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Abstract: This paper presents a parallel implementation of a non-local transform-domain filter
(BM4D). The effectiveness of the parallel implementation is demonstrated by denoising image series
from computed tomography (CT) and magnetic resonance imaging (MRI). The basic idea of the filter
is based on grouping and filtering similar data within the image. Due to the high level of similarity
and data redundancy, the filter can provide even better denoising quality than current extensively
used approaches based on deep learning (DL). In BM4D, cubes of voxels named patches are the
essential image elements for filtering. Using voxels instead of pixels means that the area for searching
similar patches is large. Because of this and the application of multi-dimensional transformations,
the computation time of the filter is exceptionally long. The original implementation of BM4D is only
single-threaded. We provide a parallel version of the filter that supports multi-core and many-core
processors and scales on such versatile hardware resources, typical for high-performance computing
clusters, even if they are concurrently used for the task. Our algorithm uses hybrid parallelisation
that combines open multi-processing (OpenMP) and message passing interface (MPI) technologies
and provides up to 283× speedup, which is a 99.65% reduction in processing time compared to the
sequential version of the algorithm. In denoising quality, the method performs considerably better
than recent DL methods on the data type that these methods have yet to be trained on.

Keywords: volumetric data; image denoising; parallel implementation; medical imaging; high-
performance computing

1. Introduction

Medical imaging is a technical area where image processing plays a crucial role. It can
considerably influence the quality of resulting visualisations. A significant level of noise
typically corrupts the image data. Thus, image filtering is important here. The noise source
is connected with the physical principles of the imaging methods. The commonly used
medical imaging methods are computed tomography (CT), magnetic resonance imaging
(MRI) and ultrasound. Powerful denoising techniques have to be used to reduce the noise
level. There is a large field of techniques that focus on image denoising. The traditional ones
represented by Gaussian filters [1], wavelet filters [2] and Wiener filters [3] are accompanied
by methods using non-local means [4,5] that use non-local data to perform the filtering at
specific locations within the image. Originally, the traditional techniques were designed to
handle 2D images. However, this is less effective since most medical image data, i.e., CT
and MRI, are 3D. For this purpose, the filtering techniques have been redesigned to fully
utilise the volumetric nature of the data. Three-dimensional modifications of the non-local
means filter can be found in [6–9]. A more powerful technique designed for filtering
volumetric data that brings the state-of-the-art in the classical filtering methods is called
BM4D. A detailed description of the method is presented in [10].

There is also enormous attention given to deep learning (DL) methods, which have
proved effective in tasks such as image denoising. For example, [11] uses residual learning
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and deep convolutional neural networks to achieve state-of-the-art performance in image
denoising. This method is not dedicated to medical image data but is proposed as a general
image denoiser. On the other hand, the technique in [12] is used to reduce noise, specifically
in low-dose CT images, and reaches the state-of-the-art in both simulated and clinical cases.
It uses a residual encoder–decoder convolutional neural network to create the denoising
algorithm. There are also quite popular DL-based techniques for image denoising that
incorporate the image rendering process [13,14]. They are trained on large amounts of
synthetic data and reduce the noise produced by Monte Carlo rendering methods like
path tracing. However, based on [15], where authors evaluate the DL-based approach to
minimise the noise in CT images with variable X-ray dose levels, it is observed that DL
methods cannot always improve the image quality compared to traditional methods, and it
is dependent on the type of data that the method is trained on and on specific noise levels
that it is supposed to reduce. For example, the DL method trained only on general images
performed better at denoising CT images corrupted by small noise levels than the same
method fine-tuned on CT images with various noise levels. Opposed to that, the generally
trained DL method performed poorly at denoising high noise levels. In contrast, the fine-
tuned method could provide good results, but only at specific high noise levels, even
though it was fine-tuned on CT data with all levels of corrupting noise. Although DL
methods are frequently used, traditional image-denoising methods still have their place,
and they can compete with DL-based methods, especially if there are not enough data to
train the DL methods on or there are no data at all, which is the case of medical imaging.
No ideal noise-less CT or MRI reference could be acquired from the measurement. Those
could be only simulated.

