
Citation: Che, H.; Tang, Y.

A Simplified Convex Optimization

Model for Image Restoration with

Multiplicative Noise. J. Imaging 2023,

9, 229. https://doi.org/10.3390/

jimaging9100229

Academic Editor: Hocine Cherifi

Received: 14 September 2023

Revised: 11 October 2023

Accepted: 16 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

A Simplified Convex Optimization Model for Image
Restoration with Multiplicative Noise
Haoxiang Che 1 and Yuchao Tang 2,*

1 Department of Mathematics, Nanchang University, Nanchang 330031, China; 405500210011@email.ncu.edu.cn
2 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
* Correspondence: yctang@gzhu.edu.cn

Abstract: In this paper, we propose a novel convex variational model for image restoration with
multiplicative noise. To preserve the edges in the restored image, our model incorporates a total
variation regularizer. Additionally, we impose an equality constraint on the data fidelity term, which
simplifies the model selection process and promotes sparsity in the solution. We adopt the alternating
direction method of multipliers (ADMM) method to solve the model efficiently. To validate the
effectiveness of our model, we conduct numerical experiments on both real and synthetic noise
images, and compare its performance with existing methods. The experimental results demonstrate
the superiority of our model in terms of PSNR and visual quality.
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1. Introduction

Image restoration is a fundamental problem in image processing that focuses on recov-
ering the original image from a degraded version. It encompasses various problems like
image denoising, image deblurring, and image inpainting, and many others. For image
denoising, there are different types of noise that can corrupt the image, including additive
Gaussian noise, Poisson noise, and impulse noise. These noise types are commonly en-
countered and well-studied in the field of image processing. Several restoration algorithms
have been developed to address these types of noise and achieve better image quality.
However, multiplicative noise is distinct from these commonly encountered noise types. It
deviates from the traditional assumption of additive noise and follows a different statistical
distribution, such as the Gamma or Rayleigh distribution. Multiplicative noise can arise
in various imaging scenarios, such as synthetic aperture radar (SAR) [1], ultrasound [2],
laser images [3], and other coherent image systems [4]. The mathematical model for image
degradation caused by blur and multiplicative noise can be expressed as:

f = (Au) ◦ η, (1)

where f ∈ Rm represents the observed blurred and noisy image, A ∈ Rm×m is the blurring
operator, and u ∈ Rm represents the original image that to be recovered. The symbol ◦
denotes the element-wise product between two vectors, and η represents the multiplicative
noise interference. When the blurring operator A is an identity matrix (A = I), the problem
degenerates into a multiplicative noise denoising problem. Without the loss of generality, it
is assumed that both u and η are greater than 0, implying that f is also greater than 0. The
objective of this inverse problem is to reconstruct the original image that has been distorted
by multiplicative noise η. However, solving this problem is challenging due to its ill-posed
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nature, wherein a unique or stable solution does not exist. Consequently, regularization
techniques are necessary to obtain a reasonable approximation of the original image.

The problem of multiplicative noise has received considerable attention in past re-
search. Various methods have been proposed in the literature to address this issue, such
as the filter-based method [5], wavelet-based method [6,7], hybrid methods [8], and
variational-based methods. Variational-based methods are a class of image restoration
techniques that use variational calculus to formulate and solve the inverse problem of
recovering a clean image from a noisy one. They often involve minimizing an energy
functional that consists of a data fidelity term and a regularization term. The data fidelity
term measures how well the restored image matches the observed image, whereas the
regularization term imposes some prior knowledge or smoothness constraints on the re-
stored image. To address the problem of removing multiplicative noise, Rudin, Lions, and
Osher [9] introduced a variational model that utilizes the mean and variance information of
the noise. This model, commonly referred to as the RLO model, innovatively incorporates
the TV regularity term to preserve the sharpness of the recovered image edges. The RLO
model is defined as follows:

min
u
‖u‖TV

s.t.
f

Au
= 1(

f
Au
− 1
)2

= θ2,

(2)

