects [18]. Image
processing techniques and algorithms find application in the most diverse areas. In the
medical field, image processing has grown in many directions, including computer vision,
pattern recognition, image mining, and ML [19].

In order to use some ML models when problems in image processing occur, it is often
necessary to reduce the number of data entries to quickly extract valuable information
from the data [10]. In order to facilitate this process, the image can be transformed into
a reduced set of features in an operation that selects and measures the representative
data properties in a reduced form, representing the original data up to a certain degree
of precision, and mimicking the high-level features of the source [2]. While deep neural
networks (DNNs) are often used for processing images, some traditional ML techniques
can be applied to improve the data obtained. For example, in Zeng et al. [20], a deep
convolutional neural network (CNN) was used to extract image features, and principal
component analysis (PCA) was applied to reduce the dimensionality of the data.

3.3. Machine Learning Overview

ML draws inspiration from a conceptual understanding of how the human brain
works, focusing on performing specific tasks that often involve pattern recognition, in-
cluding image processing [1], targeted marketing, guiding business decisions, or finding
anomalies in business processes [4]. Its flexibility has allowed it to be used in many fields
owing to its high precision, flexible customization, and excellent adaptability, being in-
creasingly more common in the fields of environmental science and engineering, especially
in recent years [3]. When learning from data, deep learning systems acquire the ability
to identify and classify patterns, making decisions with minimal human intervention [2].
Classical techniques are still fairly widespread across different research fields and indus-
tries, particularly when working with datasets not appropriate for modern deep learning
(DL) methods and architectures [1]. In fact, some data scientists like to reinforce that no
single ML algorithm fits all data, with proper model selection being dependent on the
problem being solved [21,22]. In diagnosis modeling that uses the classification paradigm,
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the learning process is based on observing data as examples. In these situations, the model
is constructed by learning from data along with its annotated labels [2].

While ML models are an important part of data handling, other steps need to be
taken in preparation, like data acquisition, the selection of the appropriate algorithm,
model training, and model validation [3]. The selection of relevant features is one of the
key prerequisites to designing an efficient classifier, which allows for robust and focused
learning models [23].

There are two main classes of methods in ML: supervised and unsupervised learning,
with the primary difference being the presence of labels in the datasets.

• In supervised learning, we can determine predictive functions using labeled train-
ing datasets, meaning each data object instance must include an input for both the
values and the expected labels or output values [21]. This class of algorithms tries to
identify the relationships between input and output values and generate a predictive
model able to determine the result based only on the corresponding input data [3,21].
Supervised learning methods are suitable for regression and data classification, be-
ing primarily used for a variety of algorithms like linear regression, artificial neural
networks (ANNs), decision trees (DTs), support vector machines (SVMs), k-nearest
neighbors (KNNs), random forest (RF), and others [3]. As an example, systems using
RF and DT algorithms have developed a huge impact on areas such as computational
biology and disease prediction, while SVM has also been used to study drug–target
interactions and to predict several life-threatening diseases, such as cancer or dia-
betes [23].

• Unsupervised learning is typically used to solve several problems in pattern recog-
nition based on unlabeled training datasets. Unsupervised learning algorithms are
able to classify the training data into different categories according to their different
characteristics [21,24], mainly based on clustering algorithms [24]. The number of
categories is unknown, and the meaning of each category is unclear; therefore, un-
supervised learning is usually used for classification problems and for association
mining. Some commonly employed algorithms include K-means [3], SVM, or DT
classifiers. Data processing tools like PCA, which is used for dimensionality reduction,
are often necessary prerequisites before attempting to cluster a set of data.

Some studies make reference to semi-supervised learning, in which a combination of
unsupervised and supervised learning methods are used. In theory, a mixture of labeled
and unlabeled data is used to help reduce the costs of labeling a large amount of data.
The advantage is that the existence of some labeled data should make these models perform
better than strictly unsupervised learning [21].

In addition to the previously mentioned classes of methods, reinforcement learning
(RL) can also be regarded as another class of machine learning (ML) algorithms. This class
refers to the generalization ability of a machine to correctly answer unlearned problems [3].

The current availability of large amounts of data has revolutionized data processing
and statistical modeling techniques but, in turn, has brought new theoretical and computa-
tional challenges. Some problems have complex solutions due to scale, high dimensions,
or other factors, which might require the application of multiple ML models [4] and large
datasets [25]. ML has also drawn attention as a tool in resource management to dynamically
manage resource scaling. It can provide data-driven methods for future insights and has
been regarded as a promising approach for predicting workload quickly and accurately [26].
As an example, ML applications in biological fields are growing rapidly in several areas,
such as genome annotation, protein binding, and recognizing the key factors of cancer
disease prediction [23]. The deployment of ML algorithms on cloud servers has also offered
opportunities for more efficient resource management [26].

