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Abstract: Millions of people are affected by retinal abnormalities worldwide. Early detection and
treatment of these abnormalities could arrest further progression, saving multitudes from avoidable
blindness. Manual disease detection is time-consuming, tedious and lacks repeatability. There
have been efforts to automate ocular disease detection, riding on the successes of the application of
Deep Convolutional Neural Networks (DCNNs) and vision transformers (ViTs) for Computer-Aided
Diagnosis (CAD). These models have performed well, however, there remain challenges owing
to the complex nature of retinal lesions. This work reviews the most common retinal pathologies,
provides an overview of prevalent imaging modalities and presents a critical evaluation of current
deep-learning research for the detection and grading of glaucoma, diabetic retinopathy, Age-Related
Macular Degeneration and multiple retinal diseases. The work concluded that CAD, through deep
learning, will increasingly be vital as an assistive technology. As future work, there is a need to
explore the potential impact of using ensemble CNN architectures in multiclass, multilabel tasks.
Efforts should also be expended on the improvement of model explainability to win the trust of
clinicians and patients.

Keywords: macula degeneration; convolutional neural networks; diabetic retinopathy; hypertensive
retinopathy; deep learning; glaucoma; retinal disease classification

1. Introduction

A compromise of human vision quality adversely affects one’s productivity and
general quality of life. Millions of people are affected by retinal abnormalities worldwide
and, if not diagnosed and treated early, may result in vision loss [1,2]. Early detection and
effective treatment of retinal diseases could arrest the further progression of the diseases
and possibly save multitudes from losing vision. Retinal diseases include Choroidal
Neovascularization (CNV), Age-Related Macular Degeneration (AMD), Diabetic Macula
Edema (DME), glaucoma, Drusen and diabetic retinopathy (DR) [3]. Tamim et al. [4]
predicted that the number of people with glaucoma will peak to 111.8 million people by
2040. According to Chelaramani et al. in [5] in 2015, 415 million people were suffering
from diabetes, of which 145 million had DR. Chelaramani et al. [5] further stated that AMD
affects 6.2 million people globally.

Experienced ophthalmologists make use of retinal images captured by either fundus
cameras or Optical Coherence Tomography (OCT) to detect the presence or absence of
each of the retinal diseases. This manual process, as observed by Qummar et al. in [6], is
time-consuming, tedious and subjective, making the reproducibility of such diagnoses hard
to achieve. Access to medical specialists and infrastructure is limited in underdeveloped
countries, especially in the countryside. This creates room for the automatic detection
of retinal diseases, provided the detection accuracies match or surpass human experts’
accuracy and are acceptable to the Food and Drug Associations (FDAs) of host countries.
Automatic detection and grading of retinal diseases could also come in handy as assistive
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technology to alleviate the burden of the few overstretched ophthalmologists around
the globe.

Computer-Aided Diagnostic (CAD) systems have been proposed lately, mostly to
diagnose DR and AMD, taking advantage of the advances in Machine Learning (ML) and
digital image processing. As observed by Jain et al. in [1], these Machine Learning-inspired
medical diagnosis methods, examples of which are Decision Trees in [7] and the Gaussian
Mixture Model in [8], managed to reach the accuracy levels of human experts, but their
drawback was that they relied heavily on understanding the disease-specific features and
took considerable effort to be able to extract, analyze and engineer the disease features.

Recently, deep learning (DL), a branch of ML, has been used with promising results
for detecting specific retinal diseases [9]. There have been some considerable advances
in the application of DL in the detection and grading of individual ocular disorders, for
example, DR, AMD, DME and others, through the use of classification methods or through
segmentation or a combination of the two techniques [10]. The success of transformer
networks in natural language processing have led to attempts to apply them to computer
vision, in general, and in retinal disease detection, in particular, with studies by [11–13]
making significant contributions to model performance and model explainability.

Retinal image analysis involves the processing of images captured by fundus cameras,
fluorescein angiography or Optical Coherence Tomography (OCT). As suggested by Gour
and Khanna in [14], Fundoscopy and OCT imaging have emerged as the most popular
non-invasive methods for capturing retinal morphological changes, such as optic disc,
blood vessels, macula and fovea. Analysis of these images helps detect diseases such as DR,
glaucoma, AMD, myopia, hypertension and cataract. There is a plethora of published work
focusing on the detection of single diseases, notably DR, glaucoma and AMD [6,15]. As
observed in [15–19], Deep CNNs and other Deep Neural Networks have been successfully
used to develop Artificial Intelligence (AI) systems for the purposes of automated CAD,
leveraging large clinical databases.

