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Abstract: There has been considerable progress in implicit neural representation to upscale an image
to any arbitrary resolution. However, existing methods are based on defining a function to predict the
Red, Green and Blue (RGB) value from just four specific loci. Relying on just four loci is insufficient
as it leads to losing fine details from the neighboring region(s). We show that by taking into account
the semi-local region leads to an improvement in performance. In this paper, we propose applying a
new technique called Overlapping Windows on Semi-Local Region (OW-SLR) to an image to obtain
any arbitrary resolution by taking the coordinates of the semi-local region around a point in the latent
space. This extracted detail is used to predict the RGB value of a point. We illustrate the technique
by applying the algorithm to the Optical Coherence Tomography-Angiography (OCT-A) images
and show that it can upscale them to random resolution. This technique outperforms the existing
state-of-the-art methods when applied to the OCT500 dataset. OW-SLR provides better results for
classifying healthy and diseased retinal images such as diabetic retinopathy and normals from the
given set of OCT-A images.

Keywords: super-resolution; OCT-A; implicit neural representation; retina; diabetic retinopathy;
opthalmic images

1. Introduction

The primary objective of super resolution (SR) is to obtain a credible high resolution
(HR) image from a low resolution (LR) image. The major challenge is to retrieve the
information which is too minute or almost non existent, and to extrapolate this information
to higher dimensions which is plausible to the human eye. Furthermore, the availability
of paired HR-LR image data poses another concern. Typically, an image is downsampled
using a specific method in the hope of encountering a real-life LR image that is somewhat
similar. The aim of SR models is to fill in the deficient information between the HR and LR
images, thereby bridging the gap. Also, for high-dimensional inputs like videos and 3D
scans there are quite a few work in the literature [1-6].

Most of the architectures [7-11] proposed for SR of images upsample them by a
fixed factor only. This means that a separate architecture needs to be trained for each
unseen upscaling factor. However, the real world is continuous in nature, whereas images
are represented and stored as discrete values in 2D arrays. Inspired by [12-15] for 3D
shape reconstruction using implicit neural representation, ref. [16] proposed Local Implicit
Image Function (LIIF) to represent images in a continuous fashion. Some postprocessing is
performed to obtain the RGB value of the query point. This approach enables representing
and manipulating images in a continuous manner, departing from the traditional discrete
representation in 2D arrays.

In our work, we draw partial inspiration from advancements in 3D shape reconstruc-
tion, but we extend the approach by considering a semi-local region rather than relying
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solely on four specific locations. Our method allows for extrapolation to any random upscal-
ing factor using the same architecture. This architecture takes into account the semi-local
region and specifically learns to extract important details related to a query point in the
latent space that needs to be upscaled. In this paper, we propose an image representation
technique called Overlapping Windows for Semi-Local Representation in a continuous
domain and we fine our work as follows: (i) Each image is represented as a set of latent
codes, establishing a continuous nature. To determine the RGB value of a point in the HR
image within the latent space, we employ a decoding function. (ii) This semi-local region is
fed into network as input which generates the embeddings of the intricate details in it which
have high probability of getting lost when an entire image is taken into consideration by the
networks. (iii) The overlapping window technique allows for effective learning of features
within the semi-local region around a point in the latent space using the embeddings. (iv) A
decoder takes the features derived from the overlapping window technique and produces
the RGB value of the corresponding point in the HR image.

In summary, our work makes two key contributions. Firstly, we introduce a novel
technique called overlapping windows, which enables efficient learning of features within
the semi-local region around a point. This approach allows for more effective representation
and extraction of important details. Secondly, our architecture is capable of upscaling an
image to any arbitrary factor, providing flexibility and versatility without the need for
separate architectures for different upscaling factors. This contribution enables seamless
and consistent image upscaling using a unified framework. The project page is available at
https:/ /rishavbb.github.io/ow-slr/index.html.

2. Related Work

During the early stages of SR research, images were typically upsampled by a certain
factor using simple interpolation techniques, and the network was trained to learn the
extrapolation of the LR images [17,18]. However, this approach presents some issues.
Firstly, the pre-upsampling process introduces more parameters compared to the post-
upsampling process. Pre-upsampling is defined as upscaling the input image and then
passing it through the network, whereas post-upsampling is defined as passing the image
through the network and then upscaling the feature map. Secondly, due to the higher
requirement of parameters more training time becomes a requisite. The network needed to
learn the intricacies of the pre-upsampling method, which added to the overall training
complexity. Finally, the pre-upsampling process using traditional bicubic interpolation
does not yield realistic results during testing. Since it is the first step of the SR pipeline,
the network often attempts to mimic this interpolation, which limits the realism of the
output images. On the other hand, post-upsampling approaches, where the LR image
is downscaled in the very first step, typically involve the use of bicubic interpolation for
resizing. However, downscaling an image, even with bicubic interpolation, tends to yield
more realistic results compared to upscaling. As a result, the research focus has shifted
towards post-upsampling techniques, which provides more efficient and realistic SR results
by leveraging downscaling with appropriate interpolation methods in the very first step.

