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Abstract: The visualization of neuronal activity in vivo is an urgent task in modern neuroscience. It
allows neurobiologists to obtain a large amount of information about neuronal network architecture
and connections between neurons. The miniscope technique might help to determine changes
that occurred in the network due to external stimuli and various conditions: processes of learning,
stress, epileptic seizures and neurodegenerative diseases. Furthermore, using the miniscope method,
functional changes in the early stages of such disorders could be detected. The miniscope has become
a modern approach for recording hundreds to thousands of neurons simultaneously in a certain
brain area of a freely behaving animal. Nevertheless, the analysis and interpretation of the large
recorded data is still a nontrivial task. There are a few well-working algorithms for miniscope data
preprocessing and calcium trace extraction. However, software for further high-level quantitative
analysis of neuronal calcium signals is not publicly available. NeuroActivityToolkit is a toolbox that
provides diverse statistical metrics calculation, reflecting the neuronal network properties such as
the number of neuronal activations per minute, amount of simultaneously co-active neurons, etc.
In addition, the module for analyzing neuronal pairwise correlations is implemented. Moreover, one
can visualize and characterize neuronal network states and detect changes in 2D coordinates using
PCA analysis. This toolbox, which is deposited in a public software repository, is accompanied by a
detailed tutorial and is highly valuable for the statistical interpretation of miniscope data in a wide
range of experimental tasks.

Keywords: miniscope; Minian; software; miniature fluorescence microscopy; statistical analysis;
metrics; open-source toolbox

1. Introduction

Visualization of the neuronal activity within a specific brain area in a freely mov-
ing animal in vivo allows researchers to obtain an extensive array of information about
neuronal activation patterns, changes in their excitability and their connections between
each other [1,2]. Canonical methods for examining brain neuronal activity are two-photon
microscopy [3–6] and electrode arrays [7–10]. Recently, miniature fluorescent microscopy
(miniscope) was invented [11,12], which enables the fluorescent imaging of neurons’ ac-
tivations in vivo in freely moving mice. Since its implementation in the neurosciences,
miniscope imaging has become a powerful and independent tool for investigating the
functions of neuronal circuits and complex neuronal networks [13,14]. Moreover, the
miniscope gives neurobiologists a wide range of capabilities to explore neuropathology or
neurodegenerative disorders in the context of the neuronal network state.

To visualize neuronal activity utilizing a miniscope, different genetically encoded
calcium indicators are employed, of which the GCaMP family is the most popular [3,15].
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The primary miniscope data consist of 752 × 480 resolution videos for the v3 version,
containing information about the location of cells and calcium-indicator changes over
time. Yet, recordings have fluctuating background and motion artifacts resulting from the
movement of mice and the technical properties of the miniscope, making the consequent
extraction of individual neuron calcium activity challenging [16–18]. For processing this
quite-noisy data, several open-source protocols have been developed [19–22]. In short,
these methods aim to reduce the influence of the background on single-cell calcium activity,
extract and denoise calcium intensity changes over time and merge overlapping units
during the recording session [23]. In the current study, the Minian software method was
used for preprocessing [19], since it has an easy-to-start pipeline and simple workflow
integrated in the development environment “Jupyter Notebook”.

In this paper, the NeuroActivityToolkit software package is presented for the further
quantitative analysis of the calcium activity extracted with Minian individual neurons.
This toolbox offers a wide range of quantification of statistical metrics to describe neuronal
network properties. It has a clear interface, visible workflow in the “Jupyter Notebook”
environment, and obtained results can be extracted in .xlsx format for further statistical
processing. Analysis of miniscope data using NeuroActivityToolkit starts by uploading
miniscope data preprocessed with Minian [19] or other compatible file formats with proper
hierarchy. Once the calcium traces are uploaded, the user chooses the part of the signal to
be analyzed—a phase of rapid fluorescent-intensity growth or a phase above the adaptive
threshold. Then, NeuroActivityToolkit calculates statistical metrics describing the activity
of individual neurons as well as the entire neuronal network. It also offers an option for
analyzing neuronal activity correlations and measuring the distance between co-active
cells. All metrics are subjected to PCA analysis to characterize the neuronal network state
in 2D coordinates and visualize it. Moreover, a detailed tutorial is presented visualizing
the most critical steps to ensure an easy work start with the toolbox. Therefore, this paper
offers a comprehensive open-source software package for the analysis of neuronal activity
extracted from miniscope data.

2. Materials and Methods
2.1. Mice

An FVB breeding colony of mice obtained from the Jackson Laboratory (Bar Harbor,
ME, USA) was established and maintained in a vivarium with 4–5 mice per cage and a
12 h light/dark cycle in the animal facility, with ad libitum access to food and water. All
procedures were approved by principles of the European convention (Strasburg, France,
1986) and the Declaration of International Medical Association regarding the humane
treatment of animals (Helsinki, Finland, 1996), and approved by the Bioethics Committee
of the Peter the Great St. Petersburg Polytechnic University at St. Petersburg, Russia
(Ethical permit number 1-n-b from 3 February 2023). In the current research, data from
a 9-month-old mouse were used to validate the toolbox, and data from other mice of the
same age to illustrate the PCA method.

