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Abstract: This paper proposed a method for reconstructing floorplans from indoor point clouds. Un-
like existing corner and line primitive detection algorithms, this method uses a generative adversarial
network to learn the complex distribution of indoor layout graphics, and repairs incomplete room
masks into more regular segmentation areas. Automatic learning of the structure information of
layout graphics can reduce the dependence on geometric priors, and replacing complex optimization
algorithms with Deep Neural Networks (DNN) can improve the efficiency of data processing. The
proposed method can retain more shape information from the original data and improve the accuracy
of the overall structure details. On this basis, the method further used an edge optimization algorithm
to eliminate pixel-level edge artifacts that neural networks cannot perceive. Finally, combined with
the constraint information of the overall layout, the method can generate compact floorplans with rich
semantic information. Experimental results indicated that the algorithm has robustness and accuracy
in complex 3D indoor datasets; its performance is competitive with those of existing methods.

Keywords: point clouds; indoor scene; generative adversarial network (GAN); floorplan reconstruction

1. Introduction

Indoor scene planning plays a vital role in scene understanding, reconstruction, and
design. Most traditional indoor space plans are drawn manually, which is inefficient, time
consuming, and laborious. Currently, it is easy to obtain 3D point clouds of indoor scenes
by using a range of equipment such as laser scanners, structured lighting, or stereo vision.
However, because indoor scenes contain various furniture items, the point clouds include
a large amount of noise and missing data due to occlusion. Making a simple and clear
floorplan with an accurate layout from 3D point clouds remains an unsolved problem [1,2].

In the recent past, researchers have reported extensive works on automatic floorplan
reconstruction [3–7], and many innovative methods have been proposed. Some methods to
indoor layout mapping construct the regional subsets for each room by extracting the set
elements of points, lines, and faces from the point clouds [8,9], and describe the shapes of
each room by the constraints among the geometric subsets. However, the results obtained
by these methods may not be stable because of the difficulty in extracting points, lines, and
faces in complex scenes. In addition, most of these algorithms are based on the Manhattan
hypothesis, which holds that the floorplan images must be drawn by straight lines parallel
to the X-Y plane. In some cases, the generated floorplan cannot provide rich geometric
details to meet the needs of accurate reconstruction. Other methods assume that a wall is
flat and always perpendicular to the floor. These methods project the point clouds into the
floor plane and perform geometric information extraction on the two-dimensional plane,
which reduces the complexity of the indoor layout and improves the accuracy and efficiency
of prediction. However, the main challenge remains the efficiency and precision of the
reconstruction; these algorithms leverage extensive geometric priors and optimization
processing, which degrade the robustness and efficiency.
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To solve these problems, this paper proposes a novel method to automatically gen-
erate fine scene plans from indoor 3D point clouds. The method, proposed in this paper,
discards the excessive use of geometric priors and complex geometric optimization by
using deep learning instead of traditional methods to obtain a regular and accurate in-
terior geometric layout, and uses optimization algorithms to compensate only for those
details that cannot be handled by deep learning. Using deep-learning methods instead
of traditional optimization algorithms achieves the highest possible operational efficiency
while improving accuracy and precision. Firstly, the method segments the density map
into several irregular mask instances using the Mask-RCNN (Region based Convolutional
Neural Network) method [10], where each mask instance represents a room. Second, a
GAN-based neural network was designed to refine each individual irregular room mask
instance to obtain a clear and accurate structure. Finally, by optimizing room boundaries
with a layout constraint, this paper generates a tight and accurate room floorplan for the
density map. The main contributions of this study are as follows:

(1) The segmentation process by Mask-RCNN divides the overall density map into
several room areas, and enlarges each room mask to the same size. It cuts each room
into an individual area for further independent optimization and retains the semantic
information well for each room. This method can amplify the room features, allowing
the model to detect more subtle mask defects, especially in small rooms. At the same
time, the zoning method can simplify the input features, prompting the generative
model to focus its attention on a single room and improve the repair capability of the
generative network.

(2) The proposed method repairs the room mask using the generated network. By
introducing a U-Net structure model into the generation network used in this paper,
the room instances are regenerated piecewise-fully with a more regular geometric
structure. The U-Net structure model can retain more details of the original mask and
repair mask defects while preserving as much of the original geometric information
as possible.

(3) An edge optimization method is designed to remove those edge artifacts that Convo-
lutional Neural Networks (CNN)-based algorithms cannot handle. It not only makes
the mask edges as straight as possible, but also combines the mask instances into a
compact and non-overlapping floorplan.

(4) Compared with existing methods, the proposed method offers significant improve-
ments in accuracy and efficiency.

The remaining parts of the paper are as follows. Section 2 discusses related work.
Section 3 details the methods of this paper. Section 4 describes the experiment. The
conclusion is presented in Section 5.

2. Related Work
2.1. Floorplan Reconstruction

In traditional methods, a line detection algorithm is used to over-segment 2D space
into polygonal facets, and a clustering method is employed to classify and merge the
polygonal facets forming simple room instances [11,12]. Those methods depend on the
robustness of the line detection algorithm and are sensitive to noise. The introduction of
DNNs in recent years has led to significant improvements in both robustness and accuracy.
Liu et al. proposed FloorNet to detect keypoints directly for indoor scenes by using the
DNN framework with integer programming to generate a floorplan. However, in reality,
it is not easy to detect keypoints in scenes with numerous furniture items and complex
structures. The incorrect detections may lead to the failure of final floor mapping. With
regard to the appeal, Chen et al. proposed Floor-SP to obtain the corner–edge likelihood
graph for global energy function minimization by using Mask-RCNN and DNN. In this
method, a gradient descent algorithm is also used to estimate the keypoints of the room. It
avoids the problem of weak robustness caused by detecting the keypoints directly through
DNN. Nevertheless, because the result of Floor-SP comes from secondary reasoning, there
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is no guarantee that the final result is consistent with the real scene. Stekovic et al. proposed
MonteFloor [13], which enhances the layout map reconstruction by introducing Monte
Carlo Tree Search, but is computationally inefficient.

2.2. Image Generation

GAN, proposed by Goodfellow, uses a discriminator to distinguish the images gen-
erated by the generator and guides the discriminator to generate images with specific
distributions [14]. However, the original GAN is a process for generating noise input,
and it is an undirected generation. Therefore, Pix2pix was proposed for training with
paired images [15], causing the network to directionally learn the domain knowledge for
picture generation. However, Pix2pix adds random noise to the generator, which makes
the network more creative but increases some uncertainty. In addition, the loss function of
traditional GAN has certain limitations, which may lead to gradient disappearing when
the difference between two domains is large. To overcome this problem, Gulrajani et al.
proposed a Wasserstein GAN (WGAN) [16] to measure the similarity between them by
using Wasserstein distance, and truncated the weights to solve the problems. However, the
weight clipping may cause weight polarization, which can lead to gradient disappearance
or gradient explosion. Gulrajani et al. improved WGAN by proposing the use of a gradient
penalty, thus solving the problem of gradient disappearance or gradient explosion during
training. Nauata et al. proposed house GAN and house GAN++ on the basis of WGAN-GP
to generate house layouts; the convolutional message passing neural networks (Conv-MPN)
method was also introduced [17–19], which allows the room generation model to better
incorporate contextual information to generate regular, professional design-aware indoor
floorplans. However, these methods are not strongly constrained to accomplish accurate
reconstruction.

2.3. Instance Segmentation

Mask-based instance segmentation methods include one-stage methods and two-
stage methods. The two-stage methods, such as Mask-RCNN, HTC, and PANet [20,21],
include an object detection stage and a semantic segmentation stage. These methods use
proven object detection methods to generate accurate bounding boxes in the image, and
classify the pixels in those bounding boxes. The one-stage methods, such as PolarMask,
YOLACT, and SOLO [22–24], abandon the object detection stage and obtain the instance
mask directly from the image, thus improving the operational efficiency of the model.
However, compared with two-stage instance segmentation methods, one-stage methods
lose some accuracy. These dense pixel-wise classification methods have achieved great
success in the task of instance segmentation, but these algorithms do not account for the
geometric contour information of the object, and the performance is degraded on regular
geometric objects; in particular, the segmentation effect becomes blurred on the edge
details of the object. Unlike these methods, contour-based instance segmentation methods
transform instance segmentation into a contour-vertex regression problem. Ling et al.
proposed Curve GCN [25], which uses a graph convolution network (GCN) to predict the
evolution direction of contour vertices. Peng et al. introduced the snake algorithm into
the target detection task; they use the bounding box predicted by center-net as the initial
value of the contour, and then obtain instance masks by iterative deformation [26]. Both
methods rely on manually designed initial contours, and the large difference between these
initial contours and the real contours leads to many inappropriate vertex pairs. To solve
this problem, E2EC [27] was proposed, using a learnable contour initialization method
to replace the manual initialization method, thereby improving the accuracy of contour
prediction. However, these methods are still unable to deal with complex geometries,
especially in indoor density maps with noise and defects.
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3. Method

The traditional layout map reconstruction methods based on corner and line segment
detection lack robustness in complex indoor spaces. In addition, noise and deficiencies can
cause the algorithm to produce incorrect corners or edges, and these incorrect estimates con-
sume a large amount of computation for judgment, which reduces the operational efficiency
and reduces the prediction accuracy. To avoid such problems, this paper used generative
networks to directly generate masks that can represent the room layout, and obtain accurate
and regular vector maps of the indoor layout through simple post-processing. Figure 1
shows the framework of the proposed method, which includes three stages: regional
segmentation, room mask repair, and edge optimization.
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Figure 1. Framework of the proposed method, where CGAN is a GAN-based network and EO is the
edge optimization algorithm.

3.1. Region Segmentation

In the first stage, a Mask-RCNN model is used for preliminary regional reconstruc-
tion. First, the point clouds are projected to the X-Y plane to generate a density map of
256 × 256 resolution, and then the density map is divided into multiple room instances by
using the Mask-RCNN model.

The projection algorithm computes the tight axis-aligned bounding box of the points
on the X-Y plane, and the short side extends evenly over both directions to the length of the
long side. Then, the projection algorithm extends each of the four directions of the square
outwards by 2.5%, and scales the square to a 256 × 256 pixel grid. Finally, pixel values are
obtained by counting the number of point clouds corresponding to each pixel grid. The
specific calculation formula is as follows:

Lsq = max ∗ (Xmax − Xmin, Ymax −Ymin), (1)

P = 0.25 ∗ Lsq, (2)

Xorigin = Xmin − P, Yorigin = Ymin + P, (3)

Cp =

(
256 ∗

Xinit − Xorigin

Lsq + 2 ∗ P
, 256 ∗

Yorigin −Yinit

Lsq + 2 ∗ P

)
, (4)

where Lsq is the length of the bounding box. Xmax, Xmin, Ymax and Ymin are the maxi-
mum/minimum values in the point cloud data, and P is the padding width. (Xorigin, Yorigin)
is the coordinate of the origin, and (Xinit, Yinit) is the original coordinate of the point cloud
on the X-Y plane. Cp is the pixel coordinate corresponding to the point cloud.

Mask-RCNN detects room targets from the image, and then performs semantic seg-
mentation along the room boundary. This paper extracted each room mask from the
Mask-RCNN results and scaled them to the same size as the input data for the GAN-based
model. In this way, we could obtain the bounding box for each room area and its cor-
responding contour mask. However, apparent artifacts such as incomplete edges and
irregular shapes exist along the room boundary, as shown in the first row in Figure 2. The
regional segmentation stage allows the model to focus more on local features, reducing the
complexity of the mask geometry and improving the accuracy of the generated masks.
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3.2. Room Mask Repair Process

Mask-RCNN obtains coarse room masks, which already possess a similar overall struc-
ture to the ground truth. However, these masks have many defects that are caused by noise
and the algorithm’s own performance. These defects produce incorrect corners and edges
that cannot be handled using simple optimization. To improve the mask segments obtained
in the previous stage, this stage uses a GAN-based method to repair each incomplete room
mask separately. Previous image generation models have more randomness, but the task
in this paper needs to preserve the structural information of the original masks, which is
more similar to image restoration processing.

Traditional GAN-based models use a convolutional auto-encoder as the generator,
which has an encoder and a decoder. However, the convolutional auto-encoder loses a lot
of information during the encoding and decoding process, making it difficult for training.
Here, this paper employed a U-Net [28] structure model with attention mechanisms to
build a generation network. U-Net consists of two parts: an encoder and a decoder. The
encoder on the left side extracts the features of the image, and the decoder on the right
side connects the encoder with the same layer. U-Net up-samples four times, and each
time it executes a skip connection, which allows the decoder to retain as much of the
original information as possible. Those connections can obtain more accurate multi-scale
edge information of the generated images. Figure 3 compares the loss of the U-Net-based
generator with the original Convolutional Auto-Encoder in the training stage, where the
U-Net-based method exhibits a lower and smoother loss curve. For mask image generation,
instead of using original GAN, this paper employed WGAN with Wasserstein distance to
measure the difference between the artificial data distribution and real data distribution.
The adversarial loss function and the discriminator loss function are defined as

Lwg = −Ex∼Pf [Dw(x)], (5)

Lwd = Ex∼Pf [Dw(x)]− Ex∼Pr [Dw(x)], (6)

where Lwg forces the generator to synthesize images close to the real distribution, and Lwd
is used to enhance the ability of the discriminator to distinguish between true and artificial.
Furthermore, L1 loss is added to enhance the learning ability of the generator to create
high-quality images at the pixel level. The L1 loss function is defined as

Ll1(G) = Mean
(
‖ xl − x f ‖1

)
, (7)

where x f is the artificial images and xl corresponds to the target images of x f . The final
generator loss function is formulated as

LG = δLwg + ∂Ll1, (8)

where δ and ∂ are the weights of the Lwg loss function and Ll1 loss function.
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Figure 3 shows the results before and after the GAN repair process, where the repaired
mask has a much smoother boundary and the room structure is kept similar to the ground
truth. The proposed method can repair various mask defects without complex geometric
priors, which improves the efficiency of the algorithm and reduces optimization processes.

3.3. Edge Optimization

Even though the structure and boundary of each room are improved significantly after
mask repair, some artifacts remain along the room boundaries. In addition, the generated
geometric plan is in a non-vector format and lacks semantic information such as wall lines
and corners.

Therefore, this paper used a keypoint detection algorithm to obtain keypoints from the
repaired masks for room edge extraction. As shown in Figure 4, the algorithm takes two
points to obtain a line, and calculate the farthest point to the line between the two points. If
the farthest point is less than the threshold farthest point (the keypoint), the algorithm take
the keypoint as the midpoint to obtain two lines, then repeat the previous steps until no
keypoints are generated. Finally, the algorithm connects the keypoints to obtain edges.{

Pα ∈ Pkey α ≥ Td
None α < Td

, (9)

where pα is the farthest point and α is the distance to the line.
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This paper then divide that two-dimensional coordinate system evenly with a rotation
scale of 15◦ (i.e., 0◦, 15◦, ..., 180◦), with left and right symmetry. As shown in Figure 5a,d,
when an extracted edge is close to a certain rotation scale, the edge undergoes another small
rotation to method this scale. In addition, the parallel edges with close distances are also
merged in the same room instance, as illustrated in Figure 5b,e. To obtain the best solution
for each room, this paper constructs an energy function for minimization as follows:

Er = ∑Li∈room ∑Vt∈scale λadEad(Li, Vt)
+∑Li∈room ∑Lj∈room βldEld

(
Li, Lj

) , (10)
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where Li and Lj are edges of a single room, Vt is a scale vector, and λad is a binary variable.
When the angle between the edge and scale is less than the threshold Ts (i.e., 5), λad is set
to 1, otherwise 0. Ead is the angle deflection between the room edge and each rotation scale.
By the same token, βld is also a binary variable; when two lines are parallel and close, it is
set to 1, otherwise 0. Eld is the distance between two edges from a single room.
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translation deviation formula, and Ec is the coincidence formula. (a) and (b) indicate defects in
individual rooms, (d) and (e) correspond to the repaired situation. (c) and (f) indicate before and
after overall optimization respectively.

After optimizing each single room, this paper used the location information of bound-
ing boxes to place the reconstructed room back to the corresponding positions in the floor
map for an overall optimization. As shown in Figure 5c, a slight overlap and dislocation
exists between neighboring room instances. Therefore, this paper added another energy
term Ec to penalize the coincidence between each pair of neighboring rooms. Energy item
Er was also added to ensure room integrity. The final energy equation is obtained by

Escene = ∑Lp∈scene ∑Lq∈scene(λadEad
(

Lp, Lq
)

+βldEld
(

Lp, Lq
)
) + ∑Ri ∑Rt Ec(Ri, Rt) + Er

, (11)

where Lp and Lq are edges that belong to the whole scene. The item Ead is the angle between
edges, and the item Eld is the distance between edges. λad and βld are binary variables that
are activated when the angle or distance between edges is close. The item Ec calculates the
number of pixel overlaps between rooms.

In addition, a real wall has a certain thickness, and the proposed method assumes that
the edge of the floorplan is located in the middle of the wall. Therefore, additional informa-
tion is needed to constrain the adjustment direction of the edges during the optimization
process. The proposed method follows Floor-SP’s edge likelihood map prediction method,
which uses the official implementation of Divided Residual Networks to obtain a 256 × 256
edge likelihood map. This paper used the edge likelihood map for geometric constraints.
This paper labels the wall edge line as a straight line located in the middle of the wall for
training, which ensures that the predicted edge likelihood map has a correct guiding role.
As shown in Figure 6, the edge likelihood map describes the likelihood of the existence
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of edges, which are represented by pixel values. A larger pixel value corresponds with a
greater possibility of its belonging to the edge. The proposed method uses this information
to construct the energy function and uses the Bresenham algorithm to obtain the pixels
corresponding to the edge lines:

Epix = ∑pt∈Le
pt, (12)

where pt is one minus the value of the pixels in edge lines. The result of edge optimization,
including room and scene, is shown in Figure 7.
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Figure 6. Illustration of the Epix term, which is defined by edge likelihood maps. The energy value
is calculated from the pixels that the edge passes through. The energy value in (a) is less than the
energy value in (b).
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4. Experiment
4.1. Dataset and Setup

The dataset used in the experiment in this study was sourced from the public 3D-Front
data of Ali TianChi (https://tianchi.aliyun.com, accessed on 15 April 2021). This paper
randomly selected data of 493 simulated indoor scenes (406 scenes as the training dataset
and 87 scenes for verification). From each scene, 50,000 points were sampled by uniform
sampling with Gaussian noise with a variance of 0.01 added. Then, the point cloud data
were projected to the X-Y plane to obtain the density map of each scene. Finally, the
professional annotation team was invited to annotate the data collected and obtain the
ground truth from specialists.

The GAN-based model uses the RMSprop optimizer with a learning rate of 5 × 10−4.
The epoch was set to 300, and α and β were set to 0.2 and 0.8, respectively. For Mask-RCNN,
the learning rate was set to 1 × 10−5 with an epoch of 100. Finally, this paper used the
greedy algorithm to solve the edge optimization problem and minimize the energy function.

4.2. Qualitative Evaluation

The experiment compared the proposed method with five current advanced methods:
ASIP [29], that of Zhang et al. [30], MonteFloor and Floor-SP. ASIP is an object vector-

https://tianchi.aliyun.com
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ization algorithm, which uses a probability map to generate approximate shapes. The
ASIP algorithm trades off complexity and fidelity with a tunable parameter, but there
is no systematic method for interpreting or determining this coefficient. Zhang et al.’s
algorithm is a recent algorithm that explores and classifies to obtain better results. However,
this algorithm lacks regularization, which leads to many defects in the results. One of
the state-of-the-art (SOTA) methods known as Floor-SP combines corner detection and
edge detection for indoor structure prediction; it has better robustness than FloorNet and
can handle non-Manhattan structure scenes. However, Floor-SP uses the shortest path
algorithm, and may yield incorrect results in complex nonconvex graphics. MonteFloor is a
floorplan reconstruction method that includes a Monte Carlo tree search algorithm, but the
search tree operation reduces computational efficiency.

Furthermore, in terms of mask generation, the experiment compared the proposed
method (Mask-RCNN+GAN) with the three most advanced methods in the field of in-
stance segmentation, including Mask-RCNN, E2EC, and RefineMask [31]. This paper used
vectorization operations on the masks generated by different methods to obtain room plans,
and evaluated the precision and recall of the generated corners.

4.3. Quantitative Evaluations

This paper defined four metrics for the quantitative evaluations, including the preci-
sion, recall and F1-score of corners, edges, and rooms, and overall efficiency.

Corner precision/recall/F1-score: this paper judged the corner to be successfully
reconstructed if the ground truth existed within a radius of ten pixels.

Edge precision/recall/F1-score: this paper judged the edge to be successfully recon-
structed if both corners of an edge were successfully reconstructed and the edge was real
in the ground truth.

Room precision/recall/F1-score: this paper considered a room successfully recon-
structed if (1) the room did not overlap with other rooms, and (2) a room whose Intersection
over Union (IOU) value of its corresponding ground truth was greater than 0.7.

Efficiency: this paper calculated the total time taken by each method to verify 87
scenes, and compared the efficiency between methods on time taken.

Corner/Edge/Room precision: the precision value is defined as the number of suc-
cessfully reconstructed corners/edges/rooms divided by the number of all reconstructed
corners/edges/rooms.

Precision =
Correct Reconstruction

All Reconstruction
(13)

Corner/Edge/Room recall: the recall value is defined as the number of successfully
reconstructed corners/edges/rooms divided by the number of corners/edges/rooms in
the ground truth.

Recall =
Correct Reconstruction

Ground Truth
(14)

Corner/Edge/Room F1-score: the F1-score combines precision and recall measure-
ments, as follows:

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(15)

4.4. Experimental Results and Analysis

There were two main experiments in this paper. The first experiment compared
the proposed mask generation method (Mask-RCNN + GAN) with other SOTA instance
segmentation methods, thus demonstrating that existing instance segmentation methods
cannot meet the requirements of the task. Figure 8 and Table 1 show the results of the
first experiment. In order to show more details on masks, the mask of a single room is
magnified for comparison in Figure 8. The second experiment was a comparison of the core
task in this paper, comparing the proposed method (complete) with advanced methods
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for reconstructing floorplan. Test results of the second experiment show in Figure 9 and
Table 2.

Table 1 shows the results of the comparison between the proposed mask generation
method and the other advanced methods. The proposed method achieved the best evalu-
ation result in corner metrics; the precision and recall of corner detection were 0.938 and
0.975, respectively. The precision score of E2EC was high, but the recall score was low,
which indicates that E2EC misses many corners in the ground truth. The precision and
recall metrics of the other two methods were lower than those of the proposed method,
which shows the advantage of the proposed method.

Figure 8 shows that our algorithm outperformed the other methods, because the
proposed method uses GAN to repair masks, which eliminates massive incorrect corners
and edges. To better show the edge detail of the generated masks, we magnified the single
room mask for better comparison. Mask-RCNN obtains masks by classifying pixels, but
Mask-RCNN operates without geometric constraints, resulting in incorrect pixel classifi-
cation. E2EC uses geometric information for mask prediction, but these methods do not
place constraints on the shape, resulting in unreasonable edges. RefineMask improves on
the traditional instance segmentation algorithm, but is sensitive to noise.
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Table 1. Test results for different mask generation methods.

E2EC [27] Refine Mask [31] Mask-RCNN [10] Proposed (M + G)

Corner
Precision 0.959 0.728 0.725 0.938

Recall 0.757 0.935 0.968 0.975
F1-score 0.846 0.819 0.829 0.956
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Table 2. Test results for different floorplan reconstruction methods, and the bold values are the best.

Method
Corner Edge Room Efficiency

Pre. Recall F1-Score Pre. Recall F1-Score Pre. Recall F1-Score Time (s)

Floor-SP [3] 0.93 0.97 0.95 0.93 0.95 0.94 0.93 0.94 0.93 32,667
Zhang et al. [30] 0.90 0.95 0.92 0.85 0.89 0.87 0.92 0.93 0.92 8452
MonteFloor [13] 0.94 0.96 0.95 0.93 0.95 0.94 0.94 0.95 0.94 6237

ASIP [29] 0.83 0.93 0.88 0.75 0.86 0.80 0.91 0.92 0.91 53
Proposed 0.96 0.97 0.96 0.94 0.96 0.95 0.94 0.96 0.95 222

Table 2 shows the results of different methods for four metrics, and indicates the proposed
method is superior to the other algorithms in the accuracy of detail reconstruction, including
corners and edges. Despite the high computational efficiency of ASIP, the prediction results
are poor. In addition, because the proposed method does not perform complex secondary
optimization at the pixel level or search tree operation, unlike Floor-SP or MonteFloor, the
computational efficiency of the proposed method is significantly improved.

Figure 9 compares the final results obtained by different methods. ASIP can generate
rough geometries, but with messy points and edges. Zhang et al.’s algorithm is an improve-
ment over ASIP, but there are still incorrect corner points and edges. As shown in the sixth
row of Figure 9, because Floor-SP uses the shortest-path algorithm, it may yield incorrect
results in complex non-convex graphics, whereas the proposed method provides a correct
result close to the ground truth. MonteFloor gives good results, but there were still some
errors in structurally complex regions.

5. Conclusions

This paper proposed a novel method to the task of interior reconstruction, introducing
a GAN-based method for the task of floorplan reconstruction without using any strong
geometric prior constraints. This proposed method can significantly improve the room
instances segmented by the traditional Mask-RCNN method. An edge optimization method
is further designed to remove edge artifacts along the room boundary, and merge the
mask instances into a compact and non-overlapping floorplan. The experimental results
demonstrated that the proposed method is competitive in both accuracy and efficiency. In
the future, we aim to add automated reconstruction of windows, doors, and furniture to
achieve a unified framework for efficient and highly accurate structural reconstruction of
indoor scenes using point clouds and panoramic images.
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