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Abstract: Several sign language datasets are available in the literature. Most of them are designed
for sign language recognition and translation. This paper presents a new sign language dataset for
automatic motion generation. This dataset includes phonemes for each sign (specified in HamNoSys,
a transcription system developed at the University of Hamburg, Hamburg, Germany) and the
corresponding motion information. The motion information includes sign videos and the sequence
of extracted landmarks associated with relevant points of the skeleton (including face, arms, hands,
and fingers). The dataset includes signs from three different subjects in three different positions,
performing 754 signs including the entire alphabet, numbers from 0 to 100, numbers for hour
specification, months, and weekdays, and the most frequent signs used in Spanish Sign Language
(LSE). In total, there are 6786 videos and their corresponding phonemes (HamNoSys annotations).
From each video, a sequence of landmarks was extracted using MediaPipe. The dataset allows
training an automatic system for motion generation from sign language phonemes. This paper also
presents preliminary results in motion generation from sign phonemes obtaining a Dynamic Time
Warping distance per frame of 0.37.

Keywords: motion dataset; sign language; sign phonemes; HamNoSys; landmarks extraction

1. Introduction

Sign language datasets play a crucial role in developing systems that enable effective
communication for individuals with hearing impairments. While several sign language
datasets exist, they are focused on sign language recognition and translation, not including
information at the phoneme level. Many existing datasets rely only on specific sources
such as speech or text descriptions attached to videos, which fall short of capturing the
intricate details inherent in sign languages. The absence of phonemes does not allow for
the development of motion generation systems for sign language.

In other fields, different to sign language processing, there exist several motion datasets
describing different human activities. For example, the Human3.6M dataset [1] contains
3.6 million accurate 3D human poses under four different viewpoints and their correspond-
ing images. This dataset contains typical human activities such as taking photos, posing,
eating, or talking on the phone performed by 11 professional actors. Some examples of the
annotations in the dataset are “a person waves with left hand” and “the person is walking
in a circular shape”.

Other datasets combine natural language annotations and gesture representations
to train systems able to generate avatar motion. For instance, the KIT Motion-Language
dataset [2] contains 3911 gestures, with a total duration of 11.23 h, and 6278 annotations
in natural language that contain 52,903 words. The authors converted the marker-based
motion capture data to the Master Motor Map framework representation (avatars). To
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obtain motion annotations in natural language, they applied a crowd-sourcing approach
and a web-based tool called Motion Annotation.

The HumanML3D dataset [3] consists of 14,616 3D human motion clips and 44,970 text
descriptions, covering a vocabulary of 5371 distinct words and a total duration of 28.59 h.
This dataset covers a wide range of body movements and postures. Some examples of the
text descriptions are “a person sits down and crosses their legs, before getting up” or “a
person stretches arms out and makes arm circles”.

NTU RGB+D 120 [4] is a large-scale dataset for RGB+D human action recognition,
collected from 106 distinct subjects, that contains more than 114 thousand video samples
and 8 million frames. This dataset contains 120 different action classes, including daily,
mutual, and health-related activities. These action classes cover labels such as “move heavy
objects”, “pushing other person”, “arm circles”, and “squat down”.

The BABEL dataset [5] provides action labels per frame for natural and continuous
human movement data and contains 43.5 h of recording from 252 action categories. These
action categories cover labels such as “stand”, “run”, “support body with right hand”, and
“jump over obstacle”.

Regarding datasets related to sign language, Word-Level American Sign Language
(WLASL) is the largest video dataset for ASL recognition [6], including 2000 common
different words performed over 100 signers. This dataset has been exploited to recognize
signs but also to generate 2D human pose representations using OpenPose [7]. Another
dataset, called How2Sign [8], included speech and transcriptions of videos. This dataset
contained a 16k English words vocabulary and became a rich set of annotations including
gloss, category labels, as well automatically extracted 2D keypoints for more than 6M
frames. The LSE-Sign database [9] includes Spanish Sign Language information, including
2400 individual signs as well as grammatical, phonological, and articulatory informa-
tion. Other studies combine different types of sensors for sign language recognition [10].
However, these datasets do not include both sign phonemes and sign motion landmarks,
preventing the training of an automatic system with the sufficient level of detail to generate
sign language motion from sign characteristics. These datasets have been traditionally used
for sign language recognition [11].

