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Abstract: We compared the image quality and quantification parameters through bayesian penal-
ized likelihood reconstruction algorithm (Q.Clear) and ordered subset expectation maximization
(OSEM) algorithm for 2-[18F]FDG-PET/CT scans performed for response monitoring in patients with
metastatic breast cancer in prospective setting. We included 37 metastatic breast cancer patients
diagnosed and monitored with 2-[18F]FDG-PET/CT at Odense University Hospital (Denmark). A
total of 100 scans were analyzed blinded toward Q.Clear and OSEM reconstruction algorithms re-
garding image quality parameters (noise, sharpness, contrast, diagnostic confidence, artefacts, and
blotchy appearance) using a five-point scale. The hottest lesion was selected in scans with measurable
disease, considering the same volume of interest in both reconstruction methods. SULpeak (g/mL)
and SUVmax (g/mL) were compared for the same hottest lesion. There was no significant difference
regarding noise, diagnostic confidence, and artefacts within reconstruction methods; Q.Clear had
significantly better sharpness (p < 0.001) and contrast (p = 0.001) than the OSEM reconstruction, while
the OSEM reconstruction had significantly less blotchy appearance compared with Q.Clear recon-
struction (p < 0.001). Quantitative analysis on 75/100 scans indicated that Q.Clear reconstruction had
significantly higher SULpeak (5.33 ± 2.8 vs. 4.85 ± 2.5, p < 0.001) and SUVmax (8.27 ± 4.8 vs. 6.90 ± 3.8,
p < 0.001) compared with OSEM reconstruction. In conclusion, Q.Clear reconstruction revealed better
sharpness, better contrast, higher SUVmax, and higher SULpeak, while OSEM reconstruction had less
blotchy appearance.

Keywords: reconstruction algorithm; FDG-PET/CT; metastatic breast cancer; Q.Clear

1. Introduction

Positron emission tomography with integrated computed tomography (PET/CT) is
broadly used in the initial diagnosis, staging, and therapeutic response evaluation of nu-
merous malignant diseases [1]. There are continuous technical improvements in PET/CT
scanners, leading to improved imaging quality from developed hardware specifications
and reconstruction algorithms [2–4]. Novel PET/CT scanners based on digital silicon
photomultiplier (SiPM) technology have become the new standard in PET by replacing the
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older generation of PET/CT systems based on analog photomultiplier tubes. This leads
to a considerable improvement in image contrast and noise level [5,6], which could pro-
vide better diagnostic accuracy and overall image quality, compared with analog PET/CT
scanners [3,4,7,8]. A new reconstruction algorithm employing the block sequential regular-
ized expectation maximization (BSREM) technique under the commercial name Q.Clear
has been introduced. This method allows for fully convergent iterative reconstruction,
resulting in higher image contrast while suppressing noise compared with ordered subset
expectation maximization (OSEM) [9]. Advanced reconstruction methods aim to improve
not only the quality of imaging but also quantitative measures [7], as using the Q.Clear
algorithm potentially increases the maximal standardized uptake (SUVmax) values within
metastatic lesions compared with OSEM reconstruction [10].

2-deoxy-2-[18F]fluoro-D-glucose PET/CT (2-[18F]FDG-PET/CT) has increasingly been
introduced in metastatic breast cancer based on excellent sensitivity (over 95%) with regard
to detection of distant metastases [11]. Response evaluation using 2-[18F]FDG-PET/CT
may improve clinical management and survival [12–14]. Quantitative PET/CT is becoming
increasingly important for more objective evaluations of tumor response [7], with the PET
Response Criteria in Solid Tumors (PERCIST) being suggested as feasible and valuable
criteria in breast cancer [15–17].

Prior studies have indicated Q.Clear reconstruction to be superior in overall image
quality, improved contrast recovery and noise suppression, better lesion detectability, and
more accurate quantification compared with OSEM reconstruction [18–20]. Literature
comparing the two reconstruction methods in a clinical setting is lacking and is warranted
before introducing the Q.Clear algorithm as a reconstruction method for semi-quantitative
PERCIST analyses in clinical practice [21]. Thus, we aimed to compare the two reconstruc-
tion algorithms (Q.Clear vs. OSEM) regarding the overall image quality and quantification
parameters in a clinical setting of patients being response-evaluated during treatment for
metastatic breast cancer.

