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Abstract: Echocardiography is an integral part of the diagnosis and management of cardiovascular
disease. The use and application of artificial intelligence (AI) is a rapidly expanding field in medicine
to improve consistency and reduce interobserver variability. AI can be successfully applied to echocar-
diography in addressing variance during image acquisition and interpretation. Furthermore, AI and
machine learning can aid in the diagnosis and management of cardiovascular disease. In the realm of
echocardiography, accurate interpretation is largely dependent on the subjective knowledge of the
operator. Echocardiography is burdened by the high dependence on the level of experience of the op-
erator, to a greater extent than other imaging modalities like computed tomography, nuclear imaging,
and magnetic resonance imaging. AI technologies offer new opportunities for echocardiography to
produce accurate, automated, and more consistent interpretations. This review discusses machine
learning as a subfield within AI in relation to image interpretation and how machine learning can
improve the diagnostic performance of echocardiography. This review also explores the published
literature outlining the value of AI and its potential to improve patient care.

Keywords: echocardiography; machine learning; artificial intelligence

1. Introduction

Echocardiography is essential for the diagnosis and management of cardiac pathology.
Echocardiography is one of the only imaging modalities that allows for real-time imaging
and can detect various abnormalities. It is vital to accurately assess cardiac structure and
function in order to assist with clinical diagnosis and guide the best treatment options for
patients [1]. Despite the plethora of guidelines available for interpretation and assessment,
the quality of 2D echocardiography can be challenging and susceptible to a significant de-
gree of interobserver variability in its interpretation. The interpretation of echocardiograms
remains, in part, subjectively contingent on the experience of the echocardiographer [2].

While artificial intelligence has been around since the 1950s, in recent years there has
been a strong focus on the application of AI with respect to diagnostic imaging. Machine
learning and other AI techniques can recognize a variety of patterns within the imaging
modalities, particularly echocardiography [3]. Echocardiography involves moving frames
and can be more challenging to train AI than still images, such as those from Computed
tomography (CT) or Magnetic resonance imaging (MRI) sequences. The benefit of machine
learning models is that they can account for each pixel and its relationship with other
pixels, as well as the associated clinical metadata. Machine learning models can be trained
so that they learn what features are unique within an echocardiogram itself (Figure 1).
Additionally, this can allow the models to identify images and quantify areas of interest
or associations with a specific disease pattern. Combining clinician interpretation with
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information obtained from machine learning algorithms can refine the accuracy of echocar-
diography. By combining these two parameters, this will reduce inter- and intra-operator
variability [3]. Moreover, this can provide additional predictive information that may be
too obscure for the human eye to detect. To this end, AI may also have a potential role in
expanding the availability of clinical expertise (Figure 1).
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Figure 1. Different applications of artificial intelligence (AI) in echocardiography. Panel (A). One of
the main advantages of using echocardiography in machine learning models is that these algorithms
can combine data derived from echocardiography with clinical information and/or other test results
to develop predictive tools with high accuracy to enhance diagnosis, risk stratification, and thera-
peutic strategies. Panel (B). Artificial intelligence can use raw echocardiography images/videos to
automatically provide structural or functional measurements but also to identify disease states. This
ability is based on AI’s capacity to automatically analyze features from images that may be too subtle
to be detected by the human eye. Following training, the machine learning algorithm should be able
to recognize cardiac structural and functional patterns or specific diseases. (ROC) curves are usually
used to show how well the risk prediction models discriminate between patients with and without
a condition.
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2. Types of Machine Learning Algorithms

Machine learning is a subfield of artificial intelligence that involves the use of algo-
rithms to learn from and make predictions or decisions based on data [4]. Machine learning
algorithms can be generally categorized based on the type of feedback or supervision
the algorithm receives during the learning process, including supervised, unsupervised,
semi-supervised, and reinforcement learning, as detailed below (Table 1) [5,6].