2.2. Implantation of GRIN-Lens and Baseplate for Miniscope Recordings

Implantation of the GRIN-lens was performed in two-stages. Firstly, viral construct
pAAV1.Syn.GCaMP6S.WPRE.SV40 at a titer of more than 1× 1013 vg/mL was injected with
AP −2.1; DV −1.8; ML +2.1 stereotaxic coordinates (68001, RWD Life Science, Shenzhen,
China) into the left hemisphere under isoflurane anesthesia, using the standard protocol [24].
Viral construct of a total volume of 1.4 µL was injected at a rate of 0.1 µL per minute. After
3 weeks, a gradient index lens 2 mm in diameter was implanted via the protocol described
in [25]. Four weeks after stereotaxic injections, the baseplate was fixed on the mice’s heads
in a position to obtain the best ROI of hippocampal neurons expressing GCaMP6s. Then,
after recovery from surgery and isoflurane exposure, 5 min in vivo imaging was performed
using a miniscope v3 (Labmaker, Berlin, Germany) once a weak in the home-cage condition
in freely moving mice. In the days of the recordings, the miniscope was fixed to the
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baseplate without any anesthesia exposure. The number of recorded neurons equaled
142 ± 29.

2.3. Miniscope Recording Acquisition and Preprocessing

Miniscope data were recorded via the free-to-access Portable Miniscope Data Ac-
quisition program (Pomidaq, version number 0.4.5) at 20 frames per second. All the
recordings were obtained in the “mkv” format. Further processing of the miniscope data
was performed using Minian [19] with standard parameters for CNMF method inside the
pipeline and the following characteristics for the initialization parameters: “wnd_size”:
1000, “method”: “rolling”, “stp_size”: 500, “max_wnd”: 15, “diff_thres”: 3. This method
formed an array containing Ca2+ indicator fluorescence traces and the location of each
detected neuron. Subsequent quantitative analysis of the miniscope data was performed
using the NeuroActivityToolkit presented in this paper.

2.4. Neuron-Active-State Determination

As the first step for the quantitative analysis of neuronal network activity, the active
states of the neurons were determined. The active state is a phase of the rapid growth
of GCaMP6f fluorescence intensity, since action-potential generation leads to a robust
elevation in intracellular calcium concentrations. Firstly, the preprocessed signals by
Minian were smoothed by a moving average with a configurable window width:

Xt =
1
n∑i=[ n

2 ]

i=−[ n
2 ]

pt−i, (1)

where xt is the resulting smoothed value at the point, n is the window width, and pt−I is the
initial value at the point t−i. Further, to determine the signal changes, a discrete derivative
was calculated: xt

′ = xt − xt−1. This value shows how much the signal intensity changed at
a particular time point. The segmentation of the already-preprocessed fluorescence signal
to an active phase and inactive phase was based on a threshold value for the derivative. If
this value exceeded the threshold, a neuron was assumed to be in the active state:

threshold = median
(
x′
)
+ mad

(
x′
)
, (2)

where mad is the average absolute deviation. The median corresponds to the standard state
of the neuron, while the average absolute deviation relates to the permissible variances.
Thus, the active state of the neuron is assumed to be the time period when the signal
intensity is higher than the permissible level. Detected active states could be analyzed
in two different approaches: included in the analysis of both the signal stages (robust
fluorescence growth and its decline) (full method) or only the rising part of the calcium-
indicator fluorescence intensity (spike active method).

Additional segmentation settings were added to enhance the signal segmentation
quality. Warm—the minimum duration of the passive phase: if the difference between
neighboring active states is less than this value, they are combined into one active state.
Cold—the minimum duration of the active phase; if it lasts for less time than the specified
parameter, but exceeds the threshold value, it is excluded from the active state. These
parameters are counted in frames.

2.5. Neuronal Network Description

The group of metrics describing neuronal activity was calculated based on the active
states obtained in Section 2.4 [26]. Burst rate—the number of “cell activations” for a given
time period. The average number of activations per unit of time is calculated as follows:

burst rate =
∑x∈A active(x)

T
, (3)
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where A is a set of neurons, active (x) equals 1 if this neuron is active; otherwise it is 0,
and T is the time interval. The network spike rate is the percentage of active neurons
over a specified time interval. The percent of active neurons in time interval is calculated
as follows:

network spike rate =
∑x∈A active(x)

size(A)
, (4)

where A is a set of neurons, active (x) equals 1 if this neuron is active; otherwise it is 0, and
size equals the size of the set. The network spike duration is the length of time when the
number of simultaneously active cells is higher than the preset threshold value:

network spike duration =
∑T

i=1

∑
x∈A

active(xi)

size(A)
> threshold

T
, (5)

where active(xi) equals 1 if this neuron is active, and is otherwise 0, at the i-th moment of
time, threshold is the established threshold value, and T is the time interval. The network
spike peak is the maximal number of simultaneously active cells at a specified time interval:

network spike peak = maxT
i=1

(
∑x∈A active(xi)

size(A)

