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Abstract: Unwanted proteins and metabolic waste in cerebral spinal fluid are cleared from the
brain by meningeal and nasal lymphatics and the perineural sheath of cranial nerves; however, the
distribution and clearance of cerebral spinal fluid (CSF) along the subarachnoid space of the entire
spinal cord is not fully understood. Cryo-fluorescence tomography (CFT) was used to follow the
movement of tracers from the ventricular system of the brain down through the meningeal lining of
the spinal cord and out to the spinal lymphatic nodes. Isoflurane-anesthetized mice were infused
into the lateral cerebroventricle with 5.0 µL of quantum dots [QdotR 605 ITKTM amino (PEG)] over
two mins. Mice were allowed to recover (ca 2–3 min) and remained awake and ambulatory for 5,
15, 30, 60, and 120 min after which they were euthanized, and the entire intact body was frozen at
−80◦. The entire mouse was sectioned, and white light and fluorescent images were captured after
each slice to produce high resolution three-dimensional volumes. Tracer appeared throughout the
ventricular system and central canal of the spinal cord and the entire subarachnoid space of the CNS.
A signal could be visualized in the nasal cavity, deep cervical lymph nodes, thoracic lymph nodes,
and more superficial submandibular lymph nodes as early as 15 min post infusion. A fluorescent
signal could be visualized along the dorsal root ganglia and down the proximal extension of the
spinal nerves of the thoracic and lumbar segments at 30 min. There was a significant accumulation
of tracer in the lumbar and sacral lymph nodes between 15–60 min. The dense fluorescent signal
in the thoracic vertebrae noted at 5- and 15-min post infusion was significantly reduced by 30 min.
Indeed, all signals in the spinal cord were ostensibly absent by 120 min, except for trace amounts in
the coccyx. The brain still had some residual signal at 120 min. These data show that Qdots with a
hydrodynamic diameter of 16–20 nm rapidly clear from the brain of awake mice. These data also
clearly demonstrate the rapid distribution and efflux of traces along a major length of the vertebral
column and the potential contribution of the spinal cord in the clearance of brain waste.

Keywords: brain clearance; Qdots; nasal turbinates; subarachnoid space; cervical lymphatics;
sympathetic ganglia; cervical spinal cord; thoracic spinal cord

1. Introduction

The subject of cerebral spinal fluid (CSF) clearance, routes, and mechanisms in health
and diseases has garnered much attention, particularly with respect to aging and neurode-
generation [1]. How do metabolic waste and unwanted proteins generated at the level
of the neurovascular unit find their way out of the interstitial fluid of the surrounding
parenchyma? There is evidence that clearance occurs as interstitial fluid moves along
paravascular and perivascular routes, accumulating as CSF in the subarachnoid space
(SAS) to leave through nasal and meningeal pathways and perineural sheaths [2–4]. This
clearance is affected by the circadian light–dark cycle as originally reported by Cai and
coworkers using magnetic resonance imaging (MRI) to follow the circulation and brain
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penetrance of gadolinium tracer infused into the cerebral ventricle in awake rats during the
scanning session [5]. Brain clearance is most pronounced during periods of rest and sleep
and is reduced during the waking hours of the light–dark cycle [6,7].

It is well documented that CSF drains from the SAS through the cribriform plate along
olfactory nerves to the nasal mucosa lining the nasal turbinates and from there through
nasal lymphatics to the deep cervical lymph nodes [8–10]. There is also a direct route of CSF
clearance to the deep cervical lymph nodes via lymphatic vessels located in the meninges
along the ventral surface of the brain in mice [11,12]. While less emphasized, there is
evidence from early studies using horse radish peroxidase (HRP) of tracers appearing in
the lumen of cerebral blood vessels, suggesting a direct clearance of brain CSF into the
general circulation [13,14]. This finding of movement of tracer from CSF directly into the
blood circulation was advanced by Lam et al. at the level of the spinal cord [15]. Indeed, the
spinal cord itself is reported to have a significant role in the clearance of CSF via meningeal
lymphatics and perineuronal sheaths [16,17].

Recently, Leaston et al. reported a novel pathway by which waste from the brain
moves to the nasal mucosa and then to the nasal pharynx to ultimately be swallowed [18].
This finding was confirmed in two studies, one using MRI to follow ferumoxytol circulation
and clearance from the brain in awake rats during the imaging session, and a second using
Qdot fluorescence microscopy of ex vivo samples of esophagus. Within 10–15 min after
intracerebroventricular (ICV) infusion, tracer from both studies can been seen outside the
brain along the nasopharynx and esophagus. Indeed, this finding was the motivation
behind these studies in mice. Using 3D cryo-fluorescent tomography (CFT) we hoped to see
the accumulation over time of ICV-administered Qdots in the stomach and intestine of mice.
Unfortunately, due to the background autofluorescence, particularly in the gastrointestinal
tract, this was not possible. Instead, we were able to create a time series showing the
distribution, localization, and clearance of Qdot fluorescence over the entire brain and
spinal cord and associated lymphatic nodes. These unexpected data are presented and
discussed with an emphasis on the spinal cord as a route for CSF clearance.

2. Materials and Methods
2.1. Animal Usage

Male C57BL/J6 mice (n = 5) approximately 100 days old and weighing between
28–30 gm were obtained from Charles River Laboratories (Wilmington, MA, USA). Mice
were maintained on a 12:12 h light–dark cycle with lights on at 07:00 h and allowed
access to food and water ad libitum. All mice were acquired and cared for in accordance
with the guidelines published in the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health Publications No. 85–23, Revised 1985) and we adhered to
the National Institutes of Health and the American Association for Laboratory Animal
Science guidelines. The protocols used in this study complied with the regulations of the
Institutional Animal Care and Use Committee at the Northeastern University and adhered
to the ARRIVE guidelines for reporting in vivo experiments in animal research [19].

2.2. Quantum Dot Infusion

Quantum dots [QdotR 605 ITKTM amino (PEG)] with a hydrodynamic diameter
of 16–20 nm were obtained from Thermo Fisher Scientific (Waltham MA, USA). Qdots
were diluted 1/100 in sterile saline prior to infusion. While under isoflurane anesthesia
(unresponsive to foot pinch, 40–45 breathes/min) the skin was incised and the skull over
bregma exposed. A 30-gauge needle connected to a 200 µL syringe was directed toward
the lateral cerebroventricle (stereotaxic coordinates of burr hole: 0.50 mm rostral to bregma,
1.0 mm lateral to midsagittal suture, and 3.5 mm down from the skull surface). Five µL
of Qdots were infused over 2 min. Mice were treated with buprenorphine (1.5 mg/kg)
and the open skin was repaired with surgical glue. Mice were allowed to recover from
anesthesia and were ambulatory within 2–3 min. At time intervals of 5-, 15-, 30-, 60-, and
120-min post recovery, mice were sacrificed with Euthasol® (150 mg/kg, IP) and the entire
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body was laid out in a prone position on aluminum foil and placed in a −800 refrigerator.
These specimens were then shipped frozen on dry ice to Emit Imaging for sectioning and
analysis (Baltimore, MD, USA).

2.3. Cryo-Fluorescence Tomography (CFT)

The mice were imaged on Emit Imaging’s Xerra platform. The Xerra is an automated
CFT platform with an integrated cryomicrotome and proprietary software that captures
2D white light and fluorescent images of ex vivo serial sections and compiles them into
3D images. Sample preparation involved freezing 5 mice onto a single block of O.C.T
(Ultrafreeze OCT Clear, Cancer Diagnostics Durham, NC, USA). The block with a field of
view of 17 cm × 10 cm was then placed in the Xerra and the mice were then automatically
sectioned in 35 µm slices over 17 h at −15 ◦C. The newly exposed block face at each section
was imaged for white light and fluorescence signal, while the shaved tissue was discarded.
Sixteen-bit fluorescence images were acquired with consistent exposure times of 5 ms,
50 ms, 500 ms, 1500 ms, and 2500 ms. These images were then combined into a single 32-bit
high dynamic range image to extend the Xerra’s detection limits beyond a single exposure.

3. Results

Shown in Figure 1 are CFT images of the CNS taken at different time intervals fol-
lowing recovery from the infusion of Qdots into the lateral cerebroventricle. Note images
from all subjects were collected simultaneously from the same block. Highlighted are the
different segments of the vertebral column, e.g., cervical, thoracic, lumbar, sacral, and
coccyx. The distribution of fluorescence across much of the vertebral column occurred
within five minutes of ICV infusion. Fluorescence can be observed in the most rostral part
of the image, in what is the nose of the mouse, filling the nasoturbinates (NT). At 15 min,
a signal can also be seen in the coccyx, which is at the end of the vertebral column (see
Figure 2). The submandibular lymph nodes (smLN) accumulate Qdots at 15 min. The
signal persists for up to 60 min but is absent by 120 min. By 60 min, the entire vertebral
column is heavily penetrated by Qdots (see Figure 3) which are all essentially absent by
120 min.

Shown in Figure 2 are sagittal sections taken 15 min post infusion of Qdots depicting
the same mouse imaged for white light and cryo-fluorescence. The head of the mouse and
the body were not in plane, hence the red line marking the intersection of the separate
images. The perpendicular white lines labeled (a.–i.) denote the position of the frontal
sections shown below. Section (a.) shows a fluorescent signal in the nose of the mouse
localized to the nasoturbinates (NT). Section (b.) shows a signal at the level of the olfactory
bulbs and the underlying cribriform plate (CP). The asterisk identifies an accumulation of
Qdots along the surface of the skull that leaked from the infusion needle. Section (c.) depicts
a signal throughout the brain, particularly concentrated in the cortex (CTX) and along the
third ventricle (3V). A fluorescence signal is also starting to appear in the submandibular
lymphatic nodes (smLN). Section (d.) shows a signal in the brain at the level of the pons.
The cerebral aqueduct (CA) is highlighted along with a signal in the smLN and what could
be identified as the nasal lymphatics (NL) and putative parotid lymphatic nodes (pNL).
Section (e.) shows a section of the cervical spinal cord (SC) and the underlying deep cervical
lymph nodes (dcLN). Section (f.) shows a similar image of the cervical SC just rostral to
thoracic cavity. Section (g.) shows several thoracic vertebrae (VC) and signal intensity
along the root ganglia (RG) and smaller areas of signal accumulation in what would be
the putative sympathetic ganglia (SG). Section (h.) shows the lumbar spinal cord and the
adjacent renal lymph nodes (rLN) identified by their proximity to the kidneys as shown
below in the light field anatomy. The most caudal Section (i.) depicts the signal in the spinal
cord coccygeal region of the vertebral column.

Shown in Figure 3 are sagittal sections taken 60 min post infusion of Qdots depict-
ing the same mouse imaged for white light anatomy and cryo-fluorescence. The cryo-
fluorescent image shows autofluorescence associated with the gastrointestinal tract. The
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perpendicular white lines labeled (a.–i.) denote the position of the frontal sections shown
below. Section (a.) shows fluorescent signal in the nose of the mouse localized to the
nasoturbinates. Section (b.) shows a signal at the level of the olfactory bulbs (OB) and the
underlying cribriform plate. Section (c.) depicts signal intensity localized primarily to the
cortex of the brain and along the third ventricle (3V). Section (d.) shows a signal in the
brain at the level of the pons with the highest intensity in the cortex and cerebral aqueduct.
Below are the submandibular lymph nodes and the putative nasal lymphatic vessels (NV).
Section (e.) shows the brainstem and overlying subarachnoid space (SAS). The small signal
intensity comes from what we interpret as the putative sympathetic ganglia and below that
are the deep cervical lymph nodes. Section (f.) shows the cervical spinal cord proximal
to the thoracic cavity. The four points of signal intensity are the putative dorsal (DG) and
ventral (VG) ganglia. Section (g.) shows several thoracic vertebrae and the spinal cord.
The small points of signal intensity are the putative sympathetic ganglia (SG). Section (h.)
shows the lumbar spinal cord and the adjacent renal lymph nodes. The caudal Section (i.)
depicts the signal in the spinal cord and the adjacent sacral lymph nodes (sLN). Section (j.)
shows the coccygeal region of the vertebral column.

Shown in Figure 4 are fluorescence images taken of the thoracic spinal cord 15 min
post ICV infusion of Qdots. The images highlight not only the rapid distribution of the
tracer down the subarachnoid space, but its egress into the putative spinal lymphatic nodes,
spinal nerves, and thoracic lymph nodes.
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and coccyx. Abbreviations: NT—nasoturbinates; rLN—renal lymph nodes; smLN—submandibular
lymph nodes. Scale bar 1 cm.
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Figure 2. CNS distribution and clearance at 15 min. Shown above are sagittal sections depicting
the same mouse imaged for white light anatomy, cryo-fluorescence, and both together at 15 min
post infusion of ICV Qdots. The head of the mouse and the body were not in plane, hence the
red line demarking the intersection of the separate images. The perpendicular white lines labeled
(a.–i.) denote the position of the frontal sections shown below. Abbreviations: NT—nasoturbinates;
CP—cribriform plate; CTX—cortex; 3V—third ventricle; smLN—submandibular lymphatic nodes;
CA—cerebral aqueduct; NL—nasal lymphatics; pNL—parotid lymphatic nodes; SC—cervical spinal
cord; dcLN—deep cervical lymph nodes; VC—thoracic vertebra; RG—root ganglia; SG—sympathetic
ganglia; rLN—renal lymph nodes. Scale bar for sagittal sections is 1 cm. Scale bar for frontal sections
is 2 mm.
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nodes. Scale bar 1 cm and 2 mm sagittal and horizontal sections, respectively.
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of the spinal cord are shown below (scale bar 2 mm).



J. Imaging 2023, 9, 45 7 of 10

4. Discussion

These studies using CFT enabled us to follow the distribution, localization, and
clearance of Qdots over the entire CNS. Cifuentes and coworkers provided clear evidence
in rats of the rapid movement of CSF from the lateral cerebroventricle down the central
canal of the spinal cord. By 20 min after intraventricular infusion, HRP tracer reached
a maximum across all segments of the spinal cord that decreased sharply by one hour
and was cleared by two hours [13]. In a comprehensive study, Ma and coworkers used
near-infrared and gadolinium-based MRI contrast agents infused ICV in anesthetized and
awake mice and reported movement down the central canal and subarachnoid space of the
spinal cord to leave predominantly at the sacral level through lymphatic vessels leading to
the sacral/iliac lymph nodes [16]. In their study, the distribution of fluorescent tracer at
the level of the thoracic spinal cord was apparent by 30 min in awake mice but delayed
with anesthesia. The confound of anesthesia when studying brain clearance was also noted
by Gakuba et al. using near-infrared fluorescence imaging and contrast enhanced MRI
to follow the distribution of tracers injected into the cisterna magna in awake mice and
compared these results with anesthesia. Contrast agent rapidly spread across the brain
when mice are awake but was severely limited with anesthesia [20].

The application of awake MRI to follow brain clearance has been used in rats to study
the effect of the circadian light–dark cycle [5]. During the period of rest and sleep (light
phase in the rodent light–dark cycle) there is a greater efflux in tracer-injected ICV compared
with rats imaged during the dark or active phase of the light–dark cycle. The distribution of
tracer across the CNS during the light phase and its efflux occurs within 30 min of injection.
These results in rats using MRI to follow clearance are similar to the data generated in this
study using CFT. The fluorescent tracer is rapidly distributed and cleared while mice are
aroused and awake during the light phase of their circadian cycle when they should be
sleeping. Sleep and rest are a critical period in the circadian cycle helping to promote brain
clearance [6,7,21–23]. The clearance linked to the circadian sleep–wake cycle is judged
to be essential in the removal of unwanted metabolic waste and proteins that could be
contributing to Alzheimer’s, Parkinson’s, and dementia associated with aging [22,24]. It has
also been proposed that the flow of CSF and parenchymal clearance along the perivascular
system is influenced by circadian changes in brain temperature and blood flow at the
level of the microvasculature [25]. Brain temperature is a circadian rhythm entrained
by the light–dark cycle [26]. The circadian change in temperature affects the timing of
sleep [27,28], e.g., rising in the morning before awakening and lowering in the evening
before the onset of sleep. The temperature of the brain is higher than the body temperature
and heterogeneous as some brain areas are cooler than others [29–31]. An increase in
blood flow to metabolically active areas is necessary to buffer the higher temperatures but
has the unwanted effect of increasing resistance to perivascular clearance [25]. Given the
large surface to volume ratio of the spinal cord, the temperature may be closer to body
temperature, minimizing the need for the obligatory increase in blood flow that would
impair clearance. Thus, over the circadian sleep–waking cycle the spinal cord may be more
efficient at removing CNS waste than the brain.

In the present study using CFT with Qdots, the distribution of fluorescence around
the thoracic spinal cord and the associated spinal lymphatic nodes and nerves could be
viewed as early as 15 min post ICV infusion (see Figure 4). The rapid distribution and
clearance across the entire CNS could be explained in part by the chemistry of Qdots
and experimental conditions, i.e., mice were studied during the light phase of the light–
dark cycle and while fully awake as noted above. The rapid appearance of Qdots in the
submandibular lymph nodes corroborates an earlier study by Mathieu et al. using Qdots
with an emission spectrum of 655 and a hydrodynamic diameter ca. 19 nm, similar to that
used in our study [32]. Infusion of 3 µL of Qdots into the cisterna magna of mice following
in vivo hyperspectral imaging showed fluorescence signal in the submandibular lymph
nodes as early as 20 min with maximum fluorescence by 40 min. Interestingly, this in vivo
imaging study showed preferential clearance to the submandibular lymph nodes and not
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the deep cervical lymph nodes highlighted by other studies [33]. This finding may be
due to the size and chemistry of the Qdots that favor this route of clearance. Using near-
infrared fluorescence imaging in awake mice, Ma et al. showed rapid accumulation in the
submandibular lymph nodes peaking at 30 min and rapidly decreasing by 60–90 min [34].
This submandibular route of CSF clearance has been attributed to clearance along the optic
nerves and orbital connective tissue.

Our study shows a rapid global distribution and sustained localization of fluorescence
signal over the entire brain and spinal cord that peaks as early as 30 min post ICV infusion
but is almost eliminated by 120 min. This raises an important question that has been
addressed at the level of the brain but not fully considered across the entire spinal cord—
how does it get out? This question was addressed by Liu et al. by looking at the distribution
of fluorescent tracer infused into white and gray matter at the level of the thoracic spinal
cord in rats [35]. Tracer accumulated along the microvasculature, i.e., arterioles, capillaries,
and venules, adding the spinal cord to a body of literature that clearance of waste from
interstitial fluid is carried along paravascular/perivascular routes. Waste from these
microvascular routes can mix with the CSF in the meninges surrounding the cord and be
cleared via spinal lymphatic vessels [36–38]. Indeed, we were able to visualize putative
lymphatic nodes along the spinal cord in the cervical and thoracic sections with CFT.
Studies in humans report CSF flow along the lumbar nerves following intrathecal injection
of tracers into the subarachnoid space [39,40]. Bechter et al. reported the rate of CSF flow
to be 10 cm/h, noting the outflow from the lumbar spinal cord was remarkable [40].

Images collected with CFT across the entire CNS were not able to provide the required
resolution to clearly identify lymphatic vessels, nodes, nerves, and ganglia (see Figure 4)
associated with the spinal cord as reported in other publications using different fluorescence
microscopic procedures and histological preparations [16,41]. For example, iDISCO with
light sheet fluorescence microscopy (iDISCO/LSFM) provides exquisitely detailed 3D
reconstructions of lymphatic vessels associated with the cervical/thoracic spinal cord of
mice. However, the imaging modality is limited to samples of less than 1.5 cm3 and thereby
unable to capture the whole CNS transport and clearance as shown here [38].
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