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Abstract: The method of 18F-sodium fluoride (NaF) positron emission tomography/computed
tomography (PET/CT) of atherosclerosis was introduced 12 years ago. This approach is particularly
interesting because it demonstrates microcalcification as an incipient sign of atherosclerosis before
the development of arterial wall macrocalcification detectable by CT. However, this method has not
yet found its place in the clinical routine. The more exact association between NaF uptake and future
arterial calcification is not fully understood, and it remains unclear to what extent NaF-PET may
replace or significantly improve clinical cardiovascular risk scoring. The first 10 years of publications
in the field were characterized by heterogeneity at multiple levels, and it is not clear how the method
may contribute to triage and management of patients with atherosclerosis, including monitoring
effects of anti-atherosclerosis intervention. The present review summarizes findings from the recent
2 3

4 years including the ability of NaF-PET imaging to assess disease progress and evaluate response
to treatment. Despite valuable new information, pertinent questions remain unanswered, not least
due to a pronounced lack of standardization within the field and of well-designed long-term studies
illuminating the natural history of atherosclerosis and effects of intervention.
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1. Introduction

The method of 18F-sodium fluoride (NaF) positron emission tomography/computed
tomography (PET/CT) imaging of atherosclerosis was introduced 12 years ago [1] and ex-
cels in showing arterial wall microcalcification long before the appearance of CT-detectable
macrocalcification. It is vitally important that this early detection is at a time point when the
atherosclerosis process may still be susceptible to intervention. In two reviews on NaF-PET
in atherosclerosis we surveyed the literature until March 2020 [2,3]. Here, we summarize the
literature since then to elucidate if remaining questions have been addressed, i.e., whether
NaF-identified arterial microcalcification is a precursor of CT-detectable macrocalcification
and whether it is possible to counteract the early phase of NaF uptake. The literature
findings are presented below in six sections before being discussed with focus on novel
observations of potential significance for the management of atherosclerosis.

2. Materials and Methods

Using the Patient, Intervention, Comparison, Outcome Study (PICOS) approach and
systematic review principles [4], we searched PubMed/MEDLINE, Embase, Scopus, and
Cochrane Library with the strings given in the Supplementary Material. Extracted were
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peer-reviewed articles in English from 1 April 2020 until 1 January 2023 with no restriction
on comparator methods, outcome measures, or study design. Excluded were articles
outside the scope of this review, editorials, letters, comments, conference proceedings,
some methodology studies, reviews, and studies on amyloidosis or aneurysms. One
experienced author (P.F.H.-C.) reviewed articles extracting information on number, sex, age,
type of patients, tracer (NaF or NaF and 18F-fluorodeoxyglucose (FDG)), artery segment
studied, purpose, quantification method, and main findings.

3. Results

Forty-five articles were included in this review [5–49] (Figure 1), to which were added
selected articles on methodological and other aspects. Findings in the articles are sum-
marized in the following sections and in Tables S1–S6 in the Supplementary Material.
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1. Disease mechanisms and targeting [5–10];
2. Early detection and prevalence of NaF uptake in the heart and major arteries [11–16];
3. NaF uptake in vulnerable, high risk, and ruptured plaque [17–21];
4. Association between NaF uptake and risk factors [22–28];
5. NaF uptake and disease progression or ‘prediction’ of events [29–37];
6. Anti-atherosclerotic intervention evaluated by NaF-PET/CT [38–49].

Several studies dealt with one arterial bed only, i.e., coronary arteries [16–18,20,29–31,38,
39,44], global heart [22–25,27,34], pulmonary arteries [11], left carotid artery [28], aorta [26,
32,41,42,48,49], abdominal aorta [13,33,45], or several arterial beds [5–10,12,14,15,21,35–37,
40,41,43,46,47]. Eight reports were experimental animal studies [5,6,32,42,43,45,48,49], and
one was an image case report [44].

3.1. Disease Mechanism and Targeting

Zhuang et al. [5] started ApoE-/- rats on atherogenic diet at 13 weeks of age and found
at 12, 27, and 46 weeks of age uptake of FDG, but not NaF, in the aortic arch and of NaF,
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but not FDG, in pulmonary arteries. FDG did not appear earlier than NaF. Pulmonary
atherosclerotic lesions were fatty streaks with larger areas of inflammation (CD68 staining)
and calcification (alizarin red staining) while in the aortic arch only a thickened intima
was present but with very high expression of HIF-1α suggesting hypoxia. Unexpectedly,
FDG uptake was not associated with inflammation, but hypoxia, whereas NaF uptake
‘correlated’ with microcalcification found in the pulmonary lesions only. The exact location
of the tracer could not be determined due to insufficient PET resolution.

Nogales et al. [6] found in atherosclerotic transgenic Yucutan minipigs moderate co-
localization of NaF uptake and CT-calcification in the heart, aorta, and iliac arteries and by
autoradiography NaF accumulation in plaque calcifications in all examined arteries, corre-
lating with both non-calcified plaque and thrombotic material. Some vascular segments
had a NaF signal despite no CT-detectable calcification, which made the authors state
decreased specificity and not increased sensitivity of NaF-PET compared to CT, despite that
calcifications of <50 µm in size can be registered by NaF-PET, whereas size 200–500 µm is
required for detection by CT [50].