)
. (6)

2.6. Correlation Analysis for Co-Active Neurons

To analyze correlations between neuronal-activity values, Pearson’s coefficient was
applied:

rXY =
∑N

i=1 (xi −MX)(yi −MY)√
∑N

i=1(xi −MX

)2
(yi −MY)

2
. (7)

In the current toolbox, several ways for computing Pearson’s coefficient were pre-
sented. For the original signal intensity: X, Y—time scans of signal intensity, xi—the value of
X at the i-th moment of time, yi—the value of Y at the i-th moment of time, MX—mean value
of X, MY—mean value for Y. For the intensity derivative: X, Y—time scans of signal intensity
derivative. For the binary results of active phase segmentation: X, Y—time scans of active
phase segmentation in binary form, where 1 = active, 0 = inactive (for active spike and full
methods). Also, the connection of intersection is computed as the relation between the time
when both neurons in the pair are simultaneously active to the sum of individual activities.

Next, we present the statistical metrics based on the obtained correlations. The network
degree is the curve that shows the dependence of the number of correlating neuronal
pairs on the preset threshold level. The abscissa axis indicates the threshold value of the
correlation level; on the ordinate axis, the percentage of strong connections between all
neurons satisfying the corresponding threshold value is indicated. An option for the “Lag”
value was added for all metrics, which is the time shift between active phases of neurons
when they are still considered as co-active.

The transfer of entropy from neuron X to another neuron Y is the amount of uncertainty
reduced in future values of Y by taking into account the past values of X, providing the
corresponding past values of Y:

TX−Y = I(Yt; Xt−1:t−L|Yt−1:t−L) = H(Yt|Yt−1:t−L) + H(Xt−1:t−L|Yt−1:t−L)−H(Yt, Xt−1:t−L|Yt−1:t−L), (8)

where X is the value of intensity for the “source” neuron, Y is the value of intensity for the
“receiver” neuron, t is the moment of observation, L is the duration of analysis and H is
the entropy.

Further, a special module was created to estimate the dependence between Pearson’s
correlation coefficient and the distance between co-active neuronal pairs. The analysis was
based on the dependence of Pearson’s correlation coefficient on the neuronal remoteness
from the mass center of all neurons in the recording. The Euclidean and radial distance
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were used to estimate the distance between neurons. Also, it was used to count Pearson’s
coefficient while considering the distance between neurons with the distance factor:

k =
dist

dist + 100
, (9)

where dist is the distance between co-active neurons in pixels, and 100 is the 25th percentile
of the distance distribution values.

2.7. Neuronal-Activity Random Shuffling

This module is designed to assess the behavior of the provided metrics when different
levels of randomness are introduced to the analyzed data. The differences between metrics
counted for the original data and shuffled data may that indicate that they are capturing
the neuronal network properties rather than independent neuronal-activity distribution.
The mixing process was carried out as follows: the number of each neuron activations
remained intact while the duration of active states and the time interval between them was
randomly stated. The percent of shuffled neurons was determined via the shuffle ratio,
that could be varied by the user needs. Thus, it was possible to track changes in statistical
metric behavior at different levels of shuffling. Several independent iterations of shuffling
events were performed to increase the algorithm robustness in the experiments.

2.8. PCA Analysis

PCA (principal component analysis) is a way to reduce the data dimensionality with
minimal information loss. It is used to combine data into a two-dimensional space that is
easy and convenient to visualize and analyze. For PCA analysis, all the statistical metrics
mentioned above were used. There are two main approaches to calculating the principal
components: using the eigenvalues and eigenvectors of covariance matrices, or singular
value decomposition of the original matrix (SVD). In the current paper, a ready-made
solution was used via an open-source Python library “scikit-learn” [27], which utilized the
SVD method.

3. Results
3.1. Calcium-Indicator-Signal Active-Phase Determination

Miniscope data processed by Minian [19] included calcium-indicator traces and the
location of each detected neuron. At the first step, it is important to determine time moments
when the neuron is in an active state, characterized by a robust increase in the calcium
indicator fluorescence intensity. The signal active-phase determination was performed in
two stages. At first, the signal was smoothed via a moving average with a changeable
window width (Supplementary Materials Section S3.1). The wnd_size parameter reflected
the level of smoothing, ranging from 0 frames (no smoothing) to 50 frames (roughest
way of smoothing). The appropriate value of wnd_size depended on the quality of the
obtained calcium traces (the better it is, the smaller the parameter should be). Next, a
discrete derivative was calculated to identify active states by evaluating a calcium indicator
intensity shift at each time point. The derivative was measured between two consecutive
frames and if its value was higher than the threshold level, threshold = median(x′) +
mad(x′), the neuron was considered to be active at that time point. The median represented
the average level of single-neuron activity, while the average absolute deviation contributed
to permissible deviations. Further, all the neighboring frames were summed into the active
state of the neuron.