2. Materials and Methods
2.1. Patients

A prospective comparative study was conducted at the Department of Nuclear Medicine
at Odense University Hospital (Denmark), following the STROBE guideline [22]. Patients in
the present study represent a subpopulation of a patient group analyzed in a larger prospective
study of response monitoring in metastatic breast cancer (Clinical.Trials.gov: NCT03358589).
Women referred to the Department of Oncology (Odense University Hospital) with ad-
vanced breast cancer between 2018 (September) and 2020 (September) and examined
initially with 2-[18F]FDG-PET/CT were considered eligible. The Danish Ethics Commit-
tee approved the study protocol (S-20170019), and all subjects signed written informed
consent. The research was conducted in accordance with the Declaration of Helsinki, and
all the scans were performed following the guideline of European Association of Nuclear
Medicine (EANM) [23].

Inclusion criteria for NCT03358589 were biopsy-verified relapsed or de novo metastatic
breast cancer (biopsy verification of primary tumor and disseminated disease at baseline
scan), imaging performed on PET/CT scanners with digital technology, and available
clinico-histopathological data. Exclusion criteria were age less than 18 years and patients
in treatment for other invasive cancers [24].

The baseline scans were performed prior to the treatment initiation; patients were
monitored on the same PET/CT scanner and were scanned according to the standardization
criteria suggested by PERCIST [17]. Patients were scanned with 9–12 weeks of imaging
intervals according to Danish clinical guidelines. The baseline, first follow-up, and second
follow-up scans were included in the present analysis. Scans were analyzed with both
Q.Clear and OSEM reconstruction algorithms by the same group of experienced nuclear
medicine physicians comparing overall image quality parameters, maximum standardized
uptake value (SUVmax), and peak lean body mass corrected SUV (SULpeak).
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2.2. PET/CT Imaging Protocol

PET/CT data were acquired on GE Discovery MI 4-ring PET/CT (GE Healthcare,
Waukesha, WI, USA) scanners with a field of view of 25 cm. PET scans were performed
60 min after injection of 4 mBq/kg FDG (min 200 MBq, max 400 MBq) using a stan-
dard whole-body (head-to-thigh) acquisition protocol, with slice overlaps of 40% and
acquisition time of 1.5 min per bed position. PET datasets were reconstructed using time-of-
flight 3D OSEM (GE VPFX, 4 iterations, 17 subsets) with point-spread-function correction
(GE SharpIR) and using Q.Clear (β = 250) in matrix sizes of 256 × 256 (pixel size 2.74 mm).
Corrections for attenuation, scatter, randoms, deadtime, and normalization were performed
inside the iterative loop. Attenuation correction was based on a dedicated helical CT at-
tenuation correction scan acquired after the PET scan using a standard CT protocol with a
scan field of view of 70 cm. Data were reconstructed with a standard filter into trans-axial
slices with a field of view of 50 cm, matrix size of 512 × 512 (pixel size 0.98 mm), and a slice
thickness of 3.75 mm [23].

2.3. Qualitative Image Analysis

A clarification session was held by a senior nuclear medicine specialist (M.H.V.), en-
suring the use of the same approach by the interpreters before analyzing the image quality.
Three experienced nuclear medicine physicians analyzed the image quality parameters on
both Q.Clear and OSEM reconstruction algorithms. One physician evaluated each scan
regarding the qualitative image analyses. The same physician performed the analyses for
two reconstruction methods at the same time on two separate screens (side-by-side) regard-
ing six image quality parameters, while they were blinded to the reconstruction methods.
Using a five-point scale (1 = worst and 5 = best, Table 1), the following quality parameters
were compared between the reconstruction methods: noise, sharpness, contrast, diagnostic
confidence, artefacts, and blotchy appearance [25]. The parameters were evaluated on a
subjective scale, while the physicians were experienced enough to be good at assessing
noise of the scans, as well as separating the parameters with overlap such as noise, contrast,
and sharpness. The interpreters evaluated the scans independently of one another, and
they had knowledge of the clinical indication of PET/CT.