As already mentioned, downscaling of images happens as the initial step in post-
upsampling process. The network learns features from the downscaled image and the
upsamples the learned features towards the very end. A technique proposed by Shi et al.
in their work [8] is known as sub-pixel convolution. Sub-pixel convolution handles the
extrapolation of each pixel by accumulating the features along the channel of that pixel. By
rearranging the feature channels, sub-pixel convolution enables the network to effectively
upscale the LR image to a higher resolution. While sub-pixel convolution provides a
practical solution for upsampling by integral factors (x1, X2, x3, etc.), it does not support
fractional upsampling factors (x1.4, x2.9, etc.). However, for cases where fixed integral
upsampling factors are sufficient, sub-pixel convolution offers an efficient approach to
achieving high-quality upsampling. The work by Ledig et al. [19] introduced the use of
multiple residual blocks for feature extraction in super-resolution (SR) tasks. Their approach
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demonstrated the effectiveness of residual blocks in capturing and enhancing image details.
Building upon Ledig et al.’s work, Lim et al. [11] proposed an enhanced SR model that
incorporated insights regarding batch normalization. They postulated that removing batch
normalization from the residual blocks could lead to improved performance for SR tasks.
This is because batch normalization tends to normalize the input, which may reduce the
network’s ability to capture and amplify the fine details required for SR. Removing batch
normalization not only results in a reduction in memory requirements but also makes the
network faster. Additionally, the work by Shi et al. [8] contributed to the development
of various approaches for SR using CNNs. These approaches include methods proposed
by [9,19-21]. These methods aimed to enhance feature extraction capabilities specifically
tailored for SR problems, further advancing the state-of-the-art in SR research.

After the success of CNNs in SR tasks, researchers explored the use of generative
adversarial networks (GANSs) to further improve SR performance. Several works, such
as [19,22,23], introduced different GAN architectures for extrapolating low-resolution (LR)
images to higher resolution. ESRGAN (Enhanced Super-Resolution Generative Adversarial
Network) proposed by Wang et al. [24] introduced a perceptual loss function and modified
the generator network to produce HR images. This perceptual loss function aimed to align
the visual quality of the generated HR images with that of the ground truth HR images,
improving the perceptual realism of the results.

In Real-ESRGAN [25], the authors addressed the issue of using LR images downsam-
pled with simple techniques like bicubic interpolation during training. They note that
real-world LR images undergo various types of degradations, compressions, and noise,
unlike the simple interpolation-based downsampling. To simulate realistic LR images
during training, they proposed a novel technique that subjected the training images to
various degradation processes, mimicking real-life scenarios. Additionally, Real-ESRGAN
introduced an U-Net discriminator to enhance the adversarial training process and improve
the quality of the generated HR images.

3. Method

We illustrate the three main components of our approach in this section along with
its pictorial representation in Figure 1. In Section 3.1, we introduce the backbone of our
framework. We represent the LR image as a feature map, which serves as the basis for
subsequent processing and analysis. In Section 3.2, we demonstrate how we find the
semi-local region of an arbitrary point in the HR image. This region contains valuable
information that helps determine the corresponding RGB value. In Section 3.3, we highlight
the Overlapping Windows technique, which plays a crucial role in predicting the RGB
value of a point in the HR image. We accomplish this by leveraging the semi-local region
extracted around the sampling points of the feature map. These three parts collectively
form the foundation of our approach, allowing for accurate prediction of RGB values.
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Figure 1. (a) An LR image is taken. (b) It is passed through EDSR [11] and a feature map is produced.
(c) Locating the semi-local region (M = 6) around a random selected point from HR image. (d) Semi-
local region is passed through the proposed Overlapping Windows. (e) This output is passed through
the MLP to give out the RGB value of a randomly selected point. Steps (c-e) are performed for all the
points in the HR image.
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3.1. Backbone Framework

To extract features from the LR image, we employ the enhanced deep residual net-
works (EDSR) [11]. Specifically, we utilize the baseline architecture of EDSR, which consists
of 16 residual blocks.

¢ = EDSR(Ir) (1)

Given an LR image denoted as I} r € RHXWXC e express it in the form of a feature map

p € RPXQXD  Here, H and W represent the height and width of the LR image, respectively,
and C signifies the number of channels. P and Q represent the spatial dimensions of the
feature map, and D denotes the depth of the feature map.