For more precise signal segmentation into the active and non-active phases, two
additional parameters were used: warm, which represents the minimum duration of the
non-active phase, and cold, which represents the minimal duration of the active phase, both
measured in frames. These parameters help to reject false-positive active states with single
or short-lasting periods of activation, which are artifacts often detected in the recording
(Figure S1). These settings can be adjusted to the experimental conditions, such as the
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recording parameters, types of calcium indicators or miniscope version. The influence of
these parameters on the segmentation of the active phase is presented in Figure S1A,B. The
window width parameter is significant for determining the active state in the relatively
small calcium events (Figure S1C,D). By our observation, the most suitable values for warm
were 15–50 frames, cold was 0 frames and wnd_size was 10. For the active-state detection of
the sparsely active neurons, wnd_size can be set at 10 frames, but if there are lots of neurons
with long-lasting periods of activity, it should be decreased as much as possible (from 1 to
5 frames). It can be manually adjusted by the user using an interactive widget.

All the metrics mentioned below are mostly based on active-phase extraction, so it is
one of the most important steps for data processing using NeuroActivityToolkit. In addition
to the spike method described above, where only the rising part of the calcium-indicator
fluorescence intensity was included in the active state of the neuron (Figure 1G), we also
present the full method, where all the signal above the threshold value was considered
active (Figure 1H). In this manuscript, the spike method was used to determine an active
state if the other was not mentioned.
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Figure 1. Pipeline of data processing using NeuroActivityToolkit. (A) Schematic illustration of the
mouse with mounted version 3 miniscope. (B) Fluorescence of neurons in CA1 hippocampal area
expressing GCaMP6s recorded via miniscope. (C) Calcium traces obtained from calcium recording
processed with the Minian (version 1.2.1). (D) Active state determination as a first step of NeuroAc-
tivityToolkit pipeline. (E) Quantification of the miniscope recorded data in NeuroActivityToolkit
toolbox. (F) Fluorescence intensity trace of the calcium indicator for the single neuron in the recording.
Single-neuron active state determined using spike method (G) and full method (H). Active state is
shown in red, inactive in blue.

3.2. Neuronal network Activity Properties

The main purpose of the presented NeuroActivityToolkit is to provide information
about neuronal activity at the single-neuron and neuronal network levels through the
quantitative Miniscope data analysis. The statistical metric Burst rate was used to analyze
the number of calcium events for the time interval for each neuron in the whole network
(see Tables 1 and 2). The distribution of the neuronal activation values for individual
recording sessions is shown in Figure 2A. All single-neuron activations are saved as a
“.xlsx” file. This representation format might be useful for identifying individual cell
activation patterns (Figure 2B).
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Table 1. Parameters and metrics that were implemented for the quantitative miniscope data analysis
in the NeuroActivityToolkit toolbox.

No. Parameter Meaning Module Location

1 spike
Method for the active-phase

detection as a sharply rising stage of
calcium-indicator intensity

ActiveStateAnalyzer

2 full
Method for the active-phase

detection as a part above calculated
threshold value

ActiveStateAnalyzer

3 signal

Method for the detection of the
active phase as a whole initial signal
of intensity (applicable to Pearson’s

coefficient calculations and other
connected metrics and

distance analysis)

ActiveStateAnalyzer,
Distance analysis

4 warm

Minimal duration of the
fluorescence-signal passive phase

(can be varied from 0 to 100),
number of frames

ActiveStateAnalyzer

5 cold

Minimal duration of the
fluorescence-signal active phase (can

be varied from 0 to 100), number
of frames

ActiveStateAnalyzer

6 window Configurable value for fluorescent
signal smoothing, number of pixels ActiveStateAnalyzer

7 burst rate
Number of “cell activations” for a set
period of time, percent of neurons

with the given number of activations
ActiveStateAnalyzer

8 single neuron
“activations”

Number of single neuron activations
per minute (can be obtained via
saving the Burst rate as a “.xlsx”),
number of activations per minute

ActiveStateAnalyzer

9 network spike
rate

Percent of active neurons over a
certain period of time, % ActiveStateAnalyzer

10 network spike
peak

Maximal number of simultaneously
active cells for a certain period

of time, %
ActiveStateAnalyzer

11 network spike
duration

Time length in which the number of
simultaneously active cells is higher

than the preset threshold value,
percent of total time

ActiveStateAnalyzer

12
Pearson’s

coefficient of
correlation

Calculated for the intensity of the
original signal(signal), the intensity
derivative (diff), binary results of

active-phase segmentation (active or
full) method, coefficient of linear

pairwise correlation, and connection
of intersection (active_acc, relation of

the simultaneously active states
duration to the sum of the both of

neurons activity time)

ActiveStateAnalyzer,
Distance analysis

13 lag Maximal delay value between
neuronal activations, frames ActiveStateAnalyzer
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Table 1. Cont.