Our motivation is to provide a medical image denoising method that does not require
training or fine-tuning on specific data due to the potential lack of data or their complete
unavailability. On the other hand, such a method should still provide state-of-the-art
denoising performance and fast computation times. This method would then pre-process
the medical image data before volume rendering. In Figure 1, we show volume renders of
the MRI dataset obtained from BrainWeb for noisy and noise-less data. The idea behind
using a suitable denoising method is to provide similar visual quality as the volume
rendering of reference noise-less data if we use the noisy input and image denoising before
it is rendered.

Figure 1. Volume rendering of MRI dataset from BrainWeb; (left)—the dataset corrupted by 25%
Gaussian noise; (right)—the dataset without the noise; identical setup of a transfer function in shader
properties for both data.

We focus on the BM4D method, which is an extension of the BM3D filter described
in [5], but instead of a group of pixels as used in 2D images, it works with cubes of 3D
voxels. By working with voxels, the computational complexity rises. This is natural since
more data are being processed. Unfortunately, the computational load can be so high that
it makes using the filter very impractical. As documented in [10], to filter the image of size
181 × 217 × 181 voxels while using the proposed modified parameters of the filter, the total
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filtering time takes more than 11 min (676.7 s) on a machine with a 2.66 GHz processor
and 8 GB of RAM. This is too much to make the filter practically available. The proposed
filter implementation, as provided in [16], does not leverage parallel processing to reduce
the computation time. The only parallel implementation of the BM4D filter we know of is
in [17] and provides tests on multi-core and multi-node CPU resources only.

This paper presents an extension of work in [17] by describing and evaluating the par-
allel multi-core and new many-core implementation. Special attention is drawn to utilising
Intel’s MIC (Intel Corporation, Santa Clara, CA, USA) (Many Integrated Core) architectures,
either solely or in combination with Intel’s CPUs. We test our implementation on three
clusters built on different HW, proving our solution’s universality. Our implementation is
provided as a C++ code, using hybrid parallelisation via MPI and OpenMP frameworks.
We evaluate the filter on three different datasets with two medical modalities, the MRI
and the CT. The MRI data are from the BrainWeb database [18], which offers simulated
brain data. Since the reference image is available in this dataset, we also compare our
implementation with selected DL methods in denoising quality here. The other two CT
modalities represent the data of real patients. The CT data are in a much larger image series
than the one from BrainWeb. Selected datasets also evaluate the filter implementation in
terms of different workloads. The contributions of the paper are as follows,

• Application of parallel version of BM4D algorithm to many-core architectures and
combination of multi and many-core HW and proving the scalability tests.

• Comparison of the algorithm with DL-based approaches.
• Testing the algorithm as a pre-processing stage before volume rendering.

The paper is organised as follows. In Section 2.1, we briefly explain the basic idea of the
BM4D algorithm. Section 2.2 describes the parallelisation concept that allows for running
the algorithm in parallel instead of sequentially. Section 2.3 describes the programming
techniques and tools used to make the algorithm run in parallel. Section 2.4 brings the
information about the type of hardware that the algorithm has been tested on and the data
used to test it. All the tests and respective results are provided in Section 3. Our conclusions
and future work are presented in Section 4.

2. Materials and Methods
2.1. Explanation of BM4D Algorithm

A detailed explanation of the BM4D algorithm can be found in [10]. Here, we restrict
ourselves to the basic idea of the algorithm and its workflow. It is later used to explain our
way of parallelisation.

In Figure 2, the concept of the BM4D filter is shown. The whole procedure can be
divided into two subsequent steps: hard thresholding of the image and Wiener filtering.
In the first step, the noisy image in a 3D matrix is marched through, and reference cubes of
voxels are selected. Around each reference cube, an area of specific size and cubical shape
is set. Within this area, mutually similar cubes to the reference are searched. The most
similar ones are stacked in a group. This procedure is called grouping by matching. Groups
of similar cubes are then transformed into sparse domains. To transform the data, a 4D
transformation is applied (it accounts for three spatial dimensions: x, y, z and one dimen-
sion in the order of the stacked cubes in the group). The resulting 4D transform is achieved
by 4× 1D transform in respective order. This is also the approach that we use in our
implementation; see the Algorithm 1, which, in detail, shows how the 4D transformation is
achieved. After transforming into the sparse domain, the separation of noise and a valid
signal is carried out effectively by hard thresholding. The filtered spatial data are obtained
using the inverse 4D transform of the thresholded groups. Those are then aggregated in
their original locations within the image. This provides the filtering in the first step of



J. Imaging 2023, 9, 254 4 of 15

the algorithm.