where θ2 represents the variance of the noise. The RLO model only considers the mean
and variance of the noise, but does not take into account its distribution. Based on the
property that multiplicative noise follows a Gamma distribution with a mean of 1, Aubert
and Aujol [10] proposed another variational model using the maximum a posteriori (MAP)
estimation method to estimate the original image from the noisy one, which is widely
known as the AA model:

min
u

〈
log(Au) +

f
Au

, 1
〉
+ λ‖u‖TV , (3)

where the first term in the AA model is the data fidelity term, the second term is the TV
regularization term, and the regularization parameter λ balances the trade-off between
the two terms in the objective function. The AA model is a non-convex optimization
problem that poses challenges for finding its global solution. Several algorithms have
been adapted from the literature to deal with this problem. One of them is the difference
of convex algorithm (DCA) proposed by Zeng et al. [11], which transforms the energy
function of the AA model into a form of the difference of two convex functions, and
then alternately solves the two convex subproblems. Another approach is to use the split
Bregman method, which was employed by Bioucas-Dias and Figueiredo [12,13] to handle
the AA model. Woo and Hyenkyun [14] also developed a proximal linearized alternating
direction (PLAD) algorithm for the same purpose. Some other methods focus on selecting
spatially adaptive regularization parameters [15] or converting the multiplicative noise
into additive noise [16,17].

To deal with the non-convexity of the AA model, several algorithms have been pro-
posed in the literature. For example, Zeng et al. [11] used a difference of convex algorithm
(DCA) to transform the energy function of the non-convex AA model into a convex mi-
nus convex one, and then solved for the two convex ones to obtain the solution of the
AA model. Bioucas-Dias and Figueiredo utilized the split-Bregman or variable splitting
method to solve the AA model [12,13]. Woo and Hyenkyun [14] also developed the prox-
imal linearized alternating direction (PLAD) algorithm for the same purpose, and some
papers focus on selecting spatially adaptive regularization parameters [15]. Moreover,
some methods convert the multiplicative noise into additive noise, such as the Box-Cox
transformation [16] and the ADMM algorithm [17].
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The RLO model and the AA model are both non-convex models. Solving a non-
convex model is challenging because the existence and uniqueness of the solutions are
not guaranteed. The authors of the paper on the AA model prove the existence of their
solution, but only give a sufficient condition for the uniqueness. The condition is that u
satisfies 0 < u < 2 f . This implies that the AA model is strictly convex in this case and,
thus, has a unique solution. However, a general proof of uniqueness for the AA model
is still lacking. Several methods have been developed to cope with the non-convexity of
multiplicative noise models, especially for the AA model.

By applying a logarithmic transformation to the AA model using z = log(u), one
obtains the logarithmic model. This model has been investigated by various authors,
such as [18–21]. Shi and Osher [18] developed a method to handle the non-convexity in
multiplicative noise by using a log transform, and obtained a general form that encompasses
different models for different parameters. This model is called the SO model in the literature.
Huang et al. [19] also introduced a logarithmic model known as the HNW model. The
HNW model differs from the SO model in that it directly applies the logarithmic transform
to the AA model. Since the logarithmic model is convex, a unique solution exists, and after
obtaining it, an exponential transformation is applied to obtain the desired recovery image.
Apart from the logarithmic transformation of u that ensures convexity, taking the mth root
transformation of u can also convert the AA model into a convex one. This approach is
discussed, for example, in [22–24].

The logit model and the mth root model are only applicable to denoising tasks and
cannot be used for deblurring. However, Dong and Zeng [25] addressed the non-convexity
of the AA model by introducing a quadratic penalty term, enabling it to handle deblurring
tasks. This model is more versatile compared to the logarithmic and mth root models,
which are limited to denoising. In another approach, Steidl and Teuber [26] utilized the
classical I-divergence to address multiplicative noise and proposed the I-divergence model.
Additionally, Woo and Yun [14] proposed a proximal linearized alternating direction
method for solving the logarithmic and I-divergence models. In contrast, Zhao et al. [27]
proposed a new model based on the idea of decoupling. The main concept behind this
model is to separate the image from the noise η on the right-hand side of (1) by incorporating
it into the left-hand side of the equation. We refer to this model as the ZWN model:

min
w,u

1
2
‖w− µe‖2

2 + α1‖Fw− Au‖1 + α2‖u‖TV , (4)

where µ is the mean value of w, e is a vector of all 1s, and α1 and α2 are two positive regular-
ization parameters. Since the ZWN model does not use information from the noise distribu-
tion, it can be applied to multiplicative noise problems with noise distributions other than
the Gamma distribution. Furthermore, Wang et al. [28] made enhancements to the ZWN
model and introduced an l-curve method for the selection of regularization parameters.