Most classical ML techniques were developed to target structured data, meaning data
in a tabular form with data objects stored as rows and the features stored as columns.
In contrast, DL is specifically useful when working with larger, unstructured datasets,
such as text and images [1]. Additional hindrances may apply in certain situations, as, for
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example, in some engineering design applications, heterogeneous data sources can lead
to sparsity in the training data [25]. Since modern problems often require libraries that
can scale for larger data sizes, a handful of ML algorithms can be parallelized through
multiprocessing. Nevertheless, the final scale of these algorithms is still limited by the
amount of memory and number of processing cores available on a single machine [1].

Some of the limitations in using ML algorithms come from the size and quality
of the data. Real datasets are a challenge for ML algorithms since the user may face
skewed label distributions [1]. Such class imbalances can lead to strong predictive biases,
as models can optimize the training objective by learning to predict the majority label
most of the time. The term “ensemble techniques” in ML is used for combinations of
multiple ML algorithms or models. These are known and widely used for providing
stability, increasing model performance, and controlling the bias-variance trade-off [1].
Hyperparameter tuning is also a fundamental use case in ML, which requires the training
and testing of a model over many different configurations to be able to find the model with
the best predictive performance. The ability to train multiple smaller models in parallel,
especially in a distributed environment, becomes important when multiple models are
being combined [1].

Over the past few years, frequent advances have occurred in AI research caused by a
resurgence in neural network methods that have fueled breakthroughs in areas like image
understanding, natural language processing, and others [27]. One area of AI research
that appears particularly inviting from this perspective is deep reinforcement learning
(DRL), which marries neural network modeling with RL techniques. This technique has
exploded within the last 5 years into one of the most intense areas of AI research, generating
very promising results to mimic human-level performance in tasks varying from playing
poker [28], video games [29], multiplayer contests, and complex board games, including Go
and Chess [27]. Beyond its inherent interest as an AI topic, DRL might hold special interest
for research in psychology and neuroscience since the mechanisms that drive learning in
DRL were partly inspired by animal conditioning research and are believed to relate closely
to neural mechanisms for reward-based learning centering on dopamine [27].

3.3.1. Deep Learning Concepts

DL is a heuristic learning framework and a sub-area of ML that involves learning
patterns in data structures using neural networks with many nodes of artificial neurons
called perceptrons [10,19,30] (see Figure 2). Artificial neurons can take several inputs and
work according to a mathematical calculation, returning a result in a process similar to a bi-
ological neuron [19]. The simplest neural network, known as a single-layer perceptron [30],
is composed of at least one input, one output, and a processor [31]. Three different types of
DL algorithms can be differentiated: multilayered perceptron (MLP) with more than one
hidden layer, CNN, and recurrent neural networks (RNNs) [32].

One important consideration towards generic neural networks is they are extremely
low-bias learning systems. As dictated by the bias–variance trade-off, this means that
neural networks, in the most generic form employed in the first DRL models, tend to be
sample-inefficient and require large amounts of data to learn. A narrow hypothesis set
can speed the learning process if it contains the correct hypothesis or if the specific biases
the learner adopts happen to fit with the material to be learned [27]. Several proposals
for algorithms and models have emerged, some of which have been extensively used
in different contexts, such as CNNs, autoencoders, and multilayer feedback RNN [10].
For datasets of images, speech, and text, among others, it is necessary to use different
network models in order to maximize system performance [33]. DL models are often used
for image feature extraction and recognition, given their higher performance when dealing
with some of the traditional ML problems [10].

DL techniques differ from traditional ML in some notable ways (see also Figure 2):

1. Training a DNN implies the definition of a loss function, which is responsible for
calculating the error made in the process given by the difference between the expected
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output value and that produced by the network. One of the most used loss functions
in regression problems is the mean squared error (MSE) [30]. In the training phase,
the weight vector that minimizes the loss function is adjusted, meaning it is not
possible to obtain analytical solutions effectively. The loss function minimization
method usually used is gradient descent [30].

2. Activation functions are fundamental in the process of learning neural network
models, as well as in the interpretation of complex nonlinear functions. The activation
function adds nonlinear features to the model, allowing it to represent more than one
linear function, which would not happen otherwise, no matter how many layers it
had. The Sigmoid function is the most commonly used activation function in the early
stages of studying neural networks [30].