No. Parameter Meaning Module Location

14 network
degree

Percent of co-active neuronal pairs
above the threshold level, % ActiveStateAnalyzer

15 connectivity Distribution of the connectivity
shares for each neuron, % ActiveStateAnalyzer

16
mean

correlation
range

Difference between the maximal and
minimal value of correlation MultipleShuffling

17 rho
Distance to neurons from the center
of their mass in polar coordinates,

pixels
Distance analysis

18 Euclidean Distance between co-active neuronal
pairs, pixels Distance analysis

19 radial

Difference in distances between
co-active pairs of neurons from the

mass center of all neurons for
recording, pixels

Distance analysis

20 transfer
entropy

The entropy of transfer from neuron
X to another neuron Y is the amount

of uncertainty reduced in future
values of Y by knowing the past

values of X, providing the
corresponding past values of Y
(metric to apply or not for PCA

analysis (step 2))

Dimensionality reduction

Table 2. Statistical metrics implemented in the NeuroActivityToolkit toolbox and their proposed
biological interpretation.

No. Statistical Metric Possible Biological Interpretation

1 single neuron “activations” and burst rate

Describes a total number of neuronal activations at the single-cell level
and as a total activity of the whole network. It can be used for the

comparison of the neuronal network state, in particular conditions or
pathological states, for validation of the hypo- or hyperactivation

profile of the brain region. Also, it can be used as a trivial marker of
agonist/antagonist action on neuronal excitation levels.

2 network spike rate

3 network spike peak

Neuronal network excitation levels could be described by these metrics.
Analyzing shifts in the distributions might provide complex

information about changes in the firing rate of all neurons that are part
of the network. It is a more sophisticated and informative way to

validate differences in activation profiles observed in the distinct area
of the brain, which is often affected by various pathologies.

4 network spike duration

Time duration in which more than a set percent of neurons was active
in the neuronal network. This metric is tightly bound to the ones

mentioned above; nevertheless, it explicitly reflects an
elongation/reduction in the total neuronal activity duration, which

might indicate changes in the excitation or elevation/decrease in the
synchronically firing pattern shifts of the distinct brain region.
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Table 2. Cont.

No. Statistical Metric Possible Biological Interpretation

5 Pearson’s coefficient of correlation

6 network degree

The similarity in the activation patterns between neurons can be
reflected as a correlation coefficient. On the one hand, the disruption of

the synaptic plasticity processes is a hallmark of various
neuropathologies, for example, neurodegenerative diseases.

Correlation coefficient evaluation with changing levels of strictness
might be a promising way to determine early changes in the prodromal
stage of diseases. On the other hand, processes of learning, adaptation,

etc., are also connected with pairwise neuronal correlations as new
pairs appear and others vanish. Such reorganization might be possibly
expressed in the elevation or decrease in the mean value of Pearson’s

coefficient with a set threshold value.

7 shuffled neuronal activity

This module is performed to determine the regularity of the statistics
obtained (they have a biological/physiological nature) or if they are
random variables. In this module, the number of activations is kept
constant for each neuron, while the duration of active states and the

duration between them are determined randomly.

8 distance between coactive neurons
(Euclidian or radial)

The evaluation of the reorganization of the neuronal network during
applied stimuli or specific conditions. Investigation of the architecture

of neuronal coactive pairs and its regularity for defined areas of
the brain.

9 principal component analysis applied to
calculated metrics

PCA method for obtained statistical-metric clustering for determining
differences in the total neuronal network state as a response to external

shifts, processes of learning, etc. Might be a powerful tool for
early-stage estimations of changes during pathological processes at the

total neuronal network level.
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Figure 2. Activation properties for the example recording. (A) Distribution of number of activations
per minute for neurons from an example recording. (B) Number of activations per minute for the
independent recording from the same mouse, acquired on the 3 different days (1–3). Data on the
B graph are presented as a violin plot with median (continuous line) and quartiles (dotted line).
****: p < 0.0001 (Kruskal–Wallis test with multiple comparisons using Dunn’s test).



J. Imaging 2023, 9, 243 10 of 20

The Network spike rate (NSR) measures the percentage of active neurons within a specific
time interval (Figure 3A and Table 1). The time interval for this metric can be varied from 1 s
to 1 min. The Network spike peak (NSP) represents the maximum number of simultaneously
active cells in the whole recording period for a certain interval of time (Figure 3B and
Supplementary Materials Section S3.3). The Network spike duration (NSD) is a length of time
when the number of active cells exceeds the predetermined threshold value (Figure 3C and
Supplementary Materials Section S3.4).
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Figure 3. Neuronal network properties for the example recording. Distribution of network spike
rate (A) and network spike peak (B) in the selected time interval of 3 s. Distribution for a single
recording. (C) Distribution of network spike duration as a time when the amount of simultaneously
active neurons was above the preset threshold value.