The ZWN model has two regularization parameters, which control the trade-off
between data fidelity and model complexity. However, selecting appropriate regularization
parameters can be challenging. To address this issue, we propose to impose the second
term l1 norm in the ZWN model as an equality constraint on the model, i.e., Fw = Au.
This approach improves the sparsity of the vector Fw-Au, so that Fw and Au are close.
Sparsity is desirable because it can reduce noise and preserve edges in the restored images.
Moreover, this approach reduces the number of regularisation parameters from two to one,
thus simplifying the model selection process. The numerical experimental results on both
real and synthetic noise images indicate that our model generally outperforms the ZWN
model in terms of image quality.

The rest of this paper is organized as follows. In Section 2, we review the derivation
of the ZWN model and its advantages and limitations. In Section 3, we present a new
convex model based on reducing the number of regularization parameters in the ZWN
model and propose numerical methods for solving it. In Section 4, we show the results
of the numerical experiments on both real and synthetic noise images that are affected
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by multiplicative noise, and compare our model with the ZWN model and other existing
methods. Finally, some conclusions are given.

2. Review of the ZWN Model

In this section, we briefly review the ZWN model, which was proposed by Zhao et al. [27].
The main idea of the ZWN model is to decouple u and η in (1) by rewriting it as:

Fw = Au, (5)

where F is a diagonal matrix with elements [ f ]i, and w is a vector satisfying [w]i = 1/[η]i.
In this way, u and w are decoupled, and so are u and η. Therefore, it is naturally raise the
following optimization problem with the L1 norm as the data fidelity term and the TV
norm as the regularization:

min
w,u
‖Fw− Au‖1 + α‖u‖TV , (6)

where α is a positive parameter that balances the two terms. However, this model has a
trivial solution, which is u = ψ1 and w = ψF−1 A1, where ψ is any scalar. The minimum
value of the objective function in (6) is greater than zero. To avoid this situation, Zhao et al.
added a quadratic term 1

2 ||w− µe||22 to the model, resulting in (4).
Next, we review the concept of total variation (TV), which is a popular regularization

term that exploits the sparsity of the gradient of images. Anisotropic total variation and
isotropic total variation are two variants of the TV regularization. The difference between
them is that anisotropic total variation treats horizontal and vertical gradients separately,
whereas isotropic total variation combines them into a term that does not change with
rotation. In detail, the anisotropic total variation is defined by:

‖u‖TV = ‖Du‖1 = ∑
i,j
|Dhui,j|+ |Dvui,j|,

where Dh and Dv are finite difference operators in horizontal and vertical directions,
respectively. The isotropic total variation is defined by:

‖u‖TV = ‖Du‖2 = ∑
i,j

√
(Dhui,j)2 + (Dvui,j)2.

TV regularization can preserve edges and remove noise in an image, but it may also
introduce some artifacts, such as staircasing and the loss of fine details. To overcome these
drawbacks, some variants of TV regularization have been proposed, such as weighted
TV [29], nonlocal TV [30], and higher-order TV [31], etc.