3. As their capacity to learn and adjust to data is greater than that of traditional ML
models, it is more likely that overfitting situations will occur in DL models. For this
reason, regularization represents a crucial and highly effective set of techniques used
to reduce the generalization errors in ML. Some other techniques that can contribute
to achieving this goal are increasing the size of the training dataset, stopping at an
early point in the training phase, or randomly discarding a portion of the output of
neurons during the training phase [30].

4. In order to increase stability and reduce convergence times in DL algorithms, optimiz-
ers are used, with which greater efficiency in the hyperparameter adjustment process
is also possible [30].

Figure 2. Differences in the progress stages between traditional ML methods and DL methods.

In the last decades, three main mathematical tools have been studied for image model-
ing and representation, mainly because of their proven modeling flexibility and adaptability.
These methods are the ones based on probability statistics, wavelet analysis, and partial
differential equations [34,35]. In image processing procedures, it is sometimes necessary
to reduce the number of input data. An image can be translated into millions of pixels for
tasks, such as classifications, meaning that data entry would make the processing very diffi-
cult. In order to overcome some difficulties, the image can be transformed into a reduced set
of features, selecting and measuring some representative properties of raw input data in a
more reduced form [2]. Since DL technologies can automatically mine and analyze the data
characteristics of labeled data [13,14], this makes DL very suitable for image processing and
segmentation applications [14]. Several approaches use autoencoders, a set of unsupervised
algorithms, for feature selection and data dimensionality reduction [31].

Among the many DL models, CNNs have been widely used in image processing
problems, proving more powerful capabilities in image processing than traditional algo-
rithms [36]. As shown in Figure 3, a CNN, like a typical neural network, comprises an
input layer, an output layer, and several hidden layers [37]. A single hidden layer in a CNN
typically consists of a convolutional layer, a pooling layer, a fully connected layer [38], and
a normalization layer.

Additionally, the number of image-processing applications based on CNNs is also
increasing daily [10]. Among the different DL structures, CNNs have proven to be more
efficient in image recognition problems [20]. On the other hand, they can be used to improve
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image resolution, enhancing their applicability in real problems, such as the transmission
or storage of images or videos [39].

DL models are frequently used in image segmentation and classification problems,
as well as object recognition and image segmentation, and they have shown good results in
natural language processing problems. As an example, face recognition applications have
been extensively used in multiple real-life examples, such as airports and bank security
and surveillance systems, as well as mobile phone functionalities [10].

Figure 3. Illustration of the structure of a CNN.

There are several possible applications for image-processing techniques. There has
been a fast development in terms of surveillance tools like CCTV cameras, making inspect-
ing and analyzing footage more difficult for a human operator. Several studies show that
human operators can miss a significant portion of the screen action after 20 to 40 minutes
of intensive monitoring [18]. In fact, object detection has become a demanding study field
in the last decade. The proliferation of high-powered computers and the availability of
high-speed internet has allowed for new computer vision-based detection, which has been
frequently used, for example, in human activity recognition [18], marine surveillance [40],
pedestrian identification [18], and weapon detection [41].

One alternative application of ML in image-processing problems is image super-
resolution (SR), a family of technologies that involve recovering a super-resolved image
from a single image or a sequence of images of the same scene. ML applications have
become the most mainstream topic in the single-image SR field, being effective at generating
a high-resolution image from a single low-resolution input. The quality of training data
and the computational demand remain the two major obstacles in this process [42].

3.3.2. Reinforcement Learning Concepts

RL is a set of ML algorithms that use a mathematical framework that can learn to
optimize control strategies directly from the data [4,43] based on a reward function in
a Markov decision process [44,45]. The Markov decision process (MDP) is a stochastic
process used to model the decision-making process of a dynamic system. The decision
process is sequential, where actions/decisions depend on the current state and the system
environment, influencing not only the immediate rewards but also the entire decision
process [4]. One commonly referenced RL problem is the multi-armed bandit, in which an
agent selects one of n different options and receives a reward depending on the selection.
This problem illustrates how RL can provide a trade-off between exploration (trying
different arms) and exploitation (playing the arm with the best results) [44]. This group
of algorithms is derived from behaviorist psychology, where an intelligent body explores
the external environment and updates its strategy with feedback signals to maximize the
cumulative reward [43], which means the action is exploitative [46].

In RL, the behavior of the Markov decision process is determined by a reward func-
tion [4]. The basis of a DRL network is made up of an agent and an environment, following
an action-reward type of operation. The interaction begins in the environment with the
sending of its state to the agent, which takes an action consistent with the state received, ac-
cording to which it is subsequently rewarded or penalized by the environment [4,44,46–48].
RL is considered an autonomous learning technique that does not require labeled data but
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for which search and value function approximation are vital tools [4]. Often, the success
of RL algorithms depends on a well-designed reward function [45]. Current RL methods
still present some challenges, namely the efficiency of the learning data and the ability to
generalize to new scenarios [49]. Nevertheless, this group of techniques has been used
with tremendous theoretical and practical achievements in diverse research topics such as
robotics, gaming, biological systems, autonomous driving, computer vision, healthcare,
and others [44,48,50–53].