Omarjee et al. [7] reported significant FDG and NaF uptake in diseased skin and in
proximal aorta and femoral artery of pseudoxanthoma elasticum (PXE) patients. Aortic
NaF uptake correlated, opposite to arterial FDG uptake, with pulse wave velocity (PWV).
NaF uptake in skin regions correlated with calcium score. FDG and NaF uptake did not
correlate in any arterial segment. Lastly, in dialysis patients with co-morbidities and many
co-factors, Aaltonen et al. [8] observed a weak association between lumbar spine turnover
mirrored by NaF activity and coronary calcification and between parathyroid hormone and
coronary calcification. However, arterial wall calcification in PXE and dialysis patients is
typically medical calcinosis, which may not follow the same NaF uptake mechanism as
endothelial microcalcification.

Lastly, Wen et al. [9] demonstrated in 100 patients with multivessel disease a posi-
tive correlation between an average measure of NaF uptake proximally in all coronary
arteries and NaF uptake in the arch and ascending aorta, and that coronary NaF activity is
associated with peri-coronary adipose tissue density, by many is considered a player coro-
nary atherosclerosis development due to exchange of pro-atherogenic mediators. Raynor
et al. [10] followed another, also modern, trend by demonstrating higher NaF uptake in the
coronary arteries and aorta in prostate cancer patients than in healthy controls, an elevation
of about the same level as in patients with angina pectoris.

3.2. Early Detection and Prevalence of NaF Uptake in the Heart and Major Arteries

Zhang et al. [11] found that NaF uptake in the pulmonary arteries of angina pectoris
patients, measured as standardized uptake values (SUVs) and target-to-background ratios
(TBRs), was all significantly higher (11–36%) than in healthy controls. Quantifying NaF
uptake in skin and in the carotids, aorta, iliac, femoral, and popliteal arteries of PXE
patients, Gutierrez-Cardo et al. [12] noted highest uptake in the aorta and femoral arteries
and in neck and axillae but no association between NaF deposition in other arteries and
skin or the global Phenodex score indicating severity of PXE, whereas this score was
significantly associated with vascular CT calcium score. Seraj et al. [13] analyzed NaF- and
FDG-PET/CT scans in patients with rheumatoid arthritis (RA) and found significantly
higher NaF TBRmean in the abdominal aorta of RA patients than healthy controls; the
average CT calcium score was also higher, whereas FDG TBRmean scores were similar in
the two groups.

In five patients with and five without peripheral arterial disease (PAD), Asadollahi et al. [14]
found by NaF-PET/CT 30% higher total atherosclerotic burden in non-lower extremity
arteries, i.e., coronaries, carotid artery, and aorta, in the PAD group due to higher carotid and
thoracic aorta uptake than uptake in the coronaries and abdominal aorta. Bhattaru et al. [15]
quantified atherosclerosis in upper and lower limb vessels of 68 healthy controls and
40 patients at-risk for cardiovascular (CV) disease and found 10% higher global cardiac
NaF uptake in at-risk patients, but this global uptake was lower than in all other major
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arteries of both groups. In 114 male patients imaged with NaF PET/CT (for prostate cancer)
and 82RB myocardial PET (for chest pain), Hayrapetian et al. [16] reported significantly
higher coronary NaF uptake in patients with ischemic than normal myocardial perfusion.
Among 41 patients with coronary angiography, coronaries with both obstructive and non-
obstructive lesions had higher NaF uptake than coronaries without, but the correlation
between CT-calcification and NaF uptake was poor.

3.3. NaF Uptake in Vulnerable, High Risk and Ruptured Plaque

Ashwathanarayana et al. [17] found that culprit plaques in 24 patients with ST-
elevation myocardial infarction (MI) had 23–27% higher coronary NaF uptake than culprit
plaques in 17 chronic stable angina patients. Majeed et al. [18] demonstrated by intra-
coronary optical coherence tomography in 62 patients with acute coronary syndrome that
coronary segments with elevated NaF uptake had higher lipid arc, higher prevalence of
macrophages, lower plaque free wall, and higher total plaque burden and dense calcified
plaque burden on CT-angiography than NaF negative segments, suggesting that coronary
NaF uptake may further characterize coronary plaques and refine risk stratification in
this category of patients. Mechtouff et al. [19] found clearly higher NaF uptake in culprit
lesions than non-culprit plaques of carotid stenosis patients, a finding which was not asso-
ciated with the morphological MRI criteria of vulnerability in plaque with stenosis >50%.
Wurster et al. [20] observed that both calcified and non-calcified thin-cap fibroatheromas
were predominantly located in coronary artery segments with NaF TBRmax >1.28, where
fibroatheromas had significantly thinner caps. Finally, Kaczynski et al. [21] found signifi-
cantly, but only slightly, higher NaF uptake in carotid culprit lesions, which, however, were
significantly (p = 0.04) associated with MRI culprit lesion features (necrosis, intraplaque
hemorrhage, ulceration, and calcification).