Table 1. Grading scale for subjective image quality evaluation.

Parameters 5 4 3 2 1

Noise Minimal or no
noise No significant noise Noisy diagnostic Significant noise

(affects diagnosis)
High-level noise
(nondiagnostic)

Sharpness Excellent
sharpness Good sharpness Moderate

sharpness
Poor sharpness
(bad visibility)

Zero visibility
(nondiagnostic)

Contrast Excellent contrast Very good contrast Good contrast
Poor contrast

(unsatisfactory
visualization)

Image similar to use
of no contrast

(nondiagnostic)

Diagnostic
confidence

Completely
confidence High confidence Good confidence Poor confidence

No diagnostic
confidence

(unacceptable)

Artefacts No artefacts Insignificant
artefacts Minor artefacts

Major artefacts
(diagnosis still

possible)

Artefacts affecting
diagnostic

information

Blotchy
appearance Absent Mild Moderate

Significant
(diagnosis still

possible)

Intense (affecting
diagnosis)

2.4. Quantitative Image Analysis

PET/CT scans were evaluated for quantitative measurements. The hottest lesion ac-
cording to one-lesion PERCIST was selected in scans with measurable disease, considering
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the same image number, considering the same volume of interest (VOI), and using the
PETVCAR automatic software (AW version 3.2, GE Healthcare, Chicago, IL, USA) in both
reconstruction methods. SULpeak was defined as the highest possible mean value of a 1 cm3

spherical in the VOI positioned within the metastatic lesions. Patients were checked for
serum glucose level, ensuring that it was in an acceptable range (less than 200 mg/dL)
according to the PERCIST criteria [17]. SUVmax was defined as the maximum uptake in
the VOI that reflects the maximum tissue concentration of FDG uptake in the tumor. Body
weight and height were used for SUVmax normalization [26]. SULpeak (g/mL) and SUVmax
(g/mL) were calculated and compared for the same hottest lesion. Quantification of FDG
uptake was performed on scans with measurable disease at baseline and for compara-
ble scans during follow-up (i.e., SULpeak and SUVmax were not measured for scans with
complete metabolic response).

2.5. Outcome Measure and Statistical Analysis

Continuous data were presented using the median (range) and mean ± standard
deviation. Frequencies and respective percentages were given for categorical variables. A
t-test was used to compare the six parameters regarding the image quality and quantitative
parameters (SULpeak and SUVmax) of the hottest lesion between the two algorithms. The
statistical level of significance was set to 0.05. All statistical analyses were conducted with
STATA/IC (version 16.1, StataCorp, College Station, USA).

3. Results

A total of 37 patients with 37 baseline scans and 63 follow-up scans (including first
and second follow-up scans) were available for the analysis. A study flowchart is seen in
Figure 1. The clinical and histopathological information of included patients is summarized
in Table 2. More detailed information of included patients is available in a previous
publication [24].
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Table 2. Clinicopathological characteristics of included patients with metastatic breast cancer.

Characteristics Results *

Age (years) 71.9 (45.9–91.1)

Primary cancer treatment

Postoperative adjuvant treatment 24 (64.7)

Adjuvant and neoadjuvant treatments 3 (8.1)

No treatment/unknown 10 (27.0)

History of radiotherapy 24 (64.7)

Primary disseminated cancer 12 (32.4)

Histopathology

Adenocarcinoma 28 (75.7)

Invasive ductal carcinoma 5 (13.5)

Invasive lobular carcinoma 4 (10.8)

Positive estrogen receptor 32 (86.5)

Negative Herceptin receptor 34 (91.9)

Origin of biopsy **

Bone 13 (35.1)

Liver 7 (18.9)

Lung 1 (2.7)

Lymph nodes 6 (16.2)

Breast 10 (27.0)

First-line treatment

Endocrine therapy 5 (13.5)

Endocrine therapy + CDK4/6 inhibitor 24 (64.9)

Chemotherapy 4 (10.8)

Others 4 (10.8)
* Data are shown as median (range) and frequency (%). ** In some cases of de novo cancer, we used information
from the initial breast biopsy in case of absence of biopsy from metastases.