One common technique in RL is random exploration, where the agent makes a deci-
sion on what to do randomly, regardless of its progress [46]. This has become impractical
in some real-world applications since learning times can often become very large. Re-
cently, RL has shown a significant performance improvement compared to non-exploratory
algorithms [46,54]. Another technique, inverse reinforcement learning (IRL), uses an oppo-
site strategy by aiming to find a reward function that can explain the desired behavior [45].
In a recent study using IRL, Hwang et al. [45] proposed a new RL method, named option com-
patible reward inverse reinforcement learning, which applies an alternative framework to the
compatible reward method. The purpose was to assign reward functions to a hierarchical
IRL problem that is introduced while making the knowledge transfer easier by converting
the information contained in the options into a numerical reward value. While the authors
concluded that their novel algorithm was valid in several classical benchmark domains,
they remarked that applying it to real-world problems still required extended evaluation.

RL models have been used in a wide variety of practical applications. For example,
the COVID-19 pandemic was one of the health emergencies with the widest impact that
humans have encountered in the past century. Many studies were directed towards this
topic, including many that used ML techniques to several effects. Zong and Luo (2022) [55]
conducted a study where they employed a custom epidemic simulation environment for
COVID-19 where they applied a new multi-agent RL-based framework to explore optimal
lockdown resource allocation strategies. The authors used real epidemic transmission
data to calibrate the employed environment to obtain results more consistent with the real
situation. Their results indicate that the proposed approach can adopt a flexible allocation
strategy according to the age distribution of the population and economic conditions. These
insights could be extremely valuable for decision-makers in supply chain management.

Some technical challenges blocked the combination of DNN with RL until 2015, when
breakthrough research demonstrated how the integration could work in complex domains,
such as Atari video games [29,56], leading to rapid progress toward improving and scaling
DRL [27]. Some of the first successful applications of DRL came with the success of the
deep Q network algorithm [56]. Currently, the application of DRL models to computer
vision problems, such as object detection and tracking or image segmentation, has gained
emphasis, given the good results it has produced [31]. RL, along with supervised and
unsupervised methods, are the three main pattern recognition models used for research [57].

The initial advances in RL were boosted by the good performance of the [56] replay
algorithm, as well as the use of two networks, one with fixed weights, which serves as the
basis for a second network, for which the weights are iteratively updated during training,
replacing the first one when the learning process ends. With the aim of reducing the high
convergence times of DRL algorithms, several distributed framework approaches [58]
have been proposed. This suit of methods has been successfully used for applications in
computer vision [59] and in robotics [58].

3.4. Current Challenges

Considering everything that has been discussed previously, some of the main chal-
lenges that AI image processing faces are common across multiple subjects. Most appli-
cations require a large volume of images that are difficult to obtain. Indeed, due to the
large amount of data, the process of extracting features from a dataset can become very
time and resource-consuming. Some models, such as CNNs, can potentially have millions
of parameters to be learned, which might require considerable effort to obtain sufficient
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labeled data [60]. Since AI models are heavily curated for a given purpose, the model
obtained will likely be inapplicable outside of the specific domain in which it was trained.
The performance of a model can be heavily impacted by the data available, meaning the
accuracy of the outcome can also vary heavily [61]. An additional limitation that has been
identified during research is the sensitivity of models regarding noisy or biased data [60].
A meticulous and properly designed data-collection plan is essential, often complemented
by a prepossessing phase to ensure good-quality data. Some researchers have turned
their attention to improving the understanding of the many models. Increased focus has
been placed on the way the weights of a neural network can sometimes be difficult to
decipher and extract useful information from, which can lead to wrong assumptions and
decisions [62]. In order to facilitate communication and discussion, some authors have
also attempted to provide a categorization system of DL methodologies based on their
applications [31].

4. Image Processing Developments

The topic of ML has been studied with very broad applications and in multiple areas
that require data collection and processing. Considering recent publications from the last
7 years (2017–2023), we see that several studies have been developed dealing with different
subjects, with proposals of many different models. In particular, we found a considerable
amount of research papers showing interest in using DL in medicine, engineering, and
biology. When we consider the volume of research developed, there is a clear increase
in published research papers targeting image processing and DL, over the last decades.
A search using the terms “image processing deep learning” in Springerlink generated
results demonstrating an increase from 1309 articles in 2005 to 30,905 articles in 2022, only
considering review and research papers. In the aggregator Science Direct, we saw a similar
result, demonstrating an increase from 1173 in 2005 to 27,393 scientific manuscripts in
2022. The full results across the referred timeline can be observed in Figure 4. These
results validate an upward trend in attention to DL methods, as also described in the
previous section.