Supervised learning algorithms are provided with labeled training data, including
input data and the corresponding output [5]. The goal of training is to develop a function
that can map the input data to the output. Examples of supervised learning tasks include
regression [7,8], which involves predicting a continuous output, and classification, which
involves predicting pre-defined classes [6].

Another category of machine learning is unsupervised learning, in which the algorithm
is not given labeled training data [5,9,10]. Instead, it must discover the underlying structure
of the data and generate corresponding outputs. Common techniques include clustering
and dimensionality reduction [6,11,12]. Unsupervised learning can be used as an exploring
technique to understand the relationships in a dataset, which can be especially useful in
problems without proper labeling [12,13].

A third category of machine learning is semi-supervised learning, which is a hybrid of
supervised and unsupervised learning [14–16]. In this case, the algorithm is given a mix
of labeled and unlabeled data, and it must learn from both types to make predictions or
decisions [16]. Semi-supervised learning can be more effective than either supervised or
unsupervised learning on its own, especially when there is a large amount of unlabeled
data available [15,16].

A fourth category of machine learning is reinforcement learning [17,18], in which the
algorithm learns through trial and error by interacting with its environment and receiving
rewards or penalties for certain actions. This type of learning is often used in robotics
and control systems, where the goal is to maximize a reward signal through a series of
actions [18].

Deep learning is a special type of machine learning that involves the use of neural
networks with multiple layers to learn complex patterns in data [5,19,20]. It has been
particularly successful in a wide range of tasks such as image recognition [20,21], speech
recognition, and natural language processing [22]. Deep learning models can learn directly
from raw data and do not require manual feature engineering [19], making them well-
suited for tasks with complex and high-dimensional data, such as medical images (e.g.,
echocardiography, chest x-ray, computed tomography, etc.) [21,23–25].

In summary, the categories of machine learning can be distinguished based on the
type of feedback the algorithm receives during the learning process. Each category has its
own unique characteristics and applications and choosing the appropriate category for a
given task is an important consideration in the design of a machine learning system.

Table 1. Types of machine learning [5,6,17–21,23–25].

Type of Machine Learning Examples

Supervised learning Logistic regression and random forests
Unsupervised learning Hierarchical clustering, tensor factorization
Reinforcement learning Robotics and control systems

Deep learning Image recognition (echocarcardiography, chest
x-ray, computed tomography).

3. Automated Assessment of Myocardial Function and Valvular Disease

One of the key aspects of echocardiography is the assessment and quantification of
left ventricular function and size. Left ventricular function carries significant prognostic
value, and as such, it is a vital component of an echocardiogram report [26]. A plethora
of techniques can be utilized for assessment of left ventricular ejection fraction (LVEF)
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including modified Simpson’s biplane, which is one of the most frequent methods used.
This requires manual tracing of the end-systolic and end-diastolic contours in the apical
four- and two-chamber views [26]. These methods and techniques for tracing biplane disc
summation are subject to significant variability and have poor correlation with the gold
standard Cardiac MR (CMR) [3,27].

The currently available AI technology allows for automated echocardiographic mea-
surements. It has been demonstrated that it can increase reproducibility and bridge the gap
between expert readers and novice readers. It also increases efficiency and workflow in
echocardiography laboratories [28].

Knackstedt et al. examined the feasibility of automated endocardial border detection
in the multicenter study utilizing a vendor-independent software package. The package
applied a machine learning algorithm for images (Auto LV, TomTec-Arena 1.2, TomTec
Imaging Systems, Unterschleissheim, Germany) [29]. The automated technique was repro-
ducible and comparable to manual tracings of endocardial contours with respect to the
calculation of 2D ejection fraction, left ventricular (LV) volumes, and global longitudinal
strain [29]. Furthermore, this correlation was preserved when the image quality was good
and moderate. However, there was a slight worsening of the correlation when the image
quality was poor. Comparably, the results of automated global longitudinal strain revealed
good agreement and correlation [29].