Contributions: Presented in this work is a comprehensive, in-depth review of recently
published research aimed at improving the efficacy of DL techniques in the detection of
retinal pathologies. Common ocular pathologies that are the focus of discussion in this work
are reviewed in Section 2, while Section 3 outlines retinal imaging modalities commonly
adopted for the detection of the same pathologies. Section 4 reviews the databases that have
been commonly used for retinal disease classification purposes. A critical review of the
retinal disease detection research is presented in Sections 5 and 6, providing a discussion
on the challenges inherent in DL approaches. Section 7 presents the final conclusion.

Scope of the article: Studies that involve the detection of the most prevalent ocular
disorders, such as DR, DME, AMD and glaucoma, were considered. The focus was to
analyze research that made attempts to apply DL architectures to detect present anomalies
among the rest. Only DL methods, namely CNNs and ViTs, and their variants were
considered for analysis. Traditional image analysis techniques, segmentation techniques
and feature-based methods inspired by ordinary ML methods were not part of this study.
Search queries were performed on Google Scholar and PubMed with keywords such as
deep learning, Classification, Ophthalmology, Medical Image Datasets, deep learning in
Ophthalmology, Fundoscopy, and OCT Imaging.

2. Common Ocular Disorders

This section examines the morphology and anatomy of the retina and discusses the
most prevalent retinal abnormalities, including DR, DME, AMD, CNV, glaucoma and
cardiovascular disease. The section proceeds to discuss the imaging modalities commonly
used for detecting and grading retinal diseases. DR, AMD and glaucoma were the abnor-
malities of interest in this study.
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2.1. Structure of the Eye

Easily identifiable components of the human eye include the sclera, cornea, iris and
pupil. The interior surface consists of the retina, macular, fovea, optic disc and posterior
pole, as depicted in Figure 1. When humans look at an object, light flushes the cornea,
which partially focuses the image before it is passed to the pupil and then the lens. The
lens further focuses the image. The image is then passed through the vitreous before being
focused on a portion of the central retina named the macula [20]. This specialized portion
of the retina allows humans to see fine detail for activities such as reading, writing and
distinguishing colors. The other part of the retina, the peripheral retina, is responsible for
side vision. The retina, a layered tissue in the eye, has the responsibility of converting light
incident on it into a neural signal passed on to the brain for further analysis [21]. This
makes the retina an extension of the brain. Blood supply to the retina is through a network
of blood vessels. Diseases such as diabetes have the tendency to damage blood vessels of
the retina and in the process, disrupt its operation. Figure 2 shows the image of a normal
retina taken by a fundus camera.

Figure 1. The Structure of the Eye.

Figure 2. Normal Retina.
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2.2. Systemic Diseases Manifesting in the Retina

A plethora of diseases emanating from the eyes, the brain or the cardiovascular
system manifest themselves through the retina. This section discusses the most common
pathologies that can be studied through retinal imaging.

2.2.1. Diabetic Retinopathy (DR)

A patient recording a plasma glucose above 7.0 mmol/L is diagnosed to be having
diabetic mellitus, according to the World Health Organization [22]. The presence of ele-
vated blood glucose, called hyperglycemia, could potentially damage blood vessels and
nerve cells, leading to damage to the kidneys, heart, brain and eyes. Complications on
the retina caused by damage to the retinal vessel walls are called diabetic retinopathy
(DR). Abramoff et al. in [21] suggests that DR is one of the leading causes of vision loss
among adults.

Damages to the retinal vessel walls due to hyperglycemia can lead to either of two
conditions, ischemia or diabetic macula edema (DME). Ischemia is when new blood ves-
sels emerge, and because they are weak, they may subsequently rupture, causing serious
hemorrhages, which cause vision obstruction or even permanent loss of sight [21]. This con-
dition, which is also called Neovascularization, leads to proliferative diabetic retinopathy.
When the blood–retinal barrier breaks down, this leads to fluid leakage, which could affect
central vision. This condition is called DME and can also be associated with the destruction
of photoreceptors. DME is the major cause of vision impairment in people living with
diabetes [23]. Figure 3 shows a fundus picture of the retina exhibiting DME, with evidence
of hemorrhages, exudates and microaneurysms. Figure 4 is a depiction of the creation of
new blood vessels leading to proliferative diabetic retinopathy.

Figure 3. Retina with DME (Solid arrows: Microaneurysms, Dashed arrows: Exudates).