Algorithm 1: Four-dimensional transformation from spatial to sparse domain.
Input : G . . . Group of similar cubes in spatial domain, size L× L× L×M
Output : G4T . . . 4D transformed group from spatial to sparse domain, size L3 ×M
L . . . Cube size
M . . . Group size
G3T . . . Group of similar cubes after 3D transform
C . . . Single cube from a group of similar cubes, size L× L× L
s . . . Slice of the cube through its depth, size L× L
TBior . . . Transformation matrix to achieve 3D transformation of the group, size L× L
THaar . . . Transformation matrix to achieve 1D transformation of the group, size M×M
P(direction) . . . Permutation operation
R(size) . . . Reshaping operation

G3T = {}
foreach C ∈ G do

C2T = {}
foreach s ∈ C do

s1T = s · TT
Bior 1D transform (1st)

s2T = TBior · s1T 1D transform (2nd)
s2T → C2T

end
CP = P(90◦←)(C2T)
CP1T = {}
foreach sP ∈ CP do

sP1T = sP · TT
Bior 1D transform (3rd)

sP1T → CP1T

end
C3T = P(90◦→)(CP1T )
C3T → G3T

end
GR = R(L3×M)(G3T)

G4T = GR · TT
Haar 1D transform (4th)

Figure 2. Workflow of the collaborative filtering method graphically describing the two subsequent
steps—hard thresholding and Wiener filtering.
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The second step uses the hard thresholded image and performs another grouping
by matching. Because the noise in the image is already significantly reduced by previous
operations, the grouping and matching can perform considerably better this time. Locations
of the grouped cubes of voxels are used to collect similar groups within the original noisy
image. Both groups are again transformed into the sparse domain, and the Wiener filtering
is applied to the original noisy data. These data are then back-transformed and aggregated
to form the final filtered image.

The BM4D algorithm works with several parameters that influence the speed and qual-
ity of the filtering. We have adopted the parameters recommended in [10] that are indicated
as “modified profile“. This setting represents an assortment of optimised parameters that
assure balanced performance in a wide range of noise variances. In [10], it is documented
as having the best PSNR performance compared to the stated “normal profile”. Table 1
presents the modified parameters because we reference them further in the text.

Table 1. Recommended parameters of the BM4D method that provide balanced performance in a
wide range of noise variances.

Parameter
Stage

Hard Thresholding Wiener Filtering

Cube size L 4 5

Group size M 32

Step Nstep 3

Search-cube size NS 11

Similarity thr. τmatch 24.6 6.7

Shrinkage thr. λ4D 2.8 Not applicable

2.2. Parallelisation Concept

Parallelisation generally tries to leverage those parts of an algorithm that can run
independently of the others. Independent parts of code can run in parallel on multiple
threads and nodes and can therefore run much faster. In our approach, we work with the
idea that the searched areas around each reference cube in the image can create completely
separate tasks. This is possible if we can guarantee that the areas do not overlap. However,
we had to resolve this issue because the BM4D filter uses overlapping areas to filter the
whole image. The solution here is to sort the reference cubes with their respective areas into
groups containing only areas that do not overlap. A one-dimensional example (X direction)
of such a procedure is shown in Figure 3, where areas (outlined large rectangles) around
each reference patch (small rectangle with black dot inside) are sorted into three different
groups to preserve non-overlapping. A similar procedure is handled in all three directions
(X, Y, Z). This can be applied inside each step, either hard thresholding or Wiener filtering.
In this way, we can parallelise the most computationally extensive parts of the algorithm.
Different groups have to be solved sequentially to preserve non-overlapping or total
independence between concurrent threads. However, this is not a big issue since the bigger
the image, the higher the amount of non-overlapping areas in a group that can be solved in
parallel. Typically, the number of non-overlapping areas is much higher than the number
of used parallel threads, so even within one group, the allocated resources are used more
than once.
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Figure 3. Sorting areas (large rectangles) around the reference patches (small rectangles) into groups
with non-overlapping areas. One-dimensional example (X direction).