Furthermore, beyond global longitudinal strain (GLS) and LV volumes, a study by
Zhang et al. demonstrated that convolutional neural networks can accurately identify
echocardiographic views and provide specific measurements such as LV mass and wall
thickness. In this study, a convolution neural network model was developed for echocar-
diographic view classification. Utilizing the output from the segmentation model, chamber
dimensions were calculated according to echocardiographic guidelines [30].

3.1. Diastolic Function

Heart failure with preserved ejection fraction (HFpEF) is a rapidly growing global
health problem. Echocardiographic analysis of diastolic function can be challenging but
remains of paramount importance in the diagnosis of heart failure due to the varying clinical
presentations. However, there can be errors in classification when certain comorbidities
exist and current guideline-based algorithms can lead to an indeterminate classification,
which can hinder the diagnosis and management of these patients [31]. There is also
discrepant application of the current American Society of Echocardiograhy (ASE) 2016
diastology guidelines, even amongst experienced cardiologists. Furthermore, up to a
third of patients with a diagnosis of HFpEF may be classified as having normal diastolic
function by echocardiography [32]. Given the advancements in artificial intelligence and
the previously described use in the assessment of systolic function, AI may provide a fresh
approach to diastology by helping detect diastolic dysfunction in the one-third of patients
graded as normal by echocardiographic criteria or more uniformly applying guideline
criteria for more consistent interpretation of diastolic parameters [33].

Pandey et al. utilized Machine Learning (ML) to create a model to assess patients with
elevated filling pressures and compared their model to the ASE 2016 diastolic guidelines
grading system. Their model had a higher receiver-operating characteristic (ROC) value
(0.88 vs. 0.67; p = 0.01) compared with the ASE guideline grades in the prediction of elevated
LV filling pressures [34]. The model was also able to identify a higher risk phenotype group
who had a higher risk of hospitalization and who were more likely to respond to therapy
with spironolactone [34].

3.2. Global Longitudinal Strain

Global longitudinal strain (GLS) refers to the deformation caused by each myocardial
contraction. This provides additional information about the mechanics of the myocardium
utilizing speckle tracking. It has clinical utility for the detection of subclinical ventricular
dysfunction which may not be seen by standard two-dimensional echocardiography, with
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widespread use for the detection of chemotherapy-related cardiotoxicity. Additionally, the
pattern of abnormality on GLS may identify cardiac pathologies such as cardiac amyloid,
hypertrophic cardiomyopathy, myocardial infarction, and constriction. As a result, there
has been great interest in utilizing machine learning to assess global longitudinal strain.

Satle et al. designed a machine learning model to assess GLS in 200 patients using
traditional echocardiographic views and compared it to standard speckle-tracking software
(EchoPac GE) [35]. The model was able to automatically identify standard apical views, time
cardiac events, and measure GLS across a variety of cardiac conditions. It demonstrated
minimal differences between the two methods, with an absolute difference of 1.8% [3,35].
The method utilized was rapid, taking less than 15 s per study with AI compared to
5–10 min with the conventional method [35].

4. The Role of AI in Identifying Disease States

The rationale behind the use of AI in echocardiography to identify disease states is
based on its capacity to automatically analyze features from images and data that are
beyond human perception [36]. During routine echocardiography, a huge volume of
potentially diagnostic information could be underutilized, considering that the totality
of data generated can be hard to interpret by human experts in a short time period [37].
AI can help identify the true value of these undiscovered findings and can analyze this
information faster than human experts. Therefore, the potential clinical applications of AI
in echocardiography are rapidly increasing, including the identification of specific disease
states and processes, such as valvular heart diseases, coronary artery disease, hypertrophic
cardiomyopathy, cardiac amyloidosis, cardiomyopathies, and cardiac masses (Figure 2).
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Figure 2. Potential clinical applications of artificial intelligence in echocardiography to identify
disease states.