3.4. Association between NaF Uptake and Risk Factors

Rojulpote et al. [22] found in asymptomatic adults with no history of smoking, diabetes,
or dyslipidemia, with normal blood pressure and without macroscopic CT calcification
that global cardiac NaF uptake (cardiac SUVmean) is related to blood pressure. After
adjusting for age and gender, diastolic and mean arterial blood pressures were independent
‘predictors’ of higher global cardiac NaF uptake. Patil et al. [23] observed in 69 healthy non-
diabetic individuals a positive linear association of global cardiac NaF average SUVmean
with total cholesterol/low-density lipoprotein ratio. Adjusted for age, gender, blood
pressure, and multiple other factors, this ratio was independently associated with global
cardiac average SUVmean. Gonuguntla et al. [24] studied global cardiac NaF uptake in
40 patients with CV risk and found that patients with higher CHADS2 and CHA2DS2-
VASc scores, used to estimate risk of stroke in patients with atrial fibrillation, had a higher
atherosclerotic NaF burden and could be at greater risk of CV events. Borja et al. [25]
examined patients aged >40 years from the CAMONA trial with unknown risk divided into
four ASCVD (Atherosclerotic Cardiovascular Disease) 10-year risk groups and observed
increasing global cardiac NaF average SUVmean, from 0.67 for low risk, 0.70 for borderline
risk, 0.72 for intermediate risk, and 0.78 for high risk, and that ASCVD risk score was
significantly correlated to average SUVmean.

Paydary et al. [26] found in 89 healthy controls and 44 patients with chest pain a higher
NaF uptake in three parts of the thoracic aorta in patients than in controls, and uptake in
all three parts was correlated with age. In general, uptake in the entire thoracic aorta was
a stronger predictor of Framingham Risk Score (FRS) than average SUVmax and average
SUVmean and was a significant ‘predictor’ of an unfavorable CVD risk profile as compared
with other values.

Borges-Rosa et al. [27] aimed to evaluate global cardiac (aortic valve included) micro-
calcification activity assessed by NaF imaging as a measure of unstable microcalcification
burden in 34 high-risk patients with a previous CV event. The median global molecular
calcification score (GMCS) of all studied patients was 320.9. Individuals with >5 CV risk
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factors (50%) had increased mean GMCS compared to patients with ≤5 risk factors (356.7
vs. 261.1), and this correlated positively with predicted fatal CV risk by SCORE. GMCS
correlated positively with weight, body mass index (BMI), abdominal perimeter, thoracic
fat volume, and epicardial adipose tissue but not with coronary calcium score or coronary
artery wall NaF uptake.

Castro et al. [28] found in 128 patients with mixed CV risk that average NaF SUVmax
in the left carotid artery was correlated with 10-year FRS, CHA2DS2-VASc score, and
level of physical activity, was significantly higher in patients with increased risk of CV
and thromboembolic events, and was significantly lower in patients with greater level of
physical activity. Age, BMI, hypertension, and level of physical activity were independent
associations of average SUVmax.

3.5. NaF Uptake and Disease Progression or ‘Prediction‘ of Events

Kwiecinski et al. [29] evaluated 293 patients with known CAD NaF TBRmax in prox-
imal coronary arteries and found that fatal/non-fatal MI had after 42 months occurred
exclusively in patients with abnormal NaF uptake at baseline: 20/203 vs. 0/90 in patients
without abnormal coronary NaF uptake. Patients with increased NaF uptake had a >7-fold
increase in MI independent of age, gender, CV risk, and other factors suggesting that
abnormal coronary NaF uptake carries a significant risk of future MI.

Bellinge et al. [30] reported about 41 consecutive diabetes patients without a history of
CAD but with a CT coronary calcification score (CCS) ≥ 10, who underwent a new CT scan
two years after completion of a trial on effects of vitamin K-1 (see later). The proportion of
“CCS progressors” was higher among NaF positive than NaF negative arteries at baseline
(86.5% vs. 52.3%, p < 0.001), and NaF positive disease was an independent ‘predictor’ of
subsequent CCS progression.

Doris et al. [31] reported in 183 patients with multivessel disease and increased NaF
uptake in at least one vessel that individuals with increased coronary NaF uptake had more
rapid progression of calcification than had patients without uptake, that calcium score
only increased in coronary segments with NaF uptake and not in segments without, that
baseline coronary NaF TBRmax correlated with 1-year change in calcium deposition, and
finally, that at the segmental level, baseline NaF activity was an independent predictor of
calcium score at 12 months.

In ApoE-/- mice on a high-fat diet, examined at 12, 20, and 40 weeks of age, Hu
et al. [32] observed gradually increased levels of lipoprotein, inflammatory cytokines,
and calcifications factors in excised aorta of three mice at each time point and increased
aortic NaF PET uptake with each weekly extension correlating with extent of calcifica-
tion, the nature of which (microcalcification or macrocalcification), however, could not
be determined.

Fiz et al. [33] studied the infrarenal aorta of 71 patients imaged twice by NaF-PET/CT
on average 15.5 months apart due to cancer and found multiple non-calcified (HU < 130)
NaF hotspots with low, albeit higher, HU than non-calcified control regions (48 ± 8 vs.
37 ± 9, p < 0.01) and found that the HU of hotspots had increased (to 59) on the second
scan. New calcifications appeared at the hot spot site in 41% of cases (Figure 2). Baseline
atherosclerotic plaque (n = 375) NaF TBRmean was proportional to percent HU increase
and increase in calcium score of existing plaques. Aortic calcium score increased, and
whole-aorta NaF TBRmean at baseline correlated with the increase in calcium score from
baseline to the second PET/CT.