2.2.2. Age-Related Macular Degeneration (AMD)

AMD is the main source of loss of vision, accounting for 54 percent of all legally
blind Americans [21]. AMD, prevalent in people of age 50 and above, is caused by the
deterioration of the macula due to age. The estimated annual cost burden to the USA
economy as a result of AMD is USD 30 billion [21]. The formation of Drusen (tiny yellow
pieces of fatty protein) under the retina usually precedes AMD. The major categories
of AMD are dry and wet AMD [20]. Vision impairment or loss is usually gradual with
dry AMD. Wet AMD, also known as Choroidal Neovascularisation (CNV), is the most
sight-threatening type of AMD. A retinal image exhibiting AMD is shown in Figure 5.
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Figure 4. Proliferative Diabetic Retinopathy.

Figure 5. Age-Related Macular Degeneration.

2.2.3. Glaucoma

Glaucoma, which is primarily a neuropathy and not retinopathy, is caused by destruc-
tion of the optic nerve. This, in turn, results in visual field loss. Glaucoma damages the
ganglion cells and axons of the retina [21]. This happens when the eye fluid, called the
aqueous humor, does not circulate properly in the front end of the eye. Optic disc cupping
is the hallmark of glaucoma. It is the visual exposition of the optical nerve head (ONH)
anatomy. Glaucoma is the third leading cause of visual loss, according to [21].

2.2.4. Cardiovascular Disease

The presence of cardiovascular disease becomes evident in the retina, mostly through
hypertension and atherosclerosis. These usually result in a decrease in the Artery to Vein
(A/V) ratio as arteries thin out and veins widen. The changes to the A/V ratio usually lead
to an increased risk of myocardial infarction and stroke [24,25].

2.2.5. Hypertensive Retinopathy

This is a condition affecting retinal blood vessels. Elevated blood pressure can lead to
damage of the retinal vessels. This could lead to swelling, bleeding and damage of the optic
nerve. Blurred vision, headaches and double vision are among the signs a patient suffers
from hypertensive retinopathy. This pathology, as reported by [26], is highly progressive,
affects men more than women and impacts 4–18 percent of the general population.
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2.2.6. Cataracts

Cataracts are a common retinal disease characterized by the clouding of the eye lens,
leading to a deterioration in vision. It is a leading cause of visual impairment and avoidable
blindness worldwide, particularly in older adults. The development of cataracts is associated
with aging, as well as other factors, such as smoking and exposure to ultraviolet light [27].

Cataracts are typically diagnosed through a comprehensive eye exam, which may
include visual acuity testing, tonometry to measure intraocular pressure and a dilated eye
exam to examine the lens and other structures of the eye. Treatment for cataracts typically
involves surgery to remove the cloudy lens and replace it with an artificial lens implant [28].

There are various types of cataracts, including age-related cataracts, congenital cataracts,
traumatic cataracts and secondary cataracts associated with other medical conditions or
medications. The classification of cataracts is based on the location and appearance of the
clouding within the lens.

2.2.7. Retinal Detachment

Retinal detachment is a serious ocular condition in which the retina becomes separated
from its normal position. This detachment disrupts the blood supply to the retina, leading
to vision loss and potential blindness if left untreated. The main symptoms of retinal
detachment include sudden onset of floaters, flashes of light and a curtain-like shadow
over the field of vision [29].

The causes of retinal detachment include aging, trauma to the eye and underlying
medical conditions such as diabetes. Treatment for retinal detachment typically involves
surgery, such as scleral buckling or vitrectomy, to reattach the retina and restore vision [30].

2.2.8. Macular Edema

Macular edema is a medical condition characterized by the accumulation of fluid in
the macula, which is the central part of the retina responsible for sharp, clear vision. It can
occur as a result of various conditions, including diabetic retinopathy, Age-Related Macular
Degeneration and retinal vein occlusion. Macular edema can cause blurry or distorted
vision, and if left untreated, it can lead to permanent vision loss.

Treatment for macular edema may include medication, such as corticosteroids or
anti-VEGF drugs, laser therapy or surgery, depending on the underlying cause and severity
of the condition [31,32].

2.2.9. Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is a disease that affects premature infants and is
characterized by abnormal blood vessel growth in the retina, which can lead to vision loss
or blindness if left untreated. It is a leading cause of blindness in children worldwide.

The development of ROP is associated with premature birth and low birth weight, as
well as other factors, such as oxygen therapy and certain medical conditions. ROP is typically
diagnosed through a comprehensive eye exam that may include dilated fundus examination
and imaging tests, such as retinal photography