3. The Proposed Model and Main Algorithm

This section outlines the main methodology employed in this study. The ZWN model
is a convex variational model designed to restore images corrupted by multiplicative
noise. It consists of three main components: the variance term, which ensures the strict
convexity of the model under a mild condition; the data fidelity term, which matches the
multiplicative noise model; and the regularization term, which imposes a total variation
regularization on the image. α1 and α2 are two positive parameters that are used to balance
the three terms. However, selecting suitable values for these parameters can be challenging
and time-consuming. To address this issue and minimize the number of regularization
parameters, we propose a new model that enhances the sparsity of the matrix Fw-Au by
imposing an equality constraint: Fw = Au. This approach not only improves the image
quality and edge preservation, but also simplifies the process of selecting model parameters.
The formulation of the proposed model is as follows:
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min
w,u

1
2
‖w− µe‖2

2 + α‖u‖TV

s.t. Fw = Au,
(7)

where α is a positive regularization parameter to control the balance between the two terms
in the objective function, and µ is the mean value of w. We can see that if A = I, then our
model reduces to a convex model for multiplicative denoising. Our model is based on
modifying the second term of the ZWN model into an equality constraint, as this term is
l1-norm. This way our model will only have one regularization parameter, which is one
less parameter compared to the ZWN model.

Main Algorithm

To solve the proposed model (7), we can use the well known ADMM method. By
introducing a auxiliary variable p, (7) can be written as:

min
w,u,p

1
2
‖w− µe‖2

2 + α‖p‖β

s.t. Fw = Au, Du = p,
(8)

where β = 1 or 2.
The augmented Lagrangian function associated with the problem (8) is defined as

follows:
Lρ1,ρ2(w, u, p; λ1, λ2) =

1
2
‖w− µe‖2

2 + α‖p‖β + 〈λ1, Fw− Au〉

+ 〈λ2, Du− p〉+ ρ1

2
‖Fw− Au‖2

2 +
ρ2

2
‖Du− p‖2

2,
(9)

where λ1 and λ2 are the Lagrangian multipliers and ρ1 > 0, ρ2 > 0 are the penalty
parameters. Therefore, the ADMM method leads to the following subproblems:

wk+1 = arg min
w

1
2
‖w− µe‖2

2 +
〈

λk
1, Fw− Auk

〉
+

ρ1

2

∥∥∥Fw− Auk
∥∥∥2

2

uk+1 = arg min
u

〈
λk

1, Fwk+1 − Au
〉
+
〈

λk
2, Du− pk

〉
+

ρ1

2

∥∥∥Fwk+1 − Au
∥∥∥+ ρ2

2

∥∥∥Du− pk
∥∥∥2

2

pk+1 = arg min
p

α‖p‖β +
〈

λk
2, Duk+1 − p

〉
+

ρ2

2

∥∥∥Duk+1 − p
∥∥∥2

2

λk+1
1 = λk

1 + ρ1

(
Fwk+1 − Auk+1

)
λk+1

2 = λk
2 + ρ2

(
Duk+1 − pk+1

)
(10)

In the following, we will illustrate how to solve the subproblems in the ADMM
scheme (10).

For the w-subproblem, since the equation with respect to w is differentiable, we can
directly compute the derivative of the equation at 0:

0 =
(

wk+1 − µe
)
+ FTλk

1 + ρ1FT
(

Fwk+1 − Auk
)

. (11)

We can then simplify the resulting equation to obtain the solution for the w-subproblem:

[w]k+1
i =

[
µe− FTλk

1 + ρ1FT Auk
]

i
[I + ρ1FT F]i,i

, i = 1, · · · , m, (12)

where FT denotes the transpose of F, and the superscript k for each variable refers to the
number of iterations of the kth iteration in the ADMM algorithm. The subscript i of a
variable refers to the ith element in the vector, whereas the subscript i, i refers to the element
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in row i and column i of the matrix. Since we assume that the image we are considering has
m ∗ n pixels, i is bounded by m. Here, I is a matrix of size m ∗m with all elements being 1.