In this paper, we introduce a new sign language dataset that addresses this limitation
by incorporating phoneme representations for each sign. By providing these phonemes
for each sign, we bridge this gap and unlock new possibilities for sign language motion
generation with enough precision. The main contributions of this paper are as follows:

• The first sign language dataset for automatic motion generation, including sign
videos and the corresponding phonemes in HamNoSys. HamNoSys is a transcrip-
tion system for any sign language and was developed at the University of Hamburg,
Hamburg (Germany).

• A detailed description of the methodology for generating the dataset: phonemes and
motion information.

• A strategy for landmarks extraction from sign language videos. This strategy includes
the use of MediaPipe for combining pose and hand landmarks. A solution is provided
for dealing with coherence problems during the landmark extraction process along
the frame sequence of a sign.

• Finally, the paper presents preliminary experiments for automatic motion generation
from sign language phonemes using state-of-the-art deep learning algorithms based
on transformers.

The motivation behind this research arises from the need to fill a gap in sign language
dataset generation. By introducing the first dataset for automatic motion generation,
encompassing phonemes and motion information, this study aims to contribute to the
advancement of sign language research. Furthermore, the exploration of preliminary
experiments using state-of-the-art transformers for generating motion from these sign
language phonemes serves as a driving force to expand the frontiers of automatic motion
generation in sign language applications.



J. Imaging 2023, 9, 262 3 of 12

This paper is organized as follows. Section 2 describes the dataset generation process,
including details about phoneme information, the videos, and the landmarks. Section 3
contains the methods used to generate sign language motion based on landmarks from
sign characteristics through a transformer-based architecture. Section 4 discusses the main
contributions of the paper. Finally, Section 5 summarizes the main conclusions of the paper.

2. Dataset Generation

This dataset includes Sign Language content, including sign phonemes (HamNoSys),
sign videos and landmarks sequences including relevant body points: face, arms, hands and
fingers. This dataset includes 754 different signs of Spanish Sign Language (LSE: Lengua
de Signos Española) represented by three different subjects with three different camera
orientation. The MediaPipe library [12] has been used to extract the landmarks information
from the videos. This dataset includes the information of a total of 6786 examples of signs.

2.1. Sign Language Vocabulary including Phoneme Information

The first step has been the creation of the sign language vocabulary including the most
frequent sign using in LSE: the entire alphabet, numbers from 0 to 100, numbers for hour
specification, months, weekdays, greetings, etc. This vocabulary includes 754 different signs.
For each sign, we have included detailed information: gloss (word in capital representing
the sign); phoneme information in SEA (Sistema de Escritura Alfabética) [13]; phoneme
information in Hamburg Notation System (HamNoSys); and the corresponding Signing
Gesture Markup Language (SiGML) information, which is an XML (eXtensible Markup
Language) representation of HamNoSys. Figure 1 shows a partial view.
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Figure 1. Partial view of the sign database [14].

The phoneme information has been generated using a new version of eSign Ed-
itor, improving the one developed in the VISICAST, eSign, and DictaSign European
Projects [14–16]. This new version incorporates a SEA-HamNoSys converter. SEA is
an alphabet (based on ASCII characters) for sign language. SEA allows a sequence of
characters to be specified that describe aspects such as hand shape, hand position, location,
and movements. The reason for developing this converter is that the first normative dictio-
nary for LSE (developed at Fundación CNSE: http://www.fundacioncnse.org/tesorolse
(accessed on 1 October 2023)) has SEA descriptions for more than 4000 signs, and with
this converter was possible to automatically generate HamNoSys information from SEA
descriptions. Additionally, we have included the HamNoSys description in SiGML. SiGML
preserves the same information as the HamNoSys description of a sign but is designed
to be processed by computers, providing a language that computers can understand and
work with. This is the information we will use for training a motion generation system.

Figure 2 illustrates an example of the “translation” from HamNoSys to SiGML repre-
sentation for ACTUAL sign.

http://www.fundacioncnse.org/tesorolse
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Figure 2. HamNoSys to SiGML for the sign ACTUAL.

As observed in Figure 2, in SiGML notation, we observed two types of tags: <ham-
nosys_nonmanual> and <hamnosys_manual>. While HamNoSys primarily focuses on the
manual aspect of signs, the inclusion of non-manual components such as eye movements,
head nods, mouth expressions, and others is crucial in sign language.