Brodsky et al. [34] observed in 15 healthy males and eight female control subjects,
who volunteered for a second NaF PET/CT after 2 years, only minimal changes in global
cardiac NaF SUVmean and NaF SUVmax of +4% vs. −10%, respectively, and observed that
CT-calcification measured in the same global cardiac ROIs decreased by 6%. The increase
in SUVmean correlated with baseline BMI and systolic blood pressure in males but not
in females.
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Lillo et al. [35] found in 14 PXE patients imaged with NaF PET/CT two years apart
an overall increase in CT calcification in major extracardial arteries, but this was due to an
increase in two patients only; NaF SUVmax and SUVmean remained unchanged, while
TBRmax and TBRmean decreased by 24% and 19%, respectively. However, as mentioned, it
should be borne in mind that PXE is characterized by primarily medial calcification distinct
from conventional atherosclerosis.
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Figure 2. Appearance of Calcifications in Areas of Increased NaF Uptake and Evolution of “Hot”
Plaques. Top panel: Fused and PET images show increased NaF uptake in the posterior and left
lateral aortic wall (top row, left and right images, dashed outlines). At follow-up, two point-shaped
calcifications have appeared (bottom row, left and center images, see arrowheads). Bottom panel: The
upper series (orange box) shows three consecutive NaF-PET/CT and CT slices with mildly calcified
plaques with co-localized increase in tracer uptake (dashed outlines). Follow-up images of the same
slices (red box) show an increase in the lesions’ density and size, the extent of which is reflected by
the increase in average HU and calcium score. TBR values were average SUV values normalized for
inferior vena cava blood pool activity. Spill-over from nearby vertebrae were sought corrected for by
means of brush tool editing observing a safety distance of 1 cm. Reprinted with permission from Fiz
et al. [33], 2021, Springer Nature.

Reijrink et al. [36] investigated the major extracardial arteries in 10 type 2 diabetic
patients without glucose lowering drugs and a severe CV history and found that baseline
FDG TBRmean was strongly correlated with five-year follow-up NaF TBRmean, which
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correlated positively with change in calcified plaque score and with this score at both
baseline and follow-up but not with change in calcified plaque score and PWV.

Piri et al. [37] found insignificant changes in the carotids and the aorta of healthy
subjects and angina pectoris patients imaged 2 years apart but found higher NaF uptake in
angina pectoris patients at both time points and found that baseline NaF could not predict
change in subtle CT-calcification.

Kitagawa et al. [38] found no mean change in NaF uptake in 51 coronary lesions of
15 patients imaged twice 37–59 months apart. Baseline CT-based lesion feature (location,
obstruction, plaque type, high-risk features) in individual patients did not correlate with
change in NaF uptake, but 63% of NaF positive lesions at baseline were also positive at
follow-up.

Kwiecinsky et al. [39] studied NaF activity in 154 coronary vascular grafts and found
in mean 2.7 years after bypass surgery that all arterial graft and the majority (120/128) of
venous grafts showed no NaF uptake. However, the bypassed coronary arteries had three
times higher NaF activity than non-bypassed arteries and greater progression of 1-year
CT-based calcium scores, an effect largely confined to native coronary plaques proximal to
the graft anastomosis.

Fletcher et al. [40] analyzed scans of 461 patients with CVD to study associations
between global NaF uptake in the epicardial coronary artery tree and the ascending part
and arch of the aorta, respectively, and incidence of ischemic stroke and MI, which was
23 (5%) and 32 (7%), respectively, after in mean 6.1 years of follow-up. High thoracic NaF
activity was strongly associated with ischemic stroke but not MI. Conversely, high coronary
NaF activity was associated with MI but not ischemic stroke.

Finally, Dai et al. [41] found in a retrospective analysis of scans performed in 36 men
with prostate cancer mainly weak correlations between proximal thoracic aortic NaF
uptake and various cardiovascular risk factors, precluding any useful prediction of future
vascular events.

3.6. Anti-Atherosclerotic Intervention Evaluated by NaF PET/CT

Hsu et al. [42] studied aortic root uptake in hyperlipidemic Apoe-/- mice; one group
moved ad lib (n = 9), while the other had a progressive treadmill regimen for 9 weeks (n = 9).
In vivo NaF µPET/µCT imaging demonstrated that while aortic calcification progressed
similarly in both groups based on µCT, the fold change in NaF density was significantly less
in the exercise group. Histomorphometric analysis of aortic root calcium deposits showed
a lower mineral surface area of these in exercised than non-exercised mice. Exercise raised
serum PTH levels twofold.