For the u-subproblem, we apply the same method as for the w-subproblem to derive
an equation and simplify it, resulting in the following equation:(

ρ1 AT A + ρ2DT D
)

uk+1 = λk
1 AT − DTλk

2 + ρ1 AT Fwk+1 + ρ2DT pk. (13)

Under the periodic boundary conditions for the image u, both the matrices AT A and
DT D are block circulant, with circulant blocks that can be diagonalized using a 2D fast
Fourier transform (FFT). Therefore, Equation (13) can be efficiently solved using one FFT
and one inverse FFT, as follows:

uk+1 = F−1

F
(

ATλk
1 − DTλk

2 + ρ1 AT Fwk+1 + ρ2DT pk
)

ρ1|F (A)|2 + ρ2|F (D)|2

, (14)

where F (.) and F−1(.) represent the FFT and inverse FFT, respectively.
For the p-subproblem, we will divide it into two cases:
When β = 2, we have:

[p]k+1
i = max

{∥∥∥∥∥
[

Duk+1 +
λk

2
ρ2

]
i

∥∥∥∥∥
2

− α

ρ2
, 0

} (
Duk+1 +

λk
2

ρ2

)
i∥∥∥∥[Duk+1 +

λk
2

ρ2

]
i

∥∥∥∥
2

. (15)

When β = 1, we have:

[p]k+1
i = max

{∣∣∣∣∣
[

Duk+1 +
λk

2
ρ2

]
i

∣∣∣∣∣− α

ρ2
, 0

}
sign

((
Duk+1 +

λk
2

ρ2

)
i

)
. (16)

Finally, we present Algorithm 1, which outlines the ADMM method for solving the
proposed model (7).

Algorithm 1: ADMM method for solving the proposed model (7)
Input: ρ1 > 0, ρ2 > 0, α > 0
Initialize: u0 = f , λ0

1, λ0
2, p0

1: while ‖u
k−uk+1‖2
‖uk‖2

> ε do

2: Calculate wk+1 by (12),
3: Calculate uk+1 by (14),
4: Calculate pk+1 by (15) or (16),
5: λk+1

1 = λk
1 + ρ1

(
Fwk+1 − Auk+1

)
,

6: λk+1
2 = λk

2 + ρ2

(
Duk+1 − pk+1

)
,

7: k = k + 1,
8: end while

4. Numerical Experiments

In this section, we present numerical results to evaluate the performance of our
proposed method. We compare our approach with the AA model [10] by Aubert and
Aujol; the RLO model [9] by Rudin, Lions, and Osher; and the ZWN model [27] by Zhao,
Wang, and Ng. The AA model and the RLO model are solved using the projected gradient
method, whereas the ZWN model is solved using the ADMM. All tests were conducted
on Windows 11 and MATLAB version 9.13 (R2022b) on a laptop running AMD Ryzen
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9 6900HX at 3.30 GHz with 16 GB of RAM. For simulating the Gamma distribution, we
utilize the ’gamrnd’ function in MATLAB.

We selected three 256 by 256 grayscale images, namely Parrot, Cameraman, Lenna,
House, and Square, to test and compare our model with the AA model, the RLO model,
and the ZWN model. The original images can be seen in Figure 1. We assess the quality
of the recovered image by comparing it with the peak signal-to-noise ratio (PSNR) [32],
defined as follows:

PSNR = 10log10
maxi{[u]i, [ũ]i}

1
m ∑ m

i=1([u]i − [ũ]i)
2 ,

where u and ũ are the original image and the recovered image, respectively. The PSNR
measures the similarity between the recovered image and the original image in terms of
pixel values. A higher PSNR indicates a higher quality of recovery. We employ the relative
error as the stopping criterion, which is defined as follows:∥∥∥uk − uk+1

∥∥∥
2∥∥uk

∥∥
2

≤ 5× 104,

or the maximum number of iterations 500 reached.

(a) (b)

(c) (d)
Figure 1. Original image; (a) “Cameraman”; (b) “Parrot”; (c) “House”; (d) “Square”.