These statistical metrics provide complex information about neuronal network status
and are linked to the activation properties of neurons. Comparing them during experiments
could help to evaluate overall changes in vivo in the different experimental conditions
(Table 2). For example, if each metric exhibits a shift towards a higher value (a right shift),
it may be associated with elevated excitability in the neuronal circuits.

3.3. Pairwise Neuronal-Activity Correlation in the Neuronal Network

Correlations between neuronal activity are a highly important measure of the neuronal
activation similarity inside a network. Pearson’s correlation coefficient was used to detect
the connections between pairs of neurons, indicating whether they had close activity pat-
terns or were not “connected” at all. In the NeuroActivityToolkit, Pearson’s coefficient was
computed in several ways depending on the input active-phase extraction, including the
intensity of the original signal (signal), the intensity of signal derivative (diff), the segmented
binary results (see Section 3.1) (active and full method), and the duration of simultaneously
active states (active_acc) (Table 1, Figure S2 and Supplementary Materials Section S3.5).
These correlation coefficients contained the most important co-activity characteristics of
connected neuronal pairs. The correlation coefficient distribution for the active method is
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presented in Figure 4A. The correlation map for the determined method illustrates which
neurons are connected in the network and their positions (Figure 4B). It shows the strength
of connections between neurons, with positive connections represented in red and negative
connections in blue (Figure 4C). Connections, in Figure 4C, are shown for neuronal pairs
with correlation coefficient values above a threshold equaling 0.3, which can be easily set by
a slider (Supplementary Materials Section S3.5). Values of the axes are given in the pixels.
By setting a threshold value, the correlation binary heatmap highlighted connections that
exceeded the defined threshold (Figure 4D). The choice of correlation coefficient calculation
method was crucial for the accurate interpretation of the miniscope data (Figure S2 and
Table 2). The less strict way is to use the signal method (Figure S2A,B), in which its correla-
tion map is enriched with various strongly connected pairs of neurons, while the strictest
method is active_acc (Figure S2G,H), in which only periods of simultaneous activity are
examined [28]. Neurons were also clustered based on their correlation values, so that a pair
of neurons belong to the same group if their connections are stronger than 80% of others in
the network.

The correlation coefficient shares extended information about the intranetwork “be-
havior” of the neuronal pairs. Nevertheless, derivative statistics could also be useful for
accurately interpreting the network state and providing helpful data for analysis (see
Table 2). The network degree metric indicates the percentage of co-active neurons above
the threshold level (Figure 4E). The threshold level was preset from 0 to 1 values with a
0.05 step. The data were saved in an “.xlsx” file (Table 1 and Supplementary Materials
Section S3.6) for further analysis. According to our observations, the network degree was
the most stable characteristic for individual mice within days of recordings.

The “Distance analysis” module allows the user to estimate the dependence between
the correlation coefficient and distance between neuronal pairs. The distance between
pairwise connected neurons was calculated in the polar coordinates (the center of mass
was computed between all neurons for each recording). The median value of the distances
between co-active neuronal pairs in polar coordinates was presented as 1–3 quartiles in a
box plot (see Figure 5A; the errors are the interquartile range (Supplementary Materials
Section S4)). Scatterplots, presented in Figure 5B,C, were used to evaluate whether moving
away from the center of the entire neuron mass affected the detection of the fluorescence
signal when using the miniscope (Figure 5B,C). Pearson’s correlation coefficient shows that
the level of connections between the stated characteristics and for the current dataset was
relatively low: −0.19 ± 0.09 mean dependence of fluorescence intensity on the distance;
0.17 ± 0.03 for the dependence of the active state ratio on the distance in polar coordi-
nates for both. These values can be found in the top right corner of the scatterplot for
each recording.