Figure 4. Number of research articles found using the search query “image processing deep learning”
for two different aggregators.

A lot of recent literature, especially in the medical field, has attempted to address the
biggest challenges, mainly derived from data scarcity and model performance [14,61–64].
Some research has focused on improving perforce or reducing the computational require-
ments in models such as CNNs [60,65,66] using techniques such as model pruning or
compression. These have the objective of reducing the model’s overall size or operat-
ing cost. In the next section, we will discuss relevant approaches taken on the subject
to illustrate how the scientific community has been using ML methods to solve specific
data-driven problems and discuss some of the implications.

4.1. Domains

Studies involving image processing can be found on topics such as several infras-
tructure monitoring applications [13,67,68] in road pavement [69–71], remote sensing
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images [12], image reconstruction [72], detecting and quantifying plant diseases [73–77],
identification of pests in plant crops [17,78,79], automated bank cheque verification [80]
or even for graphical search [11,81–83]. There is also an ample amount of research using
ML algorithms in the medical field. DL techniques have been applied in infection monitor-
ing [64,84,85], in developing personalized advice for treatment [19,86], in diagnosing several
diseases like COVID-19 [63,87–89], or imaging procedures including radiology [14,63,90,91]
and pathology imaging [19] or in cancer screening [91–94].

While most modern research hasn’t focused on traditional ML techniques, there are still
some valuable lessons to be taken from these studies, with interesting results obtained in
engineering subjects. In 2022, Pratap and Sardana [21] conducted and published a review on
image processing in materials science and engineering using ML. In this study, the authors
reviewed several research materials focusing on ML, the ML model selection, and the
image processing technique used, along with the context of the problem. The authors
suggested SimpleCV as a possible framework, specifically for digital image processing.
This type of approach was justified by the authors since materials have a 3D structure
but most of the analysis on image processing that has been done is of 2D images [21].
Image super-resolution (SR) is another interesting application of ML concepts for image
processing challenges that has attracted some attention in the past decades [15,42]. In 2016,
Zhao et al. [42] proposed a framework for single-image super-resolution tasks, consisting
of kernel blur estimation, to improve the training quality as well as the model performance.
Using the kernel blur estimation, the authors adopted a selective patch processing strategy
combined with sparse recovery. While their result indicated a better level of performance
than several super-resolution approaches, some of the optimization problems encountered
were, themselves, extraordinarily time-consuming, and as such, not a suitable solution for
efficiency improvement. Research such as those can often serve as inspiration to address
nuanced engineering problems that may be more specific to certain research subjects. As an
example, in the last decade, the automobile industry has made a concerted shift towards
intelligent vehicles equipped with driving assistance systems, with new vision systems in
some higher-end cars. Some vision systems include cameras mounted in the car, which can
be used by engineers to obtain large quantities of images and develop many of the future
self-driving car functionalities [66].

Some advanced driver assistance systems (ADAS) that use AI have been proposed to
assist drivers and attempt to significantly decrease the number of accidents. These systems
often employ technologies such as image sensors, global positioning, radar imaging, and
computer vision techniques. Studies have been developed that tested a number of different
image processing techniques to understand their accuracy and limitations and found good
results with traditional ML methods like SVM and optimum-path forest classifier [95]
or K-Means clustering [11]. One potential benefit of using this approach is that some
traditional methods can be less costly to apply and can be used as complementary on many
different subjects. Rodellar et al. [16] investigated the existing research on the analysis of
blood cells, using image processing. The authors acknowledged the existence of subtle
morphological differences for some lymphoma and leukemia cell types, that are difficult to
identify in routine screening. Some of their most curious findings were that the methods
most commonly used in the classification of PB cells were Neural Networks, Decision Trees
(DT), and SVM. The authors noted that image-based automatic recognition systems could
position themselves as new modules of the existing analyzers or even that new systems
could be built and combined with other well-established ones.