HamNoSys is a phonetic transcription system for sign language, which includes more
than 200 symbols. HamNosys was developed at the Institute of German Sign Language at
the University of Hamburg, for transcribing individual signs and phrases in sign language.
HamNoSys has been designed considering the basic principles described below [17]:

• Sign Language independence. HamNoSys exhibits a universal quality that transcends
specific sign languages, enabling the description of signs from any sign language. This
characteristic originated from the primary objective of developing HamNoSys as a
tool for researchers to articulate sign descriptions.

• Focus on posture and movement. HamNoSys captures the physical positioning and
motion of hands. While a sign representation may possess varying interpretations in
different contexts, its HamNoSys transcription remains the same. This aspect is crucial
for motion generation.

• Omission of irrelevant information. HamNoSys exclusively delineates the relevant
elements of posture and movement crucial for sign formation. HamNoSys focused on
hands and face, omitting factors such as shoulder or elbow positioning because they
do not affect the sign meaning.

HamNoSys describes the signs in terms of hand shape, orientation, position, and move-
ments, as shown in Figure 3. Every aspect is considered as a phoneme in sign language.
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• Hand shape: The HamNoSys system defines 12 standardized forms that represent
different hand shapes. Additionally, HamNoSys facilitates the specification of the
extended finger by incorporating the appropriate symbol (ranging from 1 to 5) to
indicate the finger being extended.

• Hand orientation: Hand orientation information is divided into two parameters within
HamNoSys. The first parameter refers to the direction of the base of the forefinger,
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which signifies the hand’s axis orientation. The second parameter encompasses the
palm’s orientation, which determines the hand’s alignment along the axis.

The extended finger direction (EFD) corresponds to the direction that would be indi-
cated by the extended finger, offering a total of 26 feasible representations.

Furthermore, the orientation of the palm is characterized by eight distinct values,
indicating various orientations relative to the hand’s shaft.

• Hand position: Within HamNoSys, a set of symbols exists to describe the posi-
tioning of the hand relative to the body. This includes the indication of contact
between the hand and specific body parts, as well as intermediary positions between
two defined symbols.

• Hand movements: Describing hand movements within HamNoSys can be complex.
HamNoSys accommodates the definition of hand movements in spatial terms, as well
as movements that do not alter the hand’s location.

• Regarding the hand movements through space, the following categories are recog-
nized: straight, curved, circular, or movements aiming at a particular location. Each
have multiple representations denoting distinct movement types. On the other hand,
movements without changing the hand’s placement may refer to changes in the shape
or orientation of the hand, movement of the wrist, and movement of fingers.

2.2. Videos Generation

To depict the sign language representations, we used a software program developed
in Visual C++ [17] that allows users to specify one of three available avatars to embody
the sign language expressions. This software incorporates several avatars developed in
the eSIGN and DictaSign [18] European projects [16,19] as an ActiveX control. This control
includes a software library that contains all the necessary methods for animating and
virtualizing the avatar. This software has been developed by the Virtual Humans Group
in the School of Computing Sciences at University of East Anglia [20] and it can be used
on terms equivalent to Creative Commons BY-ND, allowing for its use in research. Some
significant methods are:

a. GetFrameRate(): Yields the rate of frames per second set to represent a sign;
b. SetFrameRate (short nNewValue): Sets a rate of frames per second for the representa-

tion of the signs;
c. Initialise (long t): Loads the corresponding animated avatar;
d. PlaySiGML (LPCTSTR bsSIGMLIn): The animated avatar represents the signed

described in the file;
e. SwitchAvatar (long t): Lets you change the displayed animated avatar.

The Visual C++ program depicts each sign (from the SiGML description) using the
specified avatar, generating a separate video for each represented sign. These videos are
then divided into frames, and the resulting files are saved locally in avi format for the
videos and bmp format for the frames.

Figure 4 displays the block diagram illustrating the process of generating the
target database.
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As a result of the entire process described above, a comprehensive dataset is obtained
comprising a total of 6786 videos featuring 754 different words and sets of words repre-
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sented through sign language by three distinct avatars from three viewpoints. Within this
dataset, one-third of the videos feature the avatar facing forward, while the remaining
two-thirds feature the avatars facing to the right and left. For each video generated we
have obtained a frame periodically, resulting in an average of 21 frames per sign.