2.3. Practical Realisation of the Parallel Filter Implementation

We have used the Blender (Blender Foundation, Amsterdam, Netherlands, version
3.6) [19] environment to practically realise the filter implementation. We execute our
BM4D filter in parallel using the server and client(s) approach. Blender is open-source
software and serves as a visualisation environment where we can load datasets, process
them and visualise them. The Blender environment is optional since the concept of server
and client(s) is general and fits into the rules of MPI communication, which we use to utilise
multi-node resources. Our concept uses hybrid parallelisation that exploits both MPI [20]
and OpenMP [21] frameworks. In this way, we can effectively use the computational
resources of a multi-core workstation or even a multi-node supercomputer. We also paid
special attention to creating the filter implementation as general enough so it can utilise
different types of architectures typical in supercomputers; see Section 2.4. Our concept
can use cluster nodes fully, whether equipped with multi-core (CPU) or many-core (MIC)
processors or combinations.

Our concept of the server and clients used to run on different clusters is organised as
shown in Figures 4 and 5. Blender runs on the server and collects results from individual
clients previously given a specific portion of the total workload. As a server, we can use
either the classical CPU node or the second-generation MIC node (KNL, aka “Knights
Landing”) (Intel Corporation, Santa Clara, CA, USA). Blender clients can run on classical
CPUs or both generations of MIC, specifically the first-generation KNC (aka “Knights
Corner”) or the second-generation KNL. Before sending specific workloads to clients,
the pre-processing phase consists of the creation of transformation matrices and division
into separable and balanced workloads. This is performed on the server side. All of the
necessary data needed for the job on each client are then distributed from the server using
collective MPI routine MPI_Broadcast. We broadcast the image data, the transformation
matrices and the vector of groups of reference cube’s coordinates. Each group in the vector
guarantees that all coordinates in one group point to the mutually non-overlapping areas in
the image. In such a way, those image parts can run in parallel when computed on a specific
client. Each client locally utilises the OpenMP’s #pragma directives for parallelisation. We
use #pragma omp parallel for schedule(guided) to best tackle the possible load imbalance
between iterations of the parallel loop. After each node finishes work, the server collects
partial results over the image using another collective MPI routine, the MPI_Reduce. We
use the MPI_SUM operation in MPI_Reduce to sum up the portions of the numerator
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and denominator that are part of the aggregation process in the BM4D algorithm. By
using collective routines, we can reduce the communication overhead due to tree-based
optimisation while communicating. We also use a strategy aware of the NUMA (non-
uniform memory access) effect on CPUs. Within one node, we access only that part of CPU
memory dedicated to a specific processor, meaning that the memory access is uniform. This
feature can bring more than 20% speed up (when measured on 15 clients). Practically, it
means that we attach one client to exactly one processor; see Figures 4 and 5.

Figure 4. Concept of server and clients used for parallelisation of BM4D algorithm on multiple CPU
nodes of Anselm (left) and multiple MIC nodes of HLRN’s test system (right).

Figure 5. Concept of server and clients used for parallelisation of BM4D algorithm on multiple
CPU/MIC nodes of Salomon.

2.4. Utilised HPC Resources and Test Data

We have tested the parallel implementation of the BM4D filter on three different super-
computers equipped with different hardware. Clusters offer typical multi-core processor
nodes (CPUs), purely many-core processor nodes (MICs), or their combination. The first
one, Salomon [22], is a multi-node cluster where each regular compute node is an x86-64
computer equipped with twenty-four cores (two twelve-core Intel Haswell processors).
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There are also accelerated nodes that, besides the regular ones, have two many-core Intel
Xeon Phi 7120P accelerators (KNCs) on each node. The second supercomputer, Anselm [23],
is Salomon’s predecessor, and it is equipped with sixteen cores (two eight-core Intel Sandy
Bridge processors) on each of its regular nodes. The third cluster is HLRN’s Cray test and
development system [24] that is equipped with many-core processors, Intel Xeon Phi 7250
(KNL). One processor is dedicated to one node on this system.