4.1. Valvular Heart Disease

In the field of valvular heart diseases, the focus of AI has been on the echocardio-
graphic quantification of the severity of valve disorders and the identification of high-risk
populations [36]. Using image recognition algorithms, valve disease states have been
directly detected from raw images, but images have also been integrated with clinical
information to identify new predictors of disease progression. Previous studies developed
highly accurate algorithms based on images that could establish the severity of mitral and



J. Imaging 2023, 9, 50 6 of 12

aortic valve disease, recognize the presence of prosthetic valves, and identify rheumatic
heart disease [38–40]. Further progression in this field could transform how patients with
valve diseases are evaluated and managed, as deep learning algorithms could simulate or
replace the multimodal evaluation currently required [36].

In a recent study including almost 2000 patients with aortic stenosis, AI integrated
echocardiography measurements to improve the classification of disease severity and to
identify high-risk subgroups [41]. The identification of higher-risk subjects in this study
(higher aortic valve calcium scores, larger late gadolinium enhancement, higher biomarker
levels, and greater incidences of negative clinical outcomes) has the potential to optimize
the timing of aortic valve replacements [41]. In another recent publication including a large
training (n = 1335) and validated (n = 311) cohort, a framework for the automatic screening
of echocardiographic videos for mitral and aortic disease was developed [42]. This deep
learning algorithm was able to classify echocardiographic views, detect the presence of
valve heart disease, and quantify disease severity with high accuracy (AOC > 0.88 for all left
heart valve diseases) [42]. These novel findings support the effectiveness of an automated
framework, trained on routine echocardiographic datasets, to screen, classify, and quantify
the severity of conditions that are frequent in medical practice.

4.2. Coronary Artery Disease

Cardiac imaging is key for the effective management of patients with coronary artery
disease [43]. However, regional wall motion abnormalities traditionally need to be sub-
jectively identified by operators, and interobserver and intraobserver variability can be
high [44]. To overcome this issue, an automated image processing pipeline was recently
developed to extract geometric and kinematic features from stress echocardiograms [45].
This machine learning model obtained high classification accuracy (specificity of 92.7%
and a sensitivity of 84.4%) for the identification of patients with severe coronary artery
disease [45]. These results support the use of AI for the analysis of stress echocardiograms
to provide automated classifications and to improve accuracy, inter-reader agreement, and
reader confidence. Moreover, these findings are especially important when considering
that the interpretation of stress echocardiography is widely recognized as one of the most
challenging activities for echocardiographers [46].

Another potential implementation of AI in the field of coronary artery disease could
be the differentiation between diseases that commonly present with signs and symptoms
similar to an acute coronary syndrome. In that sense, a novel cohort study developed
a real-time system for fully automated interpretation of echocardiogram videos to dif-
ferentiate TakoTsubo syndrome from acute myocardial infarction [47]. While this model
demonstrated to be more accurate than expert cardiologists in echocardiography-based
disease classification, further studies are needed before clinical application.

Lastly, AI models could potentially provide a prediction of left ventricular recovery
after coronary syndromes. One study developed a method based on the texture parameters
of echocardiograms to evaluate left ventricular function recovery one year after myocar-
dial infarction [48]. Even though the preliminary results were promising (the estimated
prediction error was lower than 30%), further studies are warranted for clinical application.

4.3. Etiology Determination of Increased Left Ventricular Wall Thickness

In cases of increased left ventricular wall thickness, conventional echocardiography
may be not sufficient for the etiological diagnoses, and more complex imaging modali-
ties are usually needed. Myocardial texture is generally difficult to assess and quantify
in routine echocardiography using only the human impression [49]. One study used
echocardiography-AI-based myocardial texture analysis to differentiate hypertrophic car-
diomyopathy, hypertensive heart disease, and uremic cardiomyopathy [50]. Hypertrophic
cardiomyopathy showed the most homogeneous myocardial texture and was significantly
different from the other diagnosis, thus supporting AI-based myocardial texture features as
a potential approach to left ventricle hypertrophy etiology differentiation.
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Another study investigated the diagnostic value of a machine learning framework
that incorporates echocardiographic data for automated discrimination of hypertrophic car-
diomyopathy from physiological hypertrophy seen in athletes [51]. This AI model showed
increased sensitivity and specificity compared with conventional parameters, suggesting
that the use of echocardiography images in machine learning algorithms can assist in the
discrimination of physiological versus pathological patterns of hypertrophic remodeling.