Figure 5 shows examples of three signs included in the dataset, including representa-
tive frames from each sequence.

J. Imaging 2023, 9, 262 6 of 13 
 

 

 

Figure 4. Block diagram of the video generating video process. Adapted with permission from ref. 

[17] Copyright 2010 Rubén San-Segundo. 

As a result of the entire process described above, a comprehensive dataset is obtained 

comprising a total of 6786 videos featuring 754 different words and sets of words repre-

sented through sign language by three distinct avatars from three viewpoints. Within this 

dataset, one-third of the videos feature the avatar facing forward, while the remaining 

two-thirds feature the avatars facing to the right and left. For each video generated we 

have obtained a frame periodically, resulting in an average of 21 frames per sign.  

Figure 5 shows examples of three signs included in the dataset, including representa-

tive frames from each sequence. 

 

Figure 5. Examples of three signs and three avatars of the dataset: “Adiós”, “Familia”, and “Sí” 

glosses, which mean “Goodbye”, “Family” and “Yes”, respectively. 

2.3. Landmarks Extraction Using MediaPipe 

In this work, we have used MediaPipe software (version 0.9.0.1) to extract the x, y, 

and z coordinates of 75 pose and hand landmarks from each frame. All the coordinates 

have values in the [0.0, 1.0] interval, considering the height and width of the input images.  

2.3.1. Pose and Hand Detection 

The MediaPipe library uses independent models to detect pose and hands land-

marks: 33 landmarks from the pose (MediaPipe Pose) and 21 landmarks from each hand 

(MediaPipe Hands). The 33 landmarks from the pose arrange several locations of the body 

such as face, shoulders, hip and upper and lower limbs (including elbows, knees, hands, 

and feet). The 21 landmarks represent various locations on the hand, including the wrist 

and four points along each of the five fingers. Since the avatar is visible in a 2D video from 

the waist up, the software offers values for z coordinates and non-visible landmarks based 

on body constraints models. Moreover, we decided to reduce the total number of land-

marks from 75 to 57 because some of those could be redundant or less informative. This 

way, we keep the 42 landmarks obtained from MediaPipe Hands and 11 face landmarks 

Figure 5. Examples of three signs and three avatars of the dataset: “Adiós”, “Familia”, and “Sí”
glosses, which mean “Goodbye”, “Family” and “Yes”, respectively.

2.3. Landmarks Extraction Using MediaPipe

In this work, we have used MediaPipe software (version 0.9.0.1) to extract the x, y, and
z coordinates of 75 pose and hand landmarks from each frame. All the coordinates have
values in the [0.0, 1.0] interval, considering the height and width of the input images.

2.3.1. Pose and Hand Detection

The MediaPipe library uses independent models to detect pose and hands landmarks:
33 landmarks from the pose (MediaPipe Pose) and 21 landmarks from each hand (Medi-
aPipe Hands). The 33 landmarks from the pose arrange several locations of the body such
as face, shoulders, hip and upper and lower limbs (including elbows, knees, hands, and
feet). The 21 landmarks represent various locations on the hand, including the wrist and
four points along each of the five fingers. Since the avatar is visible in a 2D video from the
waist up, the software offers values for z coordinates and non-visible landmarks based on
body constraints models. Moreover, we decided to reduce the total number of landmarks
from 75 to 57 because some of those could be redundant or less informative. This way, we
keep the 42 landmarks obtained from MediaPipe Hands and 11 face landmarks and the
ones from the shoulders and elbows from MediaPipe Pose. Figure 6 illustrates a frame and
their landmarks for pose and hands.
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Figure 6. Frame from a sign chosen for this study and its landmarks (red ones are related to right
hand, orange and yellow ones are related to the left hand, and green ones are related to the body).

It was necessary to use MediaPipe Pose to extract information for the whole body and
determine the posture while signing. However, since this model does only extract a few
key points for the hands, it is crucial to use MediaPipe Hands to increase precision in the
fingers motion, which determines the meaning of the different signs.