The tests were run on three different datasets. They differ in size and modality.
The smaller dataset of size 181 × 181 × 181 voxels represents simulated MRI brain data;
see Figure 6. The larger dataset of size 512 × 512 × 170 voxels is the CT modality, and it
covers the head–neck area of an actual patient; see Figure 7. The largest dataset has the
size of 512 × 512 × 779 voxels, and it is again a CT scan of an actual patient. This dataset
covers the patient’s thorax and abdomen; see Figure 8. Selected datasets vary also in
terms of voxel dimensions and proportions. The 512 × 512 × 779 dataset has voxel size
[0.71, 0.71, 0.6] mm, while voxels in the 512 × 512 × 170 dataset are size [0.38, 0.38, 0.75]
mm. The 181 × 181 × 181 dataset uses voxel size [1, 1, 1] mm. These specific datasets
were chosen to stress out the proposed algorithm in possible scenarios, such as processing
isotropic and anisotropic voxels, computing on different data modalities (CT, MRI) and
using small to large data sizes.

Figure 6. MRI volume of a brain (BrainWeb). (top left)—Original noise-less data. (top right)—
Original data corrupted by 25% Gaussian noise. (bottom left)—Filtered image data by BM4D.
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Figure 7. Real CT data of a patient—series of 170 images. (left)—Original noisy data. (right)—Filtered
image data by BM4D.

Figure 8. Real CT data of a patient—series of 779 images. (left)—Original noisy data. (right)—Filtered
image data by BM4D.

3. Results

At first, we have compared results obtained by the original single-threaded algorithm
implementation [16] as a non-parallelised version of the code with our parallelised version.
This measurement has been performed on all three datasets to show and fully appreciate
the effect of the parallelisation. Results can be seen in Figure 9.

For further tests of algorithm scalability, we have used allocation of up to 32 nodes
depending on the cluster that we are testing on (32 nodes when testing on HLRN’s clus-
ter and 17 nodes of Salomon or Anselm). It is a reasonable amount for measuring the
filter implementation. Measurements have been conducted on the biggest dataset of
512 × 512 × 779 voxels.

In Figures 10 and 11, which capture the scalability tests, we show two processing
times, the pure filtering time and the total runtime. The total algorithm runtime includes
the pre-processing time (assembly of transformation matrices, division to groups of non-
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overlapping areas, etc.), the communication time used by MPI and the time spent by
filtering the image. The filtering time can be further divided into the time spent by hard-
thresholding and the time spent by Wiener filtering.

Figure 9. Comparison between original BM4D [16] and our parallel implementation in terms of total
runtime and achieved speed-up. Results shown on all three data sets.

Figure 10. Strong scalability on different architectures without communication. Results on the real
CT data of size 512 × 512 × 779 voxels.
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Figure 11. Strong scalability on different architectures with communication. Results on the real CT
data of size 512 × 512 × 779 voxels.

A significant result that is coming out of the tests is a speed comparison of different
generations of utilised HW. We have used two generations of Intel’s MIC (KNC and KNL)
and two of Intel’s CPUs (Haswell and Sandy Bridge). Haswell can be compared with KNL
(introduced in 2013) and Sandy Bridge with KNC (introduced in 2011). We have always
attached one CPU to one MPI process (one Blender client). This means 12 CPU cores of
Salomon as one process and 8 CPU cores of Anselm as one process. These can be compared
to one KNL MIC or one KNC MIC, respectively.

To compare the different HWs, we have also selected the term “Units”, which stands
for specific resource utilisation on different HWs. On HLRN’s cluster, one unit stands
for utilising one KNL. A similar case holds for the Anselm cluster, where one unit is one
CPU. Since the Salomon cluster is equipped with CPUs and KNCs within one node, we
distinguish based on their combination used for testing. If CPU and KNC are utilised, then
one unit stands for one CPU and one KNC. If only a CPU is used, then one unit is one CPU.
A similar case holds if only KNC is used; then, one unit stands for one KNC.

Figure 10 shows the pure filtering time obtained on different HW. Here, the CPU+KNC
stands for measurement on Salomon utilising all resources within the nodes, CPU stands
for only CPU utilisation on Salomon, KNC stands for only KNC utilisation on Salomon,
CPU2 uses the CPU nodes of Anselm and KNL utilises the KNL nodes of HLRN cluster.
The results here show almost ideal scalability since they focus on algorithm speed up
without the communication burden.