4.1. Image Denoising

In this subsection, we focus on demonstrating the effectiveness of our proposed model
for denoising purposes only. We consider the scenario that the original images are corrupted
by multiplicative noise, following a Gamma distribution with L = 20, L = 10, and L = 6,
respectively. The denoising results are presented in Figures 2–5. Moreover, we provide the
corresponding PSNR values, computation time, and number of iterations in Table 1. The
results consistently demonstrate that both the ZWN model and our model outperform the
AA model and the RLO model across all metrics. Our model exhibits the highest PSNR
values for most images at L = 20, indicating its superior capability in reducing low levels
of noise. Although at L = 10 and L = 6, our model still performs better than the AA model
and the RLO model, it does not consistently surpass the ZWN model. This implies that our
model is robust and effective in denoising images under various noise conditions, but it can
be further enhanced to handle higher levels of noise. Therefore, we can confidently assert
that our model offers significant advantages over existing models in image denoising.
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(a) (b) (c)

Figure 2. The results of different models removing multiplicative noise. Row 1: Noisy Cameraman,
Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column (a) to
(c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 10−7, ZWN: α2 = 0.001, our: α = 0.005), (b): L = 10
(AA: λ = 5, RLO: λ = 10−6, ZWN: α2 = 0.002, our: α = 0.01), (c): L = 6 (AA: λ = 5, RLO: λ = 10−6,
ZWN: α2 = 0.002, our: α = 0.06).
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(a) (b) (c)

Figure 3. The results of different models removing multiplicative noise. Row 1: Noisy Parrot,
Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column (a) to
(c): noise level (a): L = 20 (AA: λ = 0.7, RLO: λ = 5× 10−6, ZWN: α2 = 8× 10−4, our: α = 0.008),
(b): L = 10 (AA: λ = 0.3, RLO: λ = 3× 10−6, ZWN: α2 = 0.001, our: α = 0.03), (c): L = 6 (AA: λ = 1,
RLO: λ = 5× 10−7, ZWN: α2 = 0.002, our: α = 0.13).
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Figure 4. The results of different models removing multiplicative noise. Row 1: Noisy House,
Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column (a)
to (c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 10−5, ZWN: α2 = 9× 10−4, our: α = 0.007),
(b): L = 10 (AA: λ = 5, RLO: λ = 4× 10−6, ZWN: α2 = 7× 10−5, our: α = 0.05), (c): L = 6 (AA:
λ = 8× 10−4, RLO: λ = 5, ZWN: α2 = 5× 10−5, our: α = 0.07).
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Figure 5. The results of different models removing multiplicative noise. Row 1: Noisy Square,
Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column (a) to
(c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 10−3, ZWN: α2 = 0.001, our: α = 0.03), (b): L = 10
(AA: λ = 10−3, RLO: λ = 5, ZWN: α2 = 0.002, our: α = 0.09), (c): L = 6 (AA: λ = 6× 10−6, RLO:
λ = 5, ZWN: α2 = 0.003, our: α = 0.3).
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Table 1. Comparison of PSNR values (dB), number of iterations, and time (s) of different methods in
the case of denoising.