2.3.2. Problem: Detecting Mirrored Hands

MediaPipe Hands software is specifically designed to detect landmarks from the
hands, extracting information from each hand independently and labelling each point
belonging to one of the hands. In this process, it was necessary to deal with several
extraction problems. However, this model occasionally fails to properly detect the hand
landmarks and ends up misidentifying the hands. The main problem is the detection of the
hand being mirrored. MediaPipe may mistakenly assign the landmarks from the right hand
to the left hand and vice versa. This issue can occur due to several factors, such as lighting
conditions, occlusion, or variations in hand appearances in specific frames. As a result, the
mislabeled hand landmarks obtained from MediaPipe Hands generate incoherent hand
movements that could lead to inaccurate interpretations or actions based on the detected
hand gestures.

For this reason, the solution proposed in this work involves complementing MediaPipe
Hands model with MediaPipe Pose model. The Pose model includes landmarks around
the whole body, including the wrists. This model does properly detect the landmarks of
the right and left wrist since it has the whole body as a reference (including the detection of
the face oriented to the camera). This way, we have implemented a correction algorithm
that computes the distance between each wrist landmark obtained from MediaPipe Hands
and MediaPipe Pose. Considering the minimum distance, it is possible to determine which
hand the landmarks belong to. In case of a mismatch between the original labelling from
MediaPipe Hands and the actual position, the mislabeled landmarks must be relabeled
based on the correct hand detected by MediaPipe Pose. Figure 7 displays an example of
mislabeled landmarks for the hands and the result after applying the correction algorithm.
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By incorporating this solution, we took advantage of the strengths of both models and
leveraged the contextual information provided by the pose detection model to rectify the
errors in the hand landmark detection model. Therefore, we assured that all the extracted
landmarks provide an accurate location, removing the ambiguity of original landmarks.

2.4. Final Statistics

In conclusion, our dataset comprises 6786 videos, with an average of 21 frames per
video. To create this dataset, we used a total of 754 glosses.

Table 1 displays the different orientations of the avatars, along with the number of
signs represented through the videos and the number of frames per video. An example of
the dataset is included in the Supplementary Materials.

Table 1. Final statistics of the dataset.

Avatar
Orientation Number of Signs

Number of
Frames per

Video (Average)

Number of
Videos per Sign

Number of
Generated Videos

Forward 754 19 3 2262
Left 754 19 3 2262

Right 754 24 3 2262
Total 754 21 9 6786

3. Sign Language Motion Generation

Since the original Visual C++ solution is excessively labor-intensive, we have used
the dataset described above to automatically generate motion from the sign phonemes in
HamNoSys (using SiGML notation) using novel deep learning techniques. This developed
system will be able to generate the motion information associated with a combination of
sign characteristics not seen in the training process. This aspect is an important advantage
compared to the original solution.

To accomplish the generation of motion, we employed a transformer-based architec-
ture inspired by a prior study [21] that primarily focused on speech synthesis. However, in
our case, we have made specific adaptations to suit the requirements of our encoder and
decoder modules, which involved translating sign language characteristics into motion, i.e.,
sequence of landmarks. The encoder inputs were the SiGML representations, which were
tokenized using the WordPiece Tokenization Algorithm, used by BERT [22], that splits the
text (SiGML representation of HamNoSys) into smaller units called tokens [23]. The encoder
receives sign phonemes and uses self-attention [24] and feed-forward neural networks for
processing the input information. Through self-attention, the model assesses sign charac-
teristics in the input data, highlighting the most pertinent ones for each output. Regarding
the decoder inputs, they were the MediaPipe landmarks (x and y coordinated from the
57 key points around the body and hands). This decoder requires a PositionalEmbedding
layer to learn a position embedding for the inputs (previously generated landmarks) and
generates an output sequence of landmarks based on the sign phonemes (encoder inputs)
and previously generated landmarks. Figure 8 shows a structure of the transformer archi-
tecture. Since the signs in the dataset had different duration, we decided to fix a maximum
length of frames for all the examples at 80 frames. This way, we performed zero-padding
to include zeros in the landmarks representation until reaching this maximum length. The
Mean Absolute Error (MAE) loss was used in the last layer, providing a measure of the
absolute difference between the predicted and ground truth landmark coordinates.
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The whole system was programed in Python 3.8.10 using Tensorflow 2.12.0 and
Keras 2.12.0.

Preliminary Experiment

In this work, we have conducted a preliminary motion generation experiment using
2262 videos from the avatars facing forward. We have considered a k-fold cross-validation
methodology (k = 5) in which the data was divided into k groups or folds to train, validate,
and test the system with different data.