Florea et al. [43] reported NaF uptake in the left ventricle, aortic root, and arch of
five wild type mice and 20 ApoE-/- mice split into four groups of five mice each. Wild
type control mice were on a chow diet for 12 + 12 weeks; the four (Figure 3a–d,) ApoE-/-
groups were all on a Western type diet for 12 weeks followed by (a) a standard or chow
diet, (b) a Western type diet (advanced stage group), (c) the vitamin K MK-7 diet, or (d) a
Warfarin diet for another 12 weeks. At the end of the study, the Warfarin group presented
spotty calcifications by CT in the proximal aorta. All of the spots corresponded to dense
mineralization on von Kossa staining. After the control, the MK-7 group had the lowest
NaF uptake. The advanced and Warfarin groups presented the highest uptake in the aortic
arch and left ventricle. The advanced stage group did not develop spotty calcifications, but
NaF uptake was still observed, suggesting the presence of microcalcification.
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Figure 3. Reduced 18F-Sodium Fluoride Activity in Coronary Plaques after Statin Therapy. CT: single
mixed plaque extending to the ostium and first segment of right coronary artery (RCA), smaller one
in left main coronary artery (LM) and minor calcifications in left anterior descending artery (LAD);
Agatston scores: ostium 198; RCA 169; LM 22; LAD 7 (panels (a–c)). NaF-PET/CT: focal NaF uptake
in ostium of RCA (panel (d); SUVmax1.9) and in LM (panels e and f; SUVmax 2.5). Six months later
following a regimen of 10 mg rosuvastatine and 75 mg aspirin per day with advising of diet and
regular physical activity, CT was unchanged with Agatston scores: ostium 195; RCA 163; LM 23, LAD
9, while there was a decrease in focal NaF uptake in the coronary plaques (panels (g–l); respective
SUVmax 1.2 and 1.5), without new hotspots. Reprinted with permission from Dietz et al. [44]). 2021,
Oxford University Press.

In the third animal study in this section, Zhang et al. [45] compared two rabbit groups
on a cholesterol-enriched diet, one of which also had atorvastatin (5 mg/kg/d). After
2 weeks of feeding, all underwent a dilated balloon operation of the abdominal aorta
followed by a cholesterol-enriched diet for 16 weeks. NaF uptake increased significantly by
20% from the baseline until week 18 in the atherosclerosis group but only by <2% in the
atorvastatin group. Total calcium density (assessed by von Kossa staining) was significantly
increased (by 235%) in rabbits treated with atorvastatin compared with untreated rabbits,
but the areas of microcalcification in plaque were significantly lower, and there were more
microcalcification deposits in the areas with increased radioactive uptake of NaF.

Dietz et al. [44] published an image case story of a 64-year-old asymptomatic male
with non-severe hypercholesterolemia and a history of limited smoking during teenage
years. The patient was examined by cardiac NaF-PET/CT shown in Figure 3. The CT part
showed a single mixed plaque near the ostium of the right coronary artery (a; RCA), a
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smaller plaque in the left main coronary artery (b; LM), and minor calcifications in the left
anterior descending artery (c), while PET showed NaF focal uptake in the ostium of the
RCA (d) and in the LM at baseline (e and f) and none in the left anterior descending. After
6 months on 10 mg rosuvastatin and 75 mg aspirin per day with advice on healthy diet and
regular physical activity, low density lipoprotein cholesterol had decreased by 65%, and
a second NaF-PET/CT revealed unchanged CT images and Agatston score (g, h, i) but a
37% decrease in focal NaF uptake in the RCA plaque (j) and a 40% decrease in the LM (k),
without new hot spots in the LAD (i).

Bellinge et al. [46] examined 149 out of 154 type 2 diabetic patients with diabetes
and CT coronary calcifications, who completed follow-up in a double-blind, placebo-
controlled 2 × 2 factorial trial of 3 months duration and measured NaF TBRmax in
proximal coronary arteries and ascending, arch, and descending parts of the thoracic
aorta. In four treatments groups (placebo/placebo, vitamin-K1 [10 mg/day]/placebo,
colchicine [0.5 mg/day]/placebo, and vitamin-K1 [10 mg/day]/colchicine [0.5 mg/day]),
neither vitamin-K1 nor colchicine had a significant effect on coronary TBRmax compared
with placebo. Later, according to a post hoc analysis of the same material [47] (apply-
ing an upper limit of normal for each examined arterial segment defined as the mean
TBRmax + 2 standard deviations obtained in 10 patients of a non-treated diabetes cohort
with zero coronary calcium), they found that vitamin K1 supplementation independently
decreased the odds of developing new NaF PET positive lesions in the coronary arteries
(odds ratio: 0.35) and aorta (odds ratio: 0.27) and in both aortic and coronary arteries (odd
ratio: 0.28).

Jensen et al. [48] studied, in a randomized setup, the effects of semaglutide, a long-
acting glucacon-like peptide-1 receptor agonist, on inflammation and calcification of the
abdominal aorta of a non-diabetic atherosclerosis rat model. With PET/CT they found
reduction in the uptake of the tracers 64Cu-DOTATATE and FDG mirroring activated
macrophages and cellular metabolism, respectively, but no change NaF uptake, support-
ing the hypothesis that semaglutide inhibits atherosclerotic inflammation by means of
decreased activated macrophage activity.