Image Model
L = 20 L = 10 L = 6

PSNR Time Iter PSNR Time Iter PSNR Time Iter

Cameraman

AA 24.55 0.83 500 24.15 0.78 500 22.83 0.80 500

RLO 24.40 0.82 500 24.02 0.83 500 22.75 0.81 500

ZWN 26.43 1.42 162 24.58 1.30 148 23.61 1.08 119

Ours 26.50 1.49 251 24.60 1.80 304 23.44 2.17 366

Parrot

AA 24.46 0.80 500 23.79 0.81 500 22.31 0.84 500

RLO 24.40 0.81 500 23.78 0.81 500 22.28 0.92 500

ZWN 26.80 1.26 145 24.90 1.34 149 23.53 1.12 126

Ours 26.84 1.33 219 24.89 1.82 309 23.37 2.26 381

House

AA 27.32 0.93 500 26.15 0.83 500 23.04 0.80 500

RLO 27.28 0.84 500 26.13 0.83 500 23.05 0.82 500

ZWN 27.91 0.66 64 25.44 0.28 27 23.74 0.31 29

Ours 28.24 1.21 189 26.40 1.50 255 24.82 2.03 345

Square

AA 34.36 0.97 500 29.32 0.83 500 23.18 0.87 500

RLO 34.33 0.87 500 29.35 0.82 500 23.22 0.85 500

ZWN 33.02 0.29 26 30.57 0.29 42 27.84 0.39 26

Ours 34.21 0.95 136 31.61 1.06 180 29.94 1.34 136

4.2. Image Deblurring and Denoising

In this subsection, we present the performance of our proposed model in the task
of image deblurring and denoising. Our model is designed to effectively restore images
that are corrupted by both multiplicative noise and blur. We evaluate our model on three
distinct levels of noise, where the noise follows a Gamma distribution with L = 20, L = 10,
and L = 6, respectively. To simulate the blurring effect, we employ a 7× 7 Gaussian
kernel with zero mean and a standard deviation of 2. We compare our model with three
other models in terms of deblurring and denoising, and present the experimental results
in the form of data and images. The deblurring results are illustrated in Figures 6–9. The
corresponding PSNR values, execution times, and number of iterations are displayed
in Table 2. The results indicate that our model consistently achieves the highest PSNR
values in all cases, demonstrating its superior performance in denoising and deblurring.
However, it is worth noting that our model also exhibits longer execution times in most
cases, suggesting that it is computationally expensive. On the other hand, the ZWN model
consistently demonstrates the lowest execution times in all cases, indicating its exceptional
speed. Nonetheless, it also consistently yields the lowest PSNR values, suggesting subpar
performance in denoising and deblurring. The AA model and RLO model exhibit similar
PSNR values and execution times across all cases, indicating comparable performance
and speed. Additionally, the results demonstrate that as the value of L decreases, the
PSNR values also decrease and the running time increases for all models and images. This
observation suggests that lower L values correspond to higher levels of noise and blur,
making the denoising and deblurring tasks more challenging and time-consuming.
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Figure 6. The results of different models removing multiplicative noise and blur. Row 1: Noisy
Cameraman, Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively.
Column (a) to (c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 3× 10−7, ZWN: α2 = 6× 10−4, our:
α = 0.001), (b): L = 10 (AA: λ = 5, RLO: λ = 5× 10−6, ZWN: α2 = 0.001, our: α = 0.004), (c): L = 6
(AA: λ = 5, RLO: λ = 9× 10−4, ZWN: α2 = 0.002, our: α = 0.019).
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Figure 7. The results of different models removing multiplicative noise and blur. Row 1: Noisy Parrot,
Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column (a) to
(c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 9× 10−5, ZWN: α2 = 10−4, our: α = 6× 10−4),
(b): L = 10 (AA: λ = 5, RLO: λ = 7× 10−7, ZWN: α2 = 8× 10−4, our: α = 0.003), (c): L = 6 (AA:
λ = 5, RLO: λ = 4× 10−6, ZWN: α2 = 0.001, our: α = 0.019).
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Figure 8. The results of different models removing multiplicative noise and blur. Row 1: Noisy
House, Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column
(a) to (c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 2× 10−4, ZWN: α2 = 5× 10−4, our: α = 0.002),
(b): L = 10 (AA: λ = 5, RLO: λ = 0.01, ZWN: α2 = 9× 10−4, our: α = 0.01), (c): L = 6 (AA: λ = 5,
RLO: λ = 10−6, ZWN: α2 = 0.001, our: α = 0.04).
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Figure 9. The results of different models removing multiplicative noise and blur. Row 1: Noisy
Square, Row 2–5: the images recovered by the AA, RLO, ZWN, and our model, respectively. Column
(a) to (c): noise level (a): L = 20 (AA: λ = 5, RLO: λ = 10−4, ZWN: α2 = 7× 10−4, our: α = 0.006),
(b): L = 10 (AA: λ = 5, RLO: λ = 0.05, ZWN: α2 = 0.001, our: α = 0.05), (c): L = 6 (AA: λ = 6× 10−5,
RLO: λ = 5, ZWN: α2 = 0.002, our: α = 0.6).
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Table 2. Comparison of PSNR values (dB), number of iterations, and time (s) of different methods in
the case of deblurring.