For evaluating the quality of the system, we have used the DTW (Dynamic Time
Warping) metric. This metric finds the minimum mapping accumulated distance between
the landmarks of two frame sequences (ground truth and predicted) divided by the length
of the sign (in frames). This metric needs to compute the distance between the landmarks
of two frames using Equation (1), where the subscripts “O” and “P” indicate the original
and predicted frames, respectively, and the subscript “i” denotes the landmark number. In
this work, we used the DTW obtained from the dtaidistance.dtw_ndim.distance Python
function [25].

DTW(O, P) =
N

∑
i=0

√
(xOi − xPi)

2 +
(
yOi − yPi

)2 (1)

The generated dataset was used to train a transformer responsible for generating
landmarks from sign representations. In the preliminary experiment, the transformer
achieved a DTW value of 0.37 ± 0.23, as shown in Table 2.

Table 2. DTW mean and standard deviation values for generating sign language motion.

DTW

Mean 0.37
Standard Deviation 0.23



J. Imaging 2023, 9, 262 10 of 12

As potential future research, it could be possible to refine the proposed deep learn-
ing architecture based on transformers including a stop detection module to determine
the end of the motion generation process. In addition, other padding strategies or data
augmentation techniques could be explored to enhance the system performance. Moreover,
since the evolution of the signs was represented through the landmarks of consecutive
images, it would be interesting to apply interpolation to smooth the associated motion.
These future directions have the potential to advance the effectiveness and efficiency of the
sign language motion generation system.

4. Discussion

In this study, we present the first sign language dataset tailored specifically for au-
tomatic motion generation. This dataset comprises sign videos accompanied by their
corresponding phonemes transcribed in SiGML notation. The creation of this dataset is
rooted in the necessity for comprehensive resources to advance the field of sign language
research and application.

In this paper, we have provided a detailed description of the processes involved in
capturing both phonemes and motion information, allowing for the creation of a complete
dataset that captures the intricacies of sign language expression. Table 3 shows a compar-
ison of the previous works, focused on sign language dataset creation, with the dataset
generated in this work. As it is shown, our dataset is the only one that includes both sign
phonemes and landmarks related to the sign motion.

Table 3. Characteristics of previous dataset focused on sign language (in bold the dataset described
in this paper).

Dataset Number
of Signs

Number of
Videos

Sign
Phonemes

Motion
Landmarks

Number of
Orientations

of Signers

WLASL2000 [6] 2000 21,083 No No 1
How2Sign [8] 16,000 35,191 No Yes 3
LSE-sign [9] 2400 2400 Yes No 2
New dataset 754 6786 Yes Yes 3

An important aspect of our dataset development is the strategy employed for land-
marks extraction from sign language videos. Leveraging MediaPipe for the fusion of pose
and hand landmarks, we have introduced a systematic approach to address coherence
problems that may arise during the landmark extraction process along the frame sequence
of a sign.

The significance of our dataset has been also supported by preliminary experiments
in automatic motion generation. We explored the potential of our dataset in training
a transformer-based model for generating sign language motions automatically. These
experiments serve as an example of the practical utility and innovation of our dataset.

5. Conclusions

This work introduces a new sign language dataset for motion generation including sign
phonemes in HamNoSys. The whole process has been explained and detailed. This paper
also outlines the methodology employed for extracting landmarks from videos featuring
sign language. The dataset comprises signs performed by three avatars comprising a total
of 754 different signs. This dataset includes a collection of 6786 videos, each accompanied
by corresponding phonemes (HamNoSys annotations) that describe the signs. Additionally,
the dataset includes landmarks extracted from every video frame, including pose and hands.
In this paper, a problem regarding the detection of mirrored hands by MediaPipe has been
detected, providing a solution. The solution consisted of using the wrist landmarks from
the pose extractor as a reference for the hand extractor. The goal is to detect if the landmarks
from a hand belong to the right or left hand.
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The paper also reports preliminary results in motion generation for generating land-
marks from sign representations. The preliminary experiment showed a DTW value of
0.37 ± 0.23.

Regarding limitations of the proposed method, MediaPipe could have problems
extracting landmarks from blurred images, images without complete hands or images
where the definition of the avatar is not completely clear.

For future work, we are considering using this methodology to create a bigger dataset
including a higher number of signs from real videos. Moreover, we would like to deeply
analyze the possibilities to create more robust transformer architecture to reduce the DTW
metric for the sign language generation.
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