Finally, Bessueille et al. [49] investigated the effects of a tissue nonspecific alkaline
phosphatase (TNAP) inhibitor (SBI-425) in an elaborated study of ApoE-deficient mice and
found by NaF-µPET, µCT in vivo imaging, osteosense ex vivo imaging, and in vitro alizarin
red staining that TNAP inhibition prevented calcification in mice aorta and in human
smooth vascular muscle cells and, moreover, reduced blood cholesterol and triglyceride
levels without impacting skeletal structures.

4. Discussion

The recent literature shows continued evidence for NaF PET/CT imaging in atheroscle-
rosis. The discussion focuses on novel messages within the six subject areas.

4.1. Disease Mechanisms and Targeting

Selective concomitant uptake of FDG and NaF in the aortic arc and pulmonary arteries
of obese ApoE-/- rats [5] is an observation not reported elsewhere. The study [6] in
atherosclerotic minipigs could not tell for sure if NaF localizes in microcalcifications,
but presence in arterial walls and thrombotic material was observed despite lack of CT
detectable calcification. The dissociation between FDG and NaF uptake [7] in PXE patients
suggested chronic ectopic calcification rather than acute inflammation, and the study [8] of
dialysis patients revealed an interesting, but weak, association between bone metabolism
and coronary calcification. The study [9] of patients with multivessel coronary disease
demonstrated as expected a positive correlation between coronary and proximal aortic
NaF uptake but also demonstrated that the former was associated with perivascular fat,
as described by Borges-Rosa et al. [27] in patients with multiple CV risk factors. Finally,
demonstration [10] of higher NaF uptake in the coronaries and aorta in patients with
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prostate cancer is one of series of publications [51,52] following the contemporary trend of
studying molecular pathways shared by cancer and atherosclerosis.

4.2. Early Detection and Prevalence of NaF Uptake in the Heart and Major Arteries

NaF uptake in the pulmonary arteries, higher in angina pectoris patients than healthy
subjects, is a new observation [11]. Dissociation between NaF uptake in skin and arteries
of PXE patients is also a new observation [12], as is the aortic/pulmonary dissociation
mentioned above between FDG and NaF uptake [7]. The lack of association between arterial
NaF uptake and the Phenodex score [12] suggests similarities between skin and arterial
calcification at the macrocalcification but not microcalcification level, but interpretation
is difficult since CT-calcification develops slowly, not only in skin and arteries of PXE
patients [35] but also in angina pectoris patients and healthy controls [34]. The higher
uptake of NaF, but not of FDG, in the abdominal aorta of RA patients and greater average
CT calcium volume than in healthy controls [13] and the higher FDG uptake in carotids and
aorta of RA than osteoarthritis patients [53] are incomparable findings due to diverging
quantification measures, i.e., TBRmax vs. blood background corrected SUVmax. Finally,
the lower NaF uptake reported in the entire cardiac volume than observed in major extra-
cardiac arteries of healthy and at-risk subjects may be due to “dilution”, as the small
myocardial arteries contribute less [15], whereas the finding of higher coronary NaF uptake
in patients with ischemic than normal myocardial perfusion appears more credible [16].

4.3. NaF Uptake in Vulnerable, High Risk, and Ruptured Plaque

It is noteworthy that patients with ST-elevation MI have significantly higher (~25%)
NaF uptake in culprit plaques than have chronic stable angina patients [17] and that
coronary segments with elevated NaF uptake have conventional characteristics of plaque
building (higher lipid arc and prevalence of macrophages, lower plaque free wall, higher
total plaque burden, and dense calcified plaque burden) when compared with NaF nega-
tive segments [18]. In carotid stenosis patients with and without symptoms and patients
with a recent neurovascular event, NaF uptake was higher in culprit than non-culprit
plaques [19,21], but in one study [19] NaF uptake was not associated with the morpho-
logical MRI criteria of vulnerability, whereas in the other [21] it was. In patients with
multiple risk factors, both calcified and non-calcified coronary thin-cap fibroatheromas
were predominantly located in segments with a TBR > 1.28, and plaques containing a lipid
core were more frequent in segments with a TBR > 1.25 [20].

4.4. Association between NaF Uptake and Risk Factors

Even in healthy individuals, diastolic and mean arterial blood pressures and the ratio
triglycerides/high density lipoprotein are independent ‘predictors’ of higher global cardiac
NaF uptake [22,23]. Moreover, global cardiac NaF uptake is higher in patients with higher
CHADS2 and CHA2DS2-VASc scores have also a higher global cardiac NaF burden [24],
and patients aged >40 years present, when split into four ASCVD 10-year risk groups,
with gradually increasing global cardiac NaF uptake, from 0.67 for low risk to 0.78 for
high risk [25]. Further, patients with chest pain have higher NaF uptake in the thoracic
aorta than healthy controls, and uptake in the entire thoracic aorta is a stronger predictor
of FRS than average slice-base aortic SUVmax or SUVmean [26]. Patients with >5 CV
risk factors have significantly higher cardiac “GMCS” than patients with ≤5 risk factors
(356.7 vs. 261.1), and global cardiac NaF uptake correlates positively with fatal CV risk
predicted by SCORE, besides with weight, BMI, abdominal perimeter, thoracic fat volume,
and epicardial adipose tissue but not CCS or coronary artery wall NaF uptake [27]. Finally,
average NaF SUVmax in the left carotid artery of patients with mixed CV risk correlates
with 10-year FRS, CHA2DS2-VASc score, and level of physical activity and is significantly
higher in patients with increased risk of CV and thromboembolic events and lower in
patients with greater level of physical activity [28].
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4.5. NaF Uptake and Disease Progression or ‘Prediction’ of Events