Next, the median distance value was calculated for all neuronal pairs, regardless of
the threshold level of correlation (Figure 5D,E). It could be set through a slider at the top
of the section (Supplementary Materials Section S4). The distance of interest—Euclidean
(the distance between pairs of co-active neurons—interneuronal distance) or radial (the
difference in distances between pairs of neurons to the mass center of all neurons in the
certain recording)—to the calculated above-described metrics was selected using the widget.
Additionally, the user could choose the method by which correlations were calculated
(signal, active, active_acc (intersection)) (Table 1 and Supplementary Materials Section S4).
To facilitate subsequent analysis and plotting, all these statistics could be exported to tables
in the “.xlsx” file format.
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Figure 4. Neuronal-activity correlation analysis using Pearson’s coefficient. (A) Distribution of
Pearson’s correlation coefficient. (B) Correlation map of co-active neuronal pairs. Correlated neurons
are linked with the line between them in the space of the neuronal network. Only correlations above
a 0.3 threshold value are shown. Axis values are indicated in pixels. (C) Correlation heatmap for
connected pairs of neurons, from the highly negatively correlated in blue color to highly positively
correlated in red color. Neurons are labeled by unit_id number. (D) Correlation heatmap in binary
representation, where correlation above 0.3 threshold value is shown in black, and lower in white.
For (C,D), clusters of closely related pairs of neurons are highlighted by squares. (E) Dependence of
Pearson’s coefficient of correlation on the threshold level for 3 recordings for the same mouse (signal
method).
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Figure 5. Spatial position of neuronal co-active pairs and Pearson’s correlation coefficient. (A) The
distance to neurons from the center of their mass in polar coordinates (Rho) for 3 independent
recordings. (B) Dependence between the detected signal mean fluorescence and distance in polar
coordinates for each neuron in the recordings for a single miniscope recording. (C) Dependence
between the active-state ratio (active state of neuron duration/total recording duration) and distance
in polar coordinates for each recorded neuron for a single miniscope recording. Distance between all
correlated neuronal pairs, as Euclidean (D) and radial (E) distance correspondingly, for 3 independent
recordings. All the data are presented as the median values, borders of the box plots are 1 and
3 quartiles, and all the errors are interquartile ranges. ns—there were no significant differences,
**: p < 0.01, ****: p < 0.0001 (Kruskal–Wallis test with multiple comparisons using Dunn’s test).

The current module also provides a visual representation of the dependence of Pear-
son’s coefficient on the distance between the neuronal pairs. With the help of an interactive
widget, users could select the values of interest. For example, Figure 6 shows the de-
pendence of the correlation coefficient calculated based on the active states, using the
active (spike) method from Euclidean coordinates (Figure 6A) and from the radial distance
(Figure 6B).
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Figure 6. Distance between correlated neuronal pairs. Dependence between Euclidean distance (A)
or radial distance (B) and Pearson’s coefficient for co-active neuronal pairs calculated using active
(spike) method for 3 independent recordings.

Correlations between pairs of neurons inside the neuronal network are an essential
part of normal brain functioning. Analyzing values, types and locations of the neuron-to-
neuron connections might be a way to find patterns of neuron communications and their
restructuring during learning or passing behavioral tests (Table 2).

3.4. Random Neuronal-Activity Shuffling

This module is designed to analyze the regularity of the statistical metrics and to
verify that the obtained results are not simply due to the random signal distribution in
the network, but rather reflect network characteristics. The number of activations for each
neuron is kept constant, while the duration of active states and intervals are determined
randomly. Additionally, there is the option to select the degree of mixing—shuffle ratio.
Increasing the value of shuffling episodes utilizing the parameter “num_of_shuffles” in
the notebook (Supplementary Materials Section S5) provides greater confidence in the
results. The module displays statistical values such as the mean correlation range for a
preset number of iterations, which represents the difference between the highest and lowest
values of Pearson’s coefficient for each recording and the mean correlation value. The
“Truth” and “False” indicators under the shuffled data show whether the placement of
cells was taken into account. Metrics that describe neuronal activation parameters such as
the network spike rate and network spike peak were also presented for shuffling options. For
example, Figure 7A demonstrates a neuronal network map in its original state and after
shuffling with a shuffle ratio of 1. The mean correlations and mean network spike peak were
also represented in the same figure (Figure 7B,C). There was a significant difference between
the original value of the network spike peak metric and the shuffled one (p = 0.0394, n = 3,
Student’s t-test), and a visible decreasing trend in the mean value of Pearson’s correlation
coefficient (spike method) in the mixed data, although it did not reach an appropriate level
of significance (p = 0.0626, n = 3, Student’s t-test).

Comparing the values of statistical metrics obtained from the original and mixed data,
a decrease in the average value of each presented statistical metric was observed. This
is likely because shuffling the data results in a loss of information about the connections
between neurons, which determines the initial values of the comparable metrics (Table 2).
Thus, it can be assumed that the recorded changes in the intracellular calcium concentration,
which correlated with neuronal excitation and presented statistical metrics, are biologically
significant, determining the functioning of the neural network.
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Figure 7. Shuffling module for variance estimation in the neuronal-activity data. (A) Presentation of
the neuronal network in binarized form for original data (top) and shuffled with 1.0 ratio (bottom).
(B) Pearson’s coefficient value for original and shuffled data. (C) Maximal amount of active neurons
in 1 s (Network spike peak) for original and shuffled data. Data are presented as mean ± SEM;
*: p < 0.05, Student’s t-test.