Figure 11 shows the total algorithm runtime, utilising the same resources as in the
previous Figure 10. We can see a decline in scalability due to the high communication
burden of MPI. This effect affects the MIC processors more in the case of pure KNL, KNC
or a combination of CPU+KNC.

As for the comparison of different HW, it is shown that the Sandy Bridge architecture
(1×CPU of Anselm) is comparable with MIC KNC architecture (1×KNC of Salomon), whilst
Haswell architecture (1×CPU of Salomon) lags behind MIC KNL architecture (1×KNL of
HLRN’s).

In the next tests, we compared the BM4D denoising quality with two DL-based meth-
ods, specifically with RED-CNN [12] and OIDN [13]. The former is a method specialising
in noise reduction in low-dose CT images. The latter is a very popular method used for
general image denoising, and it is typically used for noise reduction in ray-traced images.
We have used this method specifically because we also perform volume rendering tests in
the last step. None of the DL methods have been fine-tuned on the MRI data. We wanted
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to see their raw potential. We show the denoising quality comparison in Table 2. The three
metrics, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and
root mean square error (RMSE), were chosen for the image quality assessment. A visual
comparison of the respective method performance is provided in Figure 12.

Since the methods for noise reduction in medical images mainly serve the purpose of
further visual analysis, we have used the outputs of the previously mentioned methods
and performed a volume rendering via path tracing on the fully denoised data stacks. The
results can be seen in Figure 13.

Table 2. Quantitative evaluation of different noise reduction methods in terms of denoising quality.
Test performed on BrainWeb dataset (181 × 181 × 181 voxels), which has been corrupted by 25%
Gaussian noise. Values computed as average over all slices in axial direction. Method marked as
None provides measure between noise-less reference image and the image corrupted by the noise.
The best values are in bold.

Method
Quality Measure

PSNR SSIM RMSE

None 13.663 0.617 0.208

RED-CNN 15.770 0.716 0.163

OIDN 22.235 0.902 0.078

BM4D 23.547 0.921 0.067

Figure 12. Visual comparison of different denoising methods applied on BrainWeb dataset
(181 × 181 × 181 voxels). Image from axial slice 56 is used for comparison. (top left)—Original noise-
less data. (top right)—Original data corrupted by 25% Gaussian noise. (bottom left)—RED-CNN.
(bottom middle)—OIDN. (bottom right)— BM4D.
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Figure 13. Application of volume rendering on the outputs of different denoising methods. Brain-
Web dataset (181 × 181 × 181 voxels). Coronal view on the datastack from slice 92 to 181.
(top left)—Original noise-less data. (top right)—Original data corrupted by 25% Gaussian noise.
(bottom left)—RED-CNN. (bottom middle)—OIDN. (bottom right)— BM4D.

4. Conclusions

We have shown how to parallelise one of the best-performing filtering techniques for
denoising volumetric image data called BM4D. Its usage can be targeted mainly towards
medicine, where large volumetric image data are frequently used. Our implementation
can bring significant speed up in the total runtime of the filter. Based on our observation,
we can achieve speed up from 200× to 300× compared to the original BM4D code version
while running on multiple computing nodes (15 nodes). This is a reduction in processing
time of between 99.5% and 99.7%. This brings the algorithm to very convenient usage
since, on the largest dataset (512 × 512 × 779 voxels), the total runtime is 50.78 s instead of
3 h 59 m 16.30 s. Our parallelisation concept also allows full utilisation of the computing
nodes. Either the node is equipped by CPUs only, MICs only or it is a computing node that
combines them both. If a combination of CPUs and KNCs is used (full node utilisation
on Salomon), it provides an enhanced performance of up to eight CPUs and eight KNCs
against partial node utilisation (CPUs only). We have also compared BM4D denoising
quality with specific DL methods and found that it can surpass the DL methods, which is
proved by typical quality metrics and in the following volume rendering of denoised data.

In our future work, we plan to use the algorithm as a pre-processing step before
volume rendering medical datasets by path tracing methods. This will allow us to obtain
plausible visualisations of human body tissues in 3D.
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