Comparing the parameters related to the quality of images, Q.Clear had significantly
better sharpness (mean scores of 4.65 vs. 3.91) and contrast (mean scores of 4.23 vs. 4.10)
compared with the OSEM reconstruction (p < 0.001 and p = 0.001, respectively), while there
was no significant difference regarding noise, diagnostic confidence, and artefacts when
comparing the two reconstruction methods. The OSEM reconstruction had less blotchy
appearance (4.57 vs. 4.34) compared with Q.Clear reconstruction (p < 0.001). Scores related
to imaging quality parameters are summarized in Table 3. An example of 2-[18F]FDG-
PET/CT, comparing the sharpness and contrast using OSEM and Q.Clear reconstructions,
respectively, is shown in Figure 2.

Table 3. Scores of image quality parameters within the OSEM and Q.Clear reconstruction methods.

Characteristics OSEM * Q.Clear * Mean Difference (95% CI) p-Value

Noise 4.41 ± 0.55 4.42 ± 0.54 0.01 (−0.16–0.14) 0.88

Sharpness 3.91 ± 0.49 4.65 ± 0.59 −0.74 (−0.83–−0.65) <0.001

Contrast 4.1 ± 0.66 4.23 ± 0.74 −0.13 (−0.22–−0.04) 0.001

Diagnostic
confidence 4.52 ± 0.70 4.52 ± 0.69 0 (−0.28–0.28) 0.99

Artifacts 4.37 ± 0.68 4.38 ± 0.66 −0.01 (−0.3–0.01) 0.32

Blotchy appearance 4.57 ± 0.57 4.34 ± 0.59 0.23 (0.12–0.34) <0.001
OSEM: ordered subset expectation maximization; CI: confidence interval; Q.Clear: refers to the reconstruc-
tion algorithm using block sequential regularized expectation maximization (BSREM). * Image quality scores
(mean ± standard deviation) are reported using a five-scale questionnaire (1 = worst and 5 = best).
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Figure 2. 2-[18F]FDG-PET/CT scan for a patient with metastatic breast cancer, illustrating the
sharpness and contrast via OSEM and Q.Clear reconstructions ((A,B) OSEM reconstruction vs.
(C,D) Q.Clear reconstruction).

A total of 31/37 (84%) patients had measurable disease at baseline (Figure 1), for whom
quantitative analysis was performed on the hottest lesion according to the PERCIST criteria.
At follow-up scans, quantitative analyses were performed in 44/63 (70%) scans being
comparable according to the PERCIST criteria. Q.Clear reconstruction had significantly
higher SULpeak (5.33 ± 2.8 vs. 4.85 ± 2.5, p < 0.001) and SUVmax (8.27 ± 4.8 vs. 6.90 ± 3.8,
p < 0.001) compared with the OSEM reconstruction (Table 4). When comparing the two
reconstruction methods for change in SULpeak and SUVmax between the two following
scans, there was no significant difference in the median SULpeak changes, while the median
SUVmax changes were significantly higher for Q.Clear reconstruction.

Table 4. Quantitative analysis within the hottest lesion via OSEM and Q.Clear reconstruction methods.

Characteristics OSEM * Q.Clear * Mean Difference (95% CI) p-Value

SULpeak

Baseline scans 5.82 (1.4–12.12) 6.84 (1.61–12.95) −0.6 (−0.82–−0.39) <0.001

Follow-up scans 3.01 (1.65–11.01) 3.47 (1.79–12.82) −0.39 (−0.52–−0.26) 0.001

All scans 4.3 (1.4–12.12) 4.63 (1.61–12.95) −0.47 (−0.59–−0.36) <0.001

Change to 1st follow-up 1.94 (0.07–5.71) 1.95 (0–5.86) 0.04 (−0.24–0.33) 0.75

Change to 2nd follow-up 0.53 (0.02–4) 0.8 (0.05–4.16) 0.12 (−0.23–0.26) 0.1
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Table 4. Cont.