Image Model
L = 20 L = 10 L = 6

PSNR Time Iter PSNR Time Iter PSNR Time Iter

Cameraman

AA 21.33 0.99 500 21.23 1.10 500 20.62 1.03 500

RLO 21.27 0.97 500 21.17 1.01 500 20.58 0.92 500

ZWN 22.93 0.36 38 22.43 0.37 39 21.75 0.44 42

Ours 22.99 0.50 69 22.37 0.79 106 21.80 1.28 131

Parrot

AA 20.41 1.00 500 20.30 1.13 500 19.71 1.03 500

RLO 20.35 0.93 500 20.25 0.97 500 19.67 0.98 500

ZWN 22.28 0.43 44 21.45 0.42 46 20.64 0.48 49

Ours 22.35 0.72 77 21.65 0.79 106 20.97 0.89 131

House

AA 24.19 0.97 500 23.73 1.08 500 22.06 1.01 500

RLO 24.17 0.96 500 23.71 1.01 500 22.06 1.00 500

ZWN 25.85 0.46 50 24.47 0.69 73 22.65 0.79 88

Ours 25.67 0.61 76 24.67 0.70 98 24.00 0.79 120

Square

AA 28.31 1.00 500 26.49 1.01 500 22.51 1.17 500

RLO 28.30 0.96 500 26.48 0.95 500 22.52 1.14 500

ZWN 30.07 0.35 37 28.47 0.29 28 25.95 0.32 31

Ours 31.55 0.81 118 28.61 0.78 113 27.76 0.87 117

4.3. Real Image Denoising

In this subsection, we evaluate the performance of our approach on real images that
are affected by multiplicative noise, also known as speckle noise. This type of noise occurs
in coherent imaging systems such as SAR and ultrasound imaging. We use the same
regularization parameters to remove different images in order to observe the robustness of
different models, since the selection of the regularization parameters is the most difficult
point in removing real images. We selected five images with different features from a
dataset that consists of 282,384 pairs of corresponding SAR and optical image patches
acquired by the Sentinel-1 and Sentinel-2 satellites. The dataset was downloaded from the
following URL: https://mediatum.ub.tum.de/1436631. Figure 10 shows the tested images
and the images denoised by using four different methods. Among the four models we
compared, the AA model and the RLO model produced similar results, but they tended
to over-smooth the images and lose a lot of edge information. On the other hand, our
model and the ZWN model preserved the edges better and achieved more visually pleasing
results. These two models also showed a similar performance in removing noise from
different images, even though we used the same regularization parameters for all of them.

https://mediatum.ub.tum.de/1436631
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(a) (b) (c) (d) (e)

Figure 10. Comparison of different models for denoising real images. The first column (a) shows the
original noisy images obtained from a dataset of SAR and optical image patches. The second column
(b) shows the images recovered by the AA model (λ = 0.05). The third column (c) shows the images
recovered by the RLO model (λ = 0.0009). The fourth column (d) shows the images recovered by the
ZWN model (α2 = 0.001). The fifth column (e) shows the images recovered by our proposed model
(α = 0.05).

5. Conclusions

In this paper, we proposed a new model based on the ZWN model that improves the
sparsity of the solution and reduces the number of regularization parameters by incorporat-
ing an equality constraint. To solve the proposed model, we applied the popular ADMM
method. The effectiveness and efficiency of our model were evaluated on various public
datasets and compared with the ZWN model, along with the RLO and the AA methods.
The experimental results demonstrated that our model achieves superior or comparable
performance in terms of PSNR and subjective visual assessment. Moreover, we also tested
our model on real images that are affected by multiplicative noise. We showed that our
model can handle this type of noise well and produce more visually pleasing results than
the other methods.
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Though the total variation technique effectively preserves edges and removes noise,
it often creates undesirable staircase artifacts, particularly in areas with flat regions or
smooth gradients in an image. To mitigate these artifacts, numerous improvements and
modifications have been made to the traditional total variation model. These include
approaches such as higher-order total variation, total generalized variation (TGV), and
infimal convolution of total variation (ICTV), among others. In our future work, we aim
to study these modifications to enhance the performance of total variation regularization
and reduce the occurrence of staircase artifacts, thereby improving the overall quality of
restored or reconstructed images. This could potentially lead to improved performance in
various applications such as medical imaging, remote sensing, and computer vision.
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