4.1.1. Research Using Deep Learning

Regarding Deep Learning methodologies, many studies attempt to improve the per-
formance of DL models, which we highlight next. In their research, Monga et al. [96]
conducted a review of usage and research involving Deep Neural Networks (DNN) that
covered some of the most popular techniques for algorithm unrolling in several domains
of signal and image processing. The authors extensively covered research developed on
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a technique called algorithm unrolling or unfolding. This method can provide a concrete
and systematic connection between iterative algorithms, which are used widely in signal
processing, and DNNs. This type of application has recently attracted enormous attention
both in theoretical investigations and practical applications. The authors noted that while
substantial progress has been made, more work needs to be done to comprehend the mecha-
nism behind the unrolling network behavior. In particular, they highlight the need to clarify
why some of the state-of-the-art networks perform so well on several recognition tasks. In a
study published by Zeng et al. [20], a correction neural network model named Boundary
Regulated Network (BR-Net) was proposed. It used high-resolution remote satellite images
as the source, and the features of the image were extracted through convolution, pooling,
and classification. The model accuracy was additionally increased through training on
the experimental dataset in a particular area. In their findings, the authors indicated a
performance improvement of 15%, while the recognition speed was also increased by 20%,
compared with the newly researched models, further noting that, for a considerably large
amount of data, the model will have poor generalization ability. In Farag [66], the investiga-
tion focused on the ability of a CNN model to learn safe driving maneuvers based on data
collected using a front-facing camera. Their data collection happened using urban routes
and was performed by an experienced driver. The author developed a 17-layer behavior
cloning CNN model with four drop-out layers added to prevent overfitting during training.
The results looked promising enough, whereby a small amount of training data from a
few tracks was sufficient to train the car to drive safely on multiple tracks. For such an
approach, one possible shortcoming is that the approach taken may require a massive
number of tracks in order to be able to generalize correctly for actual street deployment.

Some modern research has focused on expanding the practical applications of DL
models in image processing:

• One of the first DL models used for video prediction, inspired by the sequence-to-
sequence model usually used in natural language processing [97], uses a recurrent
long and short term memory network (LSTM) to predict future images based on a
sequence of images encoded during video data processing [97].

• In their research , Salahzadeh et al. [98] presented a novel mechatronics platform for
static and real-time posture analysis, combining 3 complex components. The com-
ponents included a mechanical structure with cameras, a software module for data
collection and semi-automatic image analysis, and a network to provide the raw
data to the DL server. The authors concluded that their device, in addition to being
inexpensive and easy to use, is a method that allows postural assessment with great
stability and in a non-invasive way, proving to be a useful tool in the rehabilitation of
patients.

• Studies in graphical search engines and content-based image retrieval (CBIR) systems
have also been successfully developed recently [11,82,99,100], with processing times
that might be compatible with real-time applications. Most importantly, the corre-
sponding results of these studies appeared to show adequate image retrieval capa-
bilities, displaying an undisputed similarity between input and output, both on a
semantic basis and a graphical basis [82]. In a review by Latif et al. [101], the authors
concluded that image feature representation, as it is performed, is impossible to be
represented by using a unique feature representation. Instead, it should be achieved
by a combination of said low-level features, considering they represent the image in
the form of patches and, as such, the performance is increased.

• In their publication, Rani et al. [102] reviewed the current literature found on this topic
from the period from 1995 to 2021. The authors found that researchers in microbiology
have employed ML techniques for the image recognition of four types of micro-
organisms: bacteria, algae, protozoa, and fungi. In their research work, Kasinathan
and Uyyala [17] apply computer vision and knowledge-based approaches to improve
insect detection and classification in dense image scenarios. In this work, image
processing techniques were applied to extract features, and classification models were
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built using ML algorithms. The proposed approach used different feature descriptors,
such as texture, color, shape, histograms of oriented gradients (HOG) and global
image descriptors (GIST). ML was used to analyze multivariety insect data to obtain
the efficient utilization of resources and improved classification accuracy for field crop
insects with a similar appearance.

As the most popular research area for image processing, research studies using DL
in the medical field exist in a wide variety of subjects. Automatic classifiers for imaging
purposes can be used in many different medical subjects, often with very good results.
However, the variety of devices, locations, and sampling techniques used can often lead
to undesired or misunderstood results. One clear advantage of these approaches is that
some exams and analyses are based on a human inspection, which can be time-consuming,
require extensive training for the personnel, and may also be subject to subjectivity and
variability in the observers [16,103,104]. In 2023, Luis et al. applied explainable artificial
intelligence (xAI) as a way to test the application of different classifiers for monkeypox
detection and to better understand the results [62]. With a greater focus on properly
interpreting the model results, approaches such as these are increasingly more common.
Recently, Melanthota et al. [32] conducted a review of research regarding DL-based image
processing in optical microscopy. DL techniques can be particularly useful in this topic since
manual image analysis of tissue samples tends to be a very tedious and time-consuming
process due to the complex nature of the biological entities, while the results can also
be highly subjective. The authors concluded that DL models perform well in improving
image resolution in smartphone-based microscopy, being an asset in the development
and evolution of healthcare solutions in remote locations. The authors also identified
an interesting application of DL to monitor gene expression and protein localization in
organisms. Overall, it was noted how CNN-based DL networks have emerged as a model
with great potential for medical image processing.