3.5. Principal Component Analysis of Statistical Metrics

The “Dimensionality reduction” module was developed to display a large number
of the statistical metrics presented above in a two-dimensional form. It uses the PCA
(principal component analysis) method to reduce the dimensions of the data and create a
two-dimensional representation (Supplementary Materials Section S6). This can be helpful
for the subsequent clustering of neuronal network activity, for example, by being in the
different states (normal conditions/pathological, etc.) (Tables 1 and 2). The “Dimensionality
reduction” module consists of several sections: PCA results are presented as a set of values
for each recording (Figure 8A), and coordinates for each recording are presented in the step
below, with values for “X” and “Y” axes. Then, the top eight most and least significant
features are presented as a graph (Figure 8B) and numerically. All the statistical metrics used
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in the study were included in the PCA analysis, and their possible biological interpretations
can be found in Table 2.
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Figure 8. PCA dimensionality reduction method applied to obtained statistics. (A) Visualization of
the results after applying the principal component method to reduce the dimension of the computed
statistics for 3 recordings under the same experimental conditions (in green) and one recording in the
state X. (B) Statistical metrics that make the greatest and least contributions to the PCA method.

The user can also specify the “state” in which the most and the least important will be
displayed. The module saves all the feature values in the “.xlsx” file. In addition, the most
significant features are presented using cosine similarity. For primary statistical analysis,
the “Statistics and Shuffling” module was added (Supplementary Materials Section S7).

4. Discussion

The use of miniature fluorescence microscopy for the investigation of neuronal activity
of the brain areas in freely moving animals in vivo has provided valuable comprehen-
sion in neuronal network functioning [29–32]. Analysis of calcium-indicator fluorescence
helps in the evaluation of a single-neuron activity within large neuronal populations. This
manuscript presents NeuroActivityToolkit, an open-source toolbox that enables the com-
putation of various quantitative parameters and metrics describing neuronal networks
(Tables 1 and 2), based on the miniscope data preprocessed using Minian [19] or other
algorithms with a similar file organization [20,21,33].

Understanding the properties of neuronal activations can be a powerful tool for
analyzing the state of networks. It can find implementation in comparing neuronal network
conditions under various exposures or stimuli [34–36], identifying shifts in the neuronal
firing at the population level during learning processes [37–39], social behavior [40,41],
seizures [42–45], etc. Analyzing the burst-rate distribution could report the excitation–
inhibition balance, which is very important for proper brain functioning. The excitation–
inhibition disbalance has been observed in different neurodegenerative disorders [46,47],
making its investigation utilizing the miniscope technique with subsequent data analysis
via NeuroActivityToolkit a promising avenue for research. Furthermore, recording neuronal
calcium dynamics with specific promoters for selective expression in the neuronal subtypes
(CAMKII for most excitatory neurons [48,49] and mGAD65 [50] or others [51] for inhibitory
neurons) might be a way to reveal the neuronal structure architecture of the complex
networks in vivo in different regions of the brain.

Correlation coefficient analysis offers a comprehensive understanding of the connec-
tivity between cells in the neuronal network [52,53]. Tracking the dynamics of the co-active
neuronal pairs might be an interesting approach for plasticity-related processes investiga-
tion. The appearance of new pairs of strongly correlated neurons and the disappearance of
already-formed ones, as well as the redistribution of Pearson’s correlation coefficient among
a neuronal network, may indicate a complex reorganization within the neural network
in response to external factors. Pearson’s coefficient calculation for different variants of
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the active-phase extraction from the preprocessed calcium signal is implemented in the
NeuroActivityToolkit, providing a complete picture of the “relationships” between neurons
in the network. Considering the spatial position of the correlated neuronal pairs allows
users to assess the redistribution of connections between neurons in space. Moreover, the
emergence of new interactions can shed light on how the network rebuilds in response to
external influences or pathological changes, such as strokes, epileptic seizures, or during
the progression of neurodegenerative diseases.

In the current toolbox, the shuffling module helps to determine the level of (un)randomness
in the recorded datasets. Data shuffling is an important tool in studying the neurobiological
aspects of the brain’s neural networks’ functioning [54,55]. By introducing controlled ran-
domness to the original data, neuronal connections between cells are eliminated along with
changes in the overall activity of the neural network. Evaluation of the statistical metrics
obtained from both original data and shuffled data offers the establishment of the levels of
certainty in the neural circuits. This undoubtedly plays a significant role in fundamental
aspects of neuronal network functioning.

Principal component analysis can be useful for clustering neural networks by their
calculated statistical parameters, with a convenient graphical presentation for various
conditions and to track their changes.

The presented toolbox NeuroActivityToolkit is a valuable tool for the high-level analy-
sis of miniscope data, which allows neurobiologists to determine and compare quantitative
metrics for describing neuronal networks.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jimaging9110243/s1, Figure S1: Parameters influencing the active-
phase determination; Figure S2: Methods for calculation of the correlation coefficient implemented
in NeuroActivityToolkit, with a preset threshold level at 0.3. Video S1: Activity of the hippocampal
neuronal network recorded via miniscope (recording 1); Video S2: Activity of the hippocampal
neuronal network recorded via miniscope (recording 2); Video S3: Activity of the hippocampal
neuronal network recorded via miniscope (recording 3). Detailed tutorial can be found using a
link above.
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