Cardiac amyloidosis is characterized by left ventricular hypertrophy and can mimic
hypertrophic cardiomyopathy. The impact of cardiac amyloidosis on cardiovascular imag-
ing has been widely described, but isolated echocardiography findings have not been
sufficiently specific or sensitive to be used as definitive diagnostic tools for this disease.
Recently, a video-based echocardiography model for cardiac amyloidosis using only the
apical four-chamber view demonstrated very good performance (C-statistics of 0.96) and
outperformed expert human readers in a study including five academic medical centers
across two countries [52]. Overall, the model’s superior performance was more apparent
for Transthyretin Amyloidosis (ATTR) than AL amyloidosis. A second cohort study devel-
oped an AI-guided workflow that automatically quantified left ventricle wall thickness on
echocardiography while also predicting the cause of left ventricle hypertrophy as either
hypertrophic cardiomyopathy or cardiac amyloidosis [53]. This deep learning model ac-
curately identified subtle changes in left ventricle wall geometric measurements and the
causes of hypertrophy, thus providing a more efficient clinical evaluation of this group
of patients.

In one additional study, authors developed a deep learning algorithm for the differ-
ential diagnosis of common left ventricular hypertrophy etiologies (hypertensive heart
disease, hypertrophic cardiomyopathy, and AL-cardiac amyloidosis). In this research, a
convolutional neural network long short-term memory algorithm was constructed to clas-
sify the three diagnoses using five standard echo views (parasternal long-axis, parasternal
short-axis, apical four-chamber, apical two-chamber, and apical three-chamber). The study
population included a training (n = 620), a validation (n = 155), and a test cohort (n = 155). In
the test cohort, the Area under the curve (AUC) for the AI model was 0.962 for hypertensive
heart disease, 0.982 for hypertrophic cardiomyopathy, and 0.996 for AL-cardiac amyloidosis.
The overall diagnostic accuracy was significantly higher for the deep learning algorithm
than for echocardiography specialists, therefore supporting that the use of AI can improve
the diagnostic process in patients with left ventricular hypertrophy [54].

4.4. Cardiomyopathies

AI-assisted diagnosis of cardiomyopathies can be based on ventricular segmenta-
tion, measurement of volumes, and automatic assessment of myocardial function and
motion [48,49]. One of the most significant benefits of AI in this field may be the potential
improved diagnostic performance, particularly in the early stages of some cardiomy-
opathies where no obvious structural echocardiographic signs may be detected by human
perception [49].

Automatic detection of dilated cardiomyopathy from echocardiography videos has
been proposed by previous studies. A machine learning framework based on support
vector machines was used in one study to separate normal from dilated left ventricles [55].
Even though the performance of the classification showed promising results (classification
accuracy was 78%), more information is needed before considering clinical application [55].

Deep learning algorithms were developed to distinguish specific cardiomyopathies
using echocardiography movies. One study used AI-assisted diagnosis to differentiate
cardiac sarcoidosis from healthy subjects. The diagnostic accuracy of this AI algorithm
based on echocardiography videos was not significantly different from the interpretation
of the echocardiography movies by human experts [56]. A more recent study proposed a
machine learning algorithm based on clinical and speckle-tracking echocardiography data
to distinguish between constrictive pericarditis and restrictive cardiomyopathy [57]. The
associative memory classifier used in this study showed a short learning curve, achieving
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over 90% of asymptotic accuracy with only 30% of the data trained, and achieved a diag-
nostic AOC of 89.2%, which was superior to the conventional echocardiographic variables
(early diastolic mitral annular velocity and longitudinal strain).

A recent study reported an end-to-end deep learning framework that differentiates
four common cardiovascular diseases (Atrial Septal Defect, Dilated Cardiomyopathy, Hy-
pertrophic Cardiomyopathy, and prior Myocardial Infarction) from normal subjects. In-
terestingly, this study included 1807 echocardiographic videos obtained during standard
clinical care of patients from ultrasound equipment from several different manufacturers
and models, thus broadening the application of AI-assisted echocardiography in different
medical settings. Moreover, the algorithm identified anatomic regions of interest relevant
to each diagnosis, in a similar fashion to an echocardiographer’s approach to interpretation
(interatrial septum for atrial septal defect, the left ventricular chamber for dilated cardiomy-
opathy, the interventricular septum for hypertrophic cardiomyopathy, and more variable
patterns for prior myocardial infarction). The performance of this model was compara-
ble to that of the consensus of three senior cardiologists. These results also demonstrate
how AI-assisted echocardiographic video image analysis enhances the accuracy of disease
diagnostic classification [58].

4.5. Intracardiac Masses

Correct echocardiographic diagnosis of the etiology of intracardiac masses can be
challenging but highly important, as different treatment options are possible for diverse
types of cardiac masses (thrombosis, tumors, or vegetation), and this often requires further
upstream testing with advanced imaging, such as MRI, for further characterization. AI
technology could be applied to classify and recognize intracardiac masses, and previous
research presented classification and segmentation results of intracardiac masses in echocar-
diograms using texture analysis [59]. This analysis was able to reflect some physiological
properties of analyzed heart tissues. A more recent study investigated whether trans-
esophageal echocardiography assisted with a computer-aided diagnostic algorithm was
superior to the conventional approach in diagnosing left atrial thrombi in patients with
atrial fibrillation [60]. The AI-derived algorithm significantly improved the diagnostic
accuracy for left atrium thrombi when compared with the traditional approach by experts.

5. Limitations

Despite the tremendous advantages of the use of AI in cardiology and medicine
overall, it is not without limitations. Unquestionably, AI can analyze images efficiently and
accurately, with the extra ability to save time in the diagnostic processes when compared
with human experts. However, important limitations and concerns may arise. AI “black
box” models are created directly from raw data by algorithms, meaning that humans,
even those who design them, cannot understand how variables are being combined to
make predictions. This fact implies that results of AI models are sometimes impossible to
interpret and verify from a clinical point of view [61].

Most of the studies regarding the clinical applications of AI have been retrospective
and AI algorithms still need to be validated in large multicenter studies [49]. Additionally,
some machine learning models use labeled data, thus accepting the labels provided by
scientists or by “real world” data as perfect truths, even when it is known that this approach
is not free from potential bias in the labelling process. The quality of input data is critical
for the development of robust AI models.

Additionally, there are significant legal and ethical issues pertaining to the use of AI
in medicine. AI applications regularly require large databases and registries containing
sensitive patient information, which acts as a substrate to train the AI model using machine
learning algorithms [62]. This calls into question the potential security breaches which
could result in large data leaks. As a result, this may leave sensitive patient information
compromised. Over time, patients may feel uncomfortable when providing their data for
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AI applications in the event of rising security breaches, which therefore may limit future
prospective trials.

Lastly, clinical applications of AI in echocardiography also face difficulties from a
technical point of view. In addition to the vendor-dependent setup differences, AI clinical
applications can also be affected by the frequent inability to obtain optimal image quality
or accurate views [61]. In those cases, the accuracy of the models could be affected,
or nonstructural/suboptimal echocardiographic data would need careful preprocessing
by operators.

6. Conclusions

Advances in AI applications in cardiology and echocardiography are rapidly expand-
ing, with the potential to revolutionize patient care. AI algorithms may aid in the detection,
classification, diagnosis, and prognostication of cardiac abnormalities. They offer the
promise of enhanced workflow efficiency, improved reproducibility, and higher diagnostic
accuracy, and may represent a cost-effective tool to address the upsurge in the demand for
cardiac imaging. There are many obstacles that need to be overcome to permit AI to be used
in clinical practice, including the paucity of data pertaining to AI and clinical outcomes.
Further research is needed in the form of prospective studies to determine their accuracy
and effectiveness and how AI can affect clinical outcomes.
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