3.2. Locating the Semi-Local Region

In our scenario, we aim to predict the RGB value at any random point in a continuous
HR image of arbitrary dimensions. Let Igg € RX*Y*C represent the HR image. To predict
the RGB value at a specific point, we first select a point of interest. Then, we identify its
corresponding spatially equivalent point in the feature map ¢ obtained from the LR image
using bilinear interpolation denoted as Up;.

£ = Upr(x,9) ()

where £ and x are the 2D coordinates of the ¢ and Iyg respectively.

Furthermore, we extract a square semi-local region around this corresponding point.
The size of this region is determined by a length parameter M units, where each unit
dimension of the square region corresponds to the inverse of the dimensions P and Q of
the feature map ¢ along its length and breadth respectively defined in Equation (5) which
is used to find the discrete positions in the semi-local region. Once we have identified the
square semi-local region around the corresponding point in the feature map 1, we proceed
to extract M x M depth features from this region using Equation (3). These depth features
capture the important information necessary for predicting the RGB value at the desired
point in the HR image. To extract these features, we employ a closest Euclidean distance
approach denoted by 0rp. Each point within the M x M region in ¢ is mapped to the
nearest point in the latent space, which represents the extracted depth feature. Figure 2
illustrates the working of selecting of features from the feature map. This mapping ensures
that we capture the most relevant information from the semi-local region.

X:(fx_‘/JX*ir’?y_l/Jy*j) 3)
. -M —-M +M +M, . -M —-M +M +M
l—{T,T+1, 5 —1, 5 },]—{ ) —.—1,?—1,7 (4:)
1 1
lPx:ﬁ/‘Py:é %)

Thus X holds the 2D coordinates of all the M x M points.

S =0 (X, ¢) (6)

Figure 3 illustrates how the semi-local region is identified and used to extract the
M x M depth features from the feature map . This depiction helps to visualize the steps
involved in the feature extraction process.
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Figure 2. To extract features from a feature map of size 3 x 3, we focus on a specific query point
represented by a red dot. In order to determine which pixel locations in the feature map correspond
to this query point, we compute the Euclidean distance between the query point and the center points
of each pixel location. In the provided image, the black line represents the closest pixel location in the
feature map to the query point.

1 5 R

Figure 3. (a) Given an HR image, a point of interest (red dot) is selected to predict its RGB value.
(b) Its corresponding spatially equivalent 2D coordinate is selected from the feature map. (c) Locating
the semi-local region (M = 6) around the calculated 2D coordinate.

3.3. Overlapping Windows

After extracting the semi-local region S € RM*M*D our objective is to obtain the
RGB value of the center point using this region. To achieve this, we employ a overlapping
window-based approach. We start with four windows, each with a size of M — 1, positioned
at the four corners of S. Each window extracts information from its respective region and
passes it on to the next subsequent window in the process. With each iteration, the size of
the window decreases by 1 until it reaches a final size of 2. This iterative process ensures
that information is progressively gathered and refined towards the center point. This
approach allows us to effectively capture and utilize the information from the semi-local
region while focusing on the features that are most relevant for determining the RGB value.

I'=s;*xw; (7)
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In each iteration i, where the window size decreases by 1 for the next step, we utilize
weights w; for combining the features from all four corners. This ensures that the infor-
mation from each corner is properly incorporated and made available for the subsequent
iteration. In the last step, we take a final window size of 2, but instead of being positioned
at the corners as in previous iterations, it is centered around the target point of interest. The
features extracted from this final window are then passed through a Multi-Layer Perceptron
(MLP) to make the final prediction.

By adapting the window positions and sizes throughout the iterations, we effectively
capture and aggregate the relevant information from the semi-local region. This approach
allows us to make accurate predictions at the target point, utilizing the combined features
from all iterations and the final MLP-based processing. Figure 4 shows the working of the
overlapping windows.

A

Figure 4. The first iteration of overlapping windows, where the window size =M — 1 (M = 6).
Assuming the feature map is of negligible depth and four windows are positioned at the four corners
of the feature map.

4. Results and Discussion
4.1. Dataset

We used the OCT500 [26] dataset and randomly sampled 524 images from it to train
our network. It consists of 300 3 x 3 OCTA images and 224 6 x 6 OCTA images. We use For
evaluation, 80 images were selected and we report the results using peak signal-to-noise
ratio (PSNR) metric.

4.2. Implementation Details

During the training process, we apply downsampling to each image using bicubic
interpolation in PyTorch [27]. This downsampling is performed by selecting a random
factor, which introduces the desired level of degradation to the images. For training, we
utilize a batch size of 16 images. From each high-resolution (HR) image, we randomly
select 1500 points for which we aim to calculate the RGB values. These points serve as the
targets for our network during the optimization process.