Characteristics OSEM * Q.Clear * Mean Difference (95% CI) p-Value

SUVmax

Baseline scans 8.12 (2.0–18.42) 9.46 (2.37–24.86) −1.49 (−1.97–1.01) <0.001

Follow-up scans 4.61 (2.22–18.42) 5.48 (2.47–24.86) −1.25 (−1.73–−0.77) 0.005

All scans 6.16 (2.0–18.42) 7.15 (2.37–24.86) −1.35 (−1.69–−1.01) <0.001

Change to 1st follow-up 2.34 (0–8.3) 2.39 (0–9.5) 0.45 (0.10–0.79) 0.01

Change to 2nd follow-up 1.1 (0.05–4.92) 1.5 (0.26–11.2) 0.89 (0.20–1.58) 0.04

OSEM: ordered subset expectation maximization; CI: confidence interval; Q.Clear: refers to the reconstruction al-
gorithm using block sequential regularized expectation maximization (BSREM); SUVmax: maximum standardized
uptake value; SULpeak: peak lean body mass corrected SUV. * Data are shown as the median (range).

4. Discussion

A prospective comparison of OSEM and Q.Clear reconstruction algorithms was con-
ducted on image quality parameters and quantitative analysis on 2-[18F]FDG-PET/CT scans
of patients with metastatic breast cancer. The Q.Clear reconstruction showed significantly
improved sharpness and contrast compared with an OSEM reconstruction, while OSEM
reconstruction had a less “blotchy appearance” compared with the Q.Clear reconstruction,
which may be a consequence of reduced noise in OSEM reconstruction. Registered SULpeak
and SUVmax values with Q.Clear reconstruction were significantly higher than with OSEM
reconstruction. Changes in SULpeak values over the follow-up period stayed independent
of the reconstruction method, while the changes related to SUVmax were significantly higher
in Q.Clear reconstruction.

According to our study, images performed with Q.Clear reconstruction had better
contrast and sharpness than images from OSEM reconstruction, which is in line with the
results of other studies indicating a superiority for the reconstruction methods based on
the BSREM technique over the OSEM reconstruction [27,28]. A more “blotchy appearance”
on Q.Clear images could be a consequence of a missing Gaussian filter, while using a
4 mm Gaussian filter regularly in OSEM reconstruction smoothed the blotchy appearance
and resulted in a better image quality [28]. We found no difference in the diagnostic
confidence between the two methods, indicating that any of the reconstruction methods
may be preferred for clinical application.

Similar studies have also reported better overall image quality by Q.Clear compared
with OSEM in [68Ga]Ga-DOTANOC PET/CT scans [29], 18F-fluciclovine PET/CT scans [20],
and [68Ga]Ga-PSMA PET/CT scans [30]. This indicates that the improved image quality
provided by Q.Clear is not exclusively dedicated to 2-[18F]FDG-PET/CT scans. Further-
more, a few studies have reported that Q.Clear had better image quality than OSEM in
PET/MR scans [2,18,31]. The reason could be the same as PET/CT scans, presuming the
inability of OSEM reconstruction to achieve full convergence due to increased noise and
the iteration times. However, more studies including phantom data are needed to ensure
the preferred β value of reconstructions ensuring the optimal image quality [20,29,30]. The
reason for the better image quality with the Q.Clear algorithm could be that Q.Clear reduces
the noise by resembling an adaptive filter with adjustable filter width and improving the
contrast by increasing quantification, effectively creating the effect of better image quality.
This is in line with our results, indicating improved contrast on Q.Clear reconstructions,
which allows reaching full convergence without the excessive typical noise of OSEM [29].
This effectively limits the number of iterations of the OSEM algorithm to avoid excessive
noise within the image, resulting in a lack of convergence and decreasing image contrast [2].
On the other hand, Q.Clear can achieve full convergence, resulting in higher resolution and
more precise quantitative measurements due to the noise regularization [19,32].

There was a significant difference between the absolute values of SUVmax and SULpeak
within the OSEM and Q.Clear reconstruction algorithms, which is in line with the results of
previous studies indicating that Q.Clear allows a significant increase in quantitative parame-
ters and better reflects the true uptake [9,20]. Therefore, Q.Clear has the potential to provide
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an improved quantification accuracy, which could be beneficial for research purposes, as
well as using quantification-based analyses (e.g., PERCIST analysis) in clinical practice.