In the infrarenal aorta of cancer patients, the radiodensity of multiple non-calcified NaF
hot spots increased from 48 to 59 HU in more than a year, while new calcifications appeared
at hot spot sites in 41% of cases (Figure 2). Baseline average NaF uptake of atherosclerotic
plaques (n = 375) was proportional to increase in calcium of existing plaques, and baseline
whole-aorta NaF uptake correlated with 15-month increase in calcium score [33].

Four studies illustrated slowness and variability of the atherosclerotic process. One [34]
reported in healthy controls after 2 years minimal changes in global cardiac NaF uptake,
whereas CT-calcification in the same ROIs had decreased by 6%. Another [37] found in
carotids and aorta of healthy controls and angina pectoris patients insignificant changes
after 2 years, while in only two of 14 PXE patients there was a 2-year increase in CT-
calcification in major extracardial arteries, whereas NaF SUVmax and SUVmean remained
unchanged or decreased [35]. Finally, in a small sample [38] of patients with a total of 51
CT-defined coronary lesions, no change in an already low NaF uptake in the same lesions
was observed after 37–59 months.

Five studies examined the relationship between arterial NaF uptake and future events
or progression. In patients with known CAD, MI occurred only in those with abnormal
baseline coronary NaF [29]; in diabetics, calcification progression was more common among
NaF positive than NaF negative coronary arteries [30], while in patients with multivessel
disease there was more rapid progression of CT-calcification among those with increased
coronary NaF uptake and an increase in calcium score only in coronary segments with NaF
uptake [31]. In major extracardial arteries of type 2 diabetic patients, there was a strong
correlation of baseline FDG with NaF uptake measured at a 5-year follow-up [36], while in
patients with prostate cancer there was weak association of aortic NaF uptake and several
liquid atherosclerosis biomarkers, of little clinical impact [41].

In an analysis [40] of 461 patients with CVD, it was found after approximately one
year that progression of thoracic aortic calcium volume correlated with baseline thoracic
aortic NaF activity. Moreover, that in the 5% and 7% of patients, who had experienced an
ischemic stroke or an MI, respectively, after six years of follow-up that high thoracic aortic
NaF uptake was associated with stroke but not MI, and, conversely, that high coronary NaF
activity was associated with MI but not ischemic stroke (Figure 4).
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calcification score (left) and arch of the aorta NaF activity (right). Reproduced from Fletcher, A.J
et al. [40], an open access article under the CC BY license.

In the only study [39] to date examining NaF uptake in coronary vascular grafts, all
26 arterial grafts and 120/128 venous grafts were devoid of NaF activity almost three years
after their insertion, but bypassed native coronary arteries had three times higher NaF
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uptake than non-bypassed arteries and greater progression in their calcium score, an effect
largely confined to native coronary plaques proximal to the graft anastomosis.

4.6. Anti-Atherosclerotic Intervention Evaluated by NaF PET/CT

Three animal experiments illustrated facets of the same phenomenon, i.e., that inter-
vention cannot stop arterial macrocalcification but may reduce NaF uptake due to more
dense, but diminished, surface of progressed calcification. We postulate that this decrease in
NaF uptake may also be due to inhibition of early phase NaF-avid microcalcification. One
study [42] reported similar progression of CT-calcification in exercised and non-exercised
Apoe-/- mice but less increase in NaF uptake in exercised mice, the latter apparently due to
lower mineral surface area of aortic root calcification. Another [43] showed also in ApoE-/-
mice that NaF PET/CT imaging is suitable for monitoring atherosclerosis development
without or with only spotty CT-calcification. The third study [45] observed that NaF uptake
in rabbit abdominal aorta had increased by 20% in the atherosclerosis group but hardly
at all in the atorvastatin group. In contrast, total calcium density measured by CT had in-
creased vastly. The human case of Dietz et al. [44] showed unchanged coronary plaques by
CT after 6 months on a statin/aspirin and diet/exercise regimen but significantly decreased
NaF uptake in these plaques and no new NaF hot spots. Collectively, these data suggest
that combinations of statin, exercise, aspirin, and diet may in fact prevent early-phase
arterial wall NaF uptake (Figure 3). The two articles on vitamin-K1 treatment in diabetic
patients showed diverging results: initially no change in coronary or aortic NaF uptake [46],
but later, using a newly defined, potentially questionable [54], upper limit of normal for
TBRmax, the vitamin-K1 groups had decreased odds of developing new NaF positive
lesions [47].

Finally, recent animal studies showed interesting effects of intervention. One [48]
found in a non-diabetic rat model that semaglutide, a glucacon-like peptide-1 receptor
agonist, inhibits inflammation but not microcalcification in the abdominal aorta, while
the other [49] observed in ApoE-deficient mice on a high fat diet that blocking of TNAP,
a common enzyme necessary for normal bone and teeth formation but potentially also
responsible for atherosclerotic plaque calcification, prevented calcification in mice aorta
and in human smooth vascular muscle cells and, moreover, reduced blood cholesterol and
triglyceride levels without impacting skeletal structures.