Brain image segmentation is a subject addressed by a vast number of researchers who
seek to develop systems for accurate cancer diagnosis able to differentiate cancer cells from
healthy ones [105–111]. A problem that such approaches can mitigate is that human verifi-
cation of magnetic resonance imaging to locate tumors can be prone to errors. In a recent
study, Devunooru et al. [105] provided a taxonomy system for the key components needed
to develop an innovative brain tumor diagnosis system based on DL models. The taxonomy
system, named data image segmentation processing and viewing (DIV), comprised research
that had been developed since 2016. The results indicated that the majority of the proposed
approaches only applied two factors from the taxonomy system, namely data and image
segmentation, ignoring a third important factor, which is "view". The comprehensive
framework developed by the authors considers all three factors to overcome the limitations
of state-of-the-art solutions. Finally, the authors consider that efforts should be made to
increase the efficiency of approaches used in image segmentation problems, as well as in
problems processing large quantities of medical images.

In their review, Yedder et al. [112] focused on studying state-of-the-art medical image
reconstruction algorithms focused on DL-based methods. The main focus of his research
was the reconstruction of biomedical images as an important source of information for the
elaboration of medical diagnoses. The authors’ work focused on the differences observed by
applying conventional reconstruction methods in contrast to learning-based methods. They
showed particular interest in the success of DL in computer vision and medical imaging
problems, as well as its recent rise in popularity, concluding that DL-based methods
appeared to adequately address the noise sensitivity and the computational inefficiency of
iterative methods. Furthermore, the authors noted that the use of DL methods in medical
image reconstruction encompassed an ever-increasing number of modalities, noting a
clear trend in the newer art toward unsupervised approaches, primarily instigated by the
constraints in realistic or real-world training data.
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4.1.2. Research Using Reinforcement Learning

Finally, we will finalize our state-of-the-art review by referencing research that used
reinforcement learning approaches, mostly in combination with deep learning methods. RL
research has been developed in several topics, including robotics [113–115], design automa-
tion [25], energy management strategies for hybrid vehicles [43], parameter estimation in
the context of biological systems [44,116,117], in facial motion learning [48,50,118], and have
also been successfully applied in closed-world environments, such as games [51,54,119,120].
In the topic of image processing, some pertinent studies were found, especially using
DRL [31,47,57,121]. Many novel applications continue to be proposed by researchers.
A study conducted in 2022 by Dai et al. [122] explored effective healthcare strategies
for simulated human bodies through the combination of DRL methods with conceptual
embedding techniques. In this instance, the DNN architecture was used to recreate the
transformation function of the input-output characteristics in a human body, using a
dataset containing 990 tongue images of nine body constitution (BC) types. The authors
concluded that the proposed framework could be particularly useful when applied to a
high-dimensional dynamic system of the human body. Amongst the most relevant research
encountered, we highlight the following:

In order to overcome the challenges in computer vision, in terms of data-efficiency
or generalizing to new environments, a study from 2020 by Laskin et al. [49] presented a
reinforcement learning module with augmented data leveraging, which could be incor-
porated in typical RL systems to effortlessly improve their overall performance. The au-
thors remarked that data augmentations could potentially improve data efficiency in RL
methods operating from pixels, even without significant changes to the underlying RL
algorithm. The proposed approach by Laskin et al. [49] could help make deep RL be
more practical for solving real-world problems. In a different example, Khayyat and
Elrefaei Khayyat and Elrefaei [47] successfully developed a system for retrieving ancient
images from Arabic manuscripts through an RL agent. The main benefit of this approach
was the reduction of data dimensionality, which leads to increased accuracy in image clas-
sification and retrieval tasks. Image visual features, extracted using a pre-trained VGG19
convolutional neural network, are fused with textual features through a concatenation and
hash merge layer. The success achieved in this scenario may also suggest that the model
can be applied to other types of images.

Amongst the recent advancements in DRL focusing on computing optimization is the
work presented by Ren et al. [57], which proposed a system for image stereo-matching
algorithms with rule constraints and parallax estimation. Initially, the edge pixel constraint
rules were established, and adjustments were made to the image blocks; then, the image
parallax estimation was performed, and a DRL analysis was executed by a CNN in an
iterative way. The results showed the proposed algorithm was able to complete convergence
quickly, with an accuracy of up to more than 95%. However, the matching targets were not
clearly defined, particularly in small objects with curved surfaces, which could limit their
practicality. Due to a large number of existing models, in 2022 , Le et al. [31] conducted an
extensive review of the state-of-the-art advances using DRL in computer vision research.
The main objective was to propose a categorization of DRL methodologies, present the
potential advantages and limitations in computer vision, and discuss future research
directions. The authors propose to divide DRL methods into seven categories, depending
on their applications: (i) landmark localization, (ii) object detection, (iii) object tracking,
(iv) registration on both 2D image and 3D image volumetric data, (v) image segmentation,
(vi) video analysis, and (vii) other applications. Some of the most promising approaches
selected by the authors to create new insights into this research field included inverse DRL,
multi-agent DRL, meta DRL, and imitation learning.

5. Discussion and Future Directions

Although the advances and successes of ML are undeniable, particularly in the field of
digital image processing, there are still important limitations, both in terms of its operational
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mode and in terms of its design. One of the most important is the fact that, for the most
part, the algorithms developed to date are trained to perform a certain task, being able to
solve a particular problem. The generalization capacity of existing ML models is limited,
making it difficult to apply them to solve problems other than those for which they were
trained. Although it is possible to apply learning transfer techniques with the aim of using
existing models in new contexts, the results still fall short of the needs.

As previously noted, another one of the limitations we identified concerns the models’
efficiency. ML, in particular DL techniques, requires a large amount of data and compu-
tational resources to train and run the models, which may be infeasible or impractical
in some scenarios or applications. This requires techniques that can reduce the cost and
time of training and inference, as well as increase the robustness and generalization of the
models. Some examples of these techniques are model compression, model pruning, model
quantization, and knowledge distillation, among others.

Additionally, it is important to highlight the difficulty in interpreting DL models,
given their complexity and opacity, which makes it difficult to understand their internal
functioning, as well as the results produced. This requires techniques that can explain
the functioning, logic, and reliability of models, as well as the factors that influence their
decisions. Some examples of these techniques are the visualization of activations, sensitivity
analysis, attribution of importance, and generation of counterfacts, among others.

No less important are the limitations that deserve some reflection related to ethics and
responsibility since DL has a major impact on society, business, and people. This requires
the use of techniques that can guarantee the privacy, security, transparency, justice, and
accountability of models, as well as avoid or mitigate their possible negative effects. Some
examples of techniques that can help in the mitigation of such limitations are homomorphic
encryption, federated learning, algorithmic auditing, and bias detection.

6. Conclusions

In this review, we analyzed some of the most recent works developed in ML, partic-
ularly using DL and RL methods or combinations of these. It is becoming increasingly
obvious that image processing systems are applied in the most diverse contexts and have
seen increasingly more impressive results as the methods have matured. Some of the
observed trends appear to indicate a prevalence of certain techniques in certain research
topics, which is not surprising. Amongst these trends, we observed:

• Interest in image-processing systems using DL methods has exponentially increased
over the last few years. The most common research disciplines for image processing
and AI are medicine, computer science, and engineering.

• Traditional ML methods are still extremely relevant and are frequently used in fields
such as computational biology and disease diagnosis and prediction or to assist in
specific tasks when coupled with other more complex methods. DL methods have
become of particular interest in many image-processing problems, particularly because
of their ability to circumvent some of the challenges that more traditional approaches
face.

• A lot of attention from researchers seems to focus on improving model performance,
reducing computational resources and time, and expanding the application of ML
models to solve concrete real-world problems.

• The medical field seems to have developed a particular interest in research using
multiple classes and methods of learning algorithms. DL image processing has been
useful in analyzing medical exams and other imaging applications. Some areas have
also still found success using more traditional ML methods.

• Another area of interest appears to be autonomous driving and driver profiling,
possibly powered by the increased access to information available both for the drivers
and the vehicles alike. Indeed, modern driving assistance systems have already
implemented features such as (a) road lane finding, (b) free driving space finding,
(c) traffic sign detection and recognition, (d) traffic light detection and recognition,
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and (e) road-object detection and tracking. This research field will undoubtedly be
responsible for many more studies in the near future.

• Graphical search engines and content-based image retrieval systems also present
themselves as an interesting topic of research for image processing, with a diverse
body of work and innovative approaches.

We found interesting applications using a mix of DL and RL models. The main
advantage of these approaches is having the potential of DL to process and classify the data
and use reinforcement methods to capitalize on the historical feedback of the performed
actions to fine-tune the learning hyperparameters. This is one area that seems to have
become a focus point of research, with an increasing number of studies being developed in
an area that is still recent. This attention will undoubtedly lead to many new developments
and breakthroughs in the following years, particularly in computer vision problems, as this
suite of methods becomes more mature and more widely used.
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