Lundeberg et al. compared the two reconstruction modalities on lung cancer patients
in a clinical setting and reached the similar results indicating that the Q.Clear reconstruction
provides a higher SUVmax for suspected lymph node metastases compared to the OSEM
reconstruction. However, a higher values of SUVmax did not lead to an improvement in
detection of metastatic lesions [33]. In addition, our results showed that SULpeak changes
over the follow-up period were not associated with the reconstruction algorithm, as op-
posed to SUVmax, for which changes were higher for the Q.Clear than OSEM reconstruction,
indicating SULpeak to be robust for PERCIST analysis across reconstruction algorithms.
This complies with the proposed upward bias for SUVmax using a single pixel, as the size
of a single voxel may differ considerably among PET/CT scans resulting in different noise
levels in the metric followed by various filtering, while PERCIST suggests using a larger
region of interest by SULpeak [17]. Q.Clear also showed a clinically relevant recovery coeffi-
cient for different sphere diameters (10–37 mm), which is beneficial for lesion detection and
is more compatible with the quantification of lesions according to PERCIST criteria [34].

It has also been reported that PERCIST has high applicability [16], has a higher level of
overall interrater agreement and reliability compared with a qualitative assessment [35,36],
and is superior in the detection of new lesions or unequivocal progression in nontarget le-
sions [37]. Therefore, clinical implementation of the PERCIST assessment may improve the
prognostic stratification [15,37,38] and provide a standardized approach independent of in-
terpreters and reconstruction methods. The difference in the absolute value of SULpeak may
result in dissimilar response categories according to the PERCIST criteria and eventually
affect the patients’ treatment plan. Hence, a clinical indication of the Q.Clear reconstruc-
tion algorithm may lead to a more precise treatment monitoring by PET/CT through an
improved quantification accuracy [39]. However, the clinical indication of the Q.Clear
algorithm in the treatment evaluation of lymphoma patients is reported to be uncertain,
which could be explained by the incompatibility with the current guidelines [10]. There-
fore, compatibility of Q.Clear with existing guidelines is required before introducing the
algorithm into clinical practice to have a significant impact on patient management.

A strength of this study was the inclusion of clinical follow-up of metastatic pa-
tients representing daily clinical practice. Furthermore, the PERCIST criteria were used
for response monitoring and quantification of FDG uptake with strict compliance with
standardization criteria such as the PERCIST guidelines [17]. Accordingly, patients were
followed on the same type of scanner, eliminating scanner variation effects, while compar-
ing quantitative measures between follow-up scans. The interpreters for imaging quality
parameters were blinded to the reconstruction methods, and the same physician evalu-
ated both reconstruction methods at the same time (side-by-side). As a limitation, we
only performed a visual comparison in terms of overall image quality, which could be
biased by the personal preferences of the interpreter physician, as only one operator an-
alyzed each scan. Furthermore, the number and size of the detected lesions for the two
reconstruction methods were not measured, which could have strengthened the results of
quantitative analyses.

Future multicenter studies on a larger number of scans evaluated by several expe-
rienced nuclear medicine physicians could verify the results of the current study. The
lesion-based accuracy for the two reconstruction methods and the potential effect on re-
sponse categories remain unanswered. Furthermore, the determination of the optimal
penalization factor (β-value) for clinical use and phantom measurements related to Q.Clear
should be considered in future studies.

5. Conclusions

Q.Clear reconstruction showed a significantly better sharpness and contrast com-
pared with OSEM reconstruction, while the blotchy appearance was less evident in OSEM
reconstruction. There was no difference in diagnostic confidence between the two recon-
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struction algorithms, making them equally perfect for daily clinical practice. The Q.Clear
algorithm had higher quantitative measures with higher SUVmax and SULpeak than OSEM
reconstruction. SULpeak changes at follow-up scans stayed independent of the reconstruc-
tion methods, indicating SULpeak to be robust for PERCIST analyses regardless of the
reconstruction method.
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