4.7. Methodology

Standardization is severely lacking. Guidelines exist for PET in cancer and NaF
PET/CT bone scans [55–57], for quality assessment of scans and harmonization of PET/CT
systems [57,58], but not for NaF-PET imaging in atherosclerosis. For quantification, most
authors used SUVmax with or without subtraction of blood pool activity or TBRmax, i.e.,
SUVmax divided by blood activity, disregarding caveats in focusing on single voxels or
variations in blood pool NaF activity [59]. Moreover, TBR is sensitive to acquisition timing
and less suited for assessment of changes over time [60,61]. However, this does not preclude
repeat imaging if the injection-scan time interval is noted and used again at re-imaging.
Finally, authors often forgot to report use of same or different PET/CT scanners at repeat
scanning, and information about relevant medication is often sparse.

New procedures to correct for cardiac movements are commendable efforts [62–64] but
relate exclusively to NaF uptake in the proximal part of large epicardial coronary arteries,
representing but a fraction of the entire cardiac atherosclerotic burden, which may be clini-
cally more relevant [65,66], although it still remains to be fully demonstrated that all cardiac
NaF uptake originates from the artery wall and not from other structures [67]. Noteworthy
are initiatives that may increase the clinical usefulness of NaF-PET/CT. One such approach
is fused assessment of peak systolic wall shear stress measured by 4D magnetic resonance
imaging and NaF-PET to characterize disturbed aortic vascular function [68]. Another is
the combination of measurement of average uptake in vessel whole sections, like major
parts of or whole aorta [37,69–71], or in the entire heart [23–27,72,73]. The latter approach
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compensates for cardiac movements and shortcomings in analyzing only part of cardiac
atherosclerosis burden. A particular challenge when measuring NaF uptake in arteries is
to avoid spill-over from nearby bony structures, such as the vertebrae when examining
uptake in the aorta. Some authors describe observing a safety distance of a certain size [33];
thus, we excluded high uptake (>2.5 × SD) in regions of the aorta closer than 1 cm to the
vertebral bone body [71], whereas others did not mention the problem-which obviously call
for a proper solution and standardization. These many efforts call for a second initiative,
i.e., systems that can facilitate, improve, and speed up manual or semi-automated, time-
consuming, and observer-dependent segmentation. An efficient answer to this appears to
be artificial intelligence-based processing, which, besides minimizing observer dependence
and being much faster (Figure 5), is constantly being improved, while at the same time
allowing consideration also of multiple other relevant data [72–76].
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Figure 5. Artificial Intelligence-Based Segmentation of the Aorta. Convolutional neural networks
trained on manually annotated non-contrast CT images allows reconstruction of the arch of aorta
(a), thoracic aorta (b), and abdominal aorta (c). After identifying the edge of the aorta, segmentation
of the wall (not shown) is made by including all voxels lying within 3 mm of the edge of the aorta
segmentation on the inside and within 2 mm of the edge on the outside, yielding a 5 mm thick wall
following the edge of the aorta segmentation output from the segmentation tool. This yielded a
5 mm thick wall following the edge of the aorta. Values obtained with this approach for average NaF
SUVmean uptake in the walls of three sections were very virtually identical to values obtained by
manual segmentation. Reprinted with permission from Piri et al. [71]). 2021, Springer Nature.

4.8. Limitations

Limitations of animal studies like insufficient spatial PET resolution [5,6,32,42,43,45]
hamper extrapolation to human conditions. A significant advantage is the use of human-
sized animal models that enable NaF-PET/CT imaging of large vessel calcification and
microvascular function at multiple time points during atherosclerosis pathogenesis and
during prevention and regression studies [6,75]. Human studies had other limitations.
Many were parts of trials with other primary aims, post hoc analyses, or studies designed
to investigate other diseases rather than the role of NaF-PET in atherosclerosis, and lon-
gitudinal studies with an adequate number of repeat scans [76] were not reported. The
word ‘prediction’ was used over and over when a statistical association was demonstrated
by group comparison [22,23,29,30,36], but no reported association was close enough to
allow prediction of the course of individual patients with even a reasonably high degree of
certainty, which is why we have sometimes written ‘prediction’ surrounded by apostrophes.

4.9. Summing Up

Valuable new information supports the interpretation that arterial NaF uptake is a
precursor of CT-calcification. However, it is not clear when in the time course declining
NaF uptake reflects a decrease in atherosclerosis development or rather limited adsorption
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secondary to late-phase consolidation of CT-detectable calcification. Very early atheroscle-
rosis development, i.e., prevention studies, is needed to determine whether the initial NaF
uptake steps can be attenuated and thereby decrease atherosclerosis. There is a pronounced
lack of standardization within the field and of well-designed long-term studies to illuminate
the natural history of atherosclerosis and effects of intervention in humans. NaF-PET is
still a research tool, but the use of artificial intelligence procedures bodes well for potential
implementation in the clinical routine.
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