To optimize the network, we employ the L1 loss function and use the Adam opti-
mizer [28]. The learning rate is initialized as 1 x 10~* and is decayed by a factor of 0.3 at
specific epochs, namely [40, 60, 70]. We train the network for a total of 100 epochs, allowing
it to learn the necessary representations and refine its predictions over time.
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24x24

Furthermore, each LR image is converted into a feature map of size 48 x 48 with a
depth of 64 using the EDSR-baseline architecture. This conversion process ensures that
the LR images are properly represented and aligned with the architecture used in the
training process.

4.3. Quantitative Results

In Figure 5, we present a comparison of the performance of our proposed OW-SLR
method against existing works. The original image patch is first downsampled using
bicubic interpolation to a lower resolution. It is evident that there is a significant loss of
image quality in the LR patches compared to the ground truth (GT) image. However, our
model outperforms the other existing methods, demonstrating a significant improvement
when the LR image is extrapolated to a higher scale. The results obtained by our model
show better preservation of details and higher fidelity compared to the other approaches
when the given image is extrapolated to higher scale. The PSNR results of each image are
shown in Table 1.

Bicubic SRCNN EDSR OW-SLR GT
(96x96)

(96x96) (ours - 96x96)
y cr 17 dE WY

ey - ‘
b
\

(96x96)

7

Figure 5. A 96 x 96 patch is taken and its size is reduced to 24 x 24 (first row), 32 x 32 (second row)
and 48 x 48 (third row) using bicubic interpolation. Our architecture uses the same set to weights
reproduce the given results. However, others require different set of weights for a newer scale to be
trained on. The PSNR results of each image are shown in Table 1.

Table 1. PSNR result of each of the input images across different methods shown in Figure 5.

Patch Size Bicubic SRCNN [17] EDSR [11] OW-SLR (Ours)
24 x 24 11.96 12.87 13.79 13.92
32 x 32 14.18 15.10 16.04 16.26
48 x 48 15.37 16.89 17.66 17.98

It is worth noting that our model achieves these results for different scaling factors
using the same set of weights trained once. In contrast, the other models would need to
be retrained for each new scale to which the LR image is extrapolated. This highlights the
versatility and efficiency of our model in handling various scaling factors without the need
for additional training.

In Table 2, we provide the upscaling time taken by the proposed model by different
factors, while training it just once.
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Table 2. Time taken to extrapolate a 320 x 320 image on a single Nvidia Titan V of 12 Gigabyte size.

Extrapolation Factor Time Taken (In Seconds)
2% 6.48
2.4x% 8.90
3x 12.01
3.9x 19.46
4.5% 26.29
5x% 33.75

In Table 3, we present the results of this technique compared to the existing state-of-
the-art methods on the OCT500 [26] dataset. The evaluation metric used in this case is the
peak signal-to-noise ratio (PSNR). Our work demonstrates superior performance compared
to LIIF, highlighting the effectiveness of considering the semi-local region instead of solely
focusing on four specific locations. By incorporating the information from the semi-local
region, our approach achieves improved results in terms of PSNR, showcasing the benefits
of our methodology for super-resolution tasks.

Table 3. PSNR result on the 300 images from OCT500 [26].

Methods PSNR 1
Real-ESRGAN [24] 15.66
SRCNN [17] 16.51
EDSR [11] 17.49
LIIF [16] 17.60
OW-SLR (ours) 17.93

5. Conclusions and Future Work

OCTA images help us for the diagnosis of retinal diseases. However, due to various
reasons like speckle noise, movement of the eye, hardware incapabilities, etc. we lose onto
intricate details in the capillaries that play a crucial role for correct diagnosis. We propose
this architecture which upscales a given LR image to arbitrary higher dimensions with
enhanced image quality. First, we extract the image features using a backbone architecture.
We then select a random point in the HR image and calculate its equivalent spatial point
in the extracted feature map. We find the semi-local region around this calculated point
and pass it through the proposed Overlapping Windows architecture. Finally, an MLP is
used to predict the RGB value using the output of the overlapping window architecture.
We hope our work will help the people in the medical field in their diagnosis. PSNR 17.93
is achieved for the OCT500 dataset which outperforms the other state-of-the-art work.
The technique outperforms the existing methods and allows upscaling images to arbitrary
resolution by training the architecture just once.

While effective, it is worth noting that this algorithm does come with a slightly
higher computational cost due to its consideration of the semi-local region. There remains
potential for further enhancements in both computational efficiency and accuracy while
taking the semi-local region into account. This work will provide a stepping stone for
future researchers to make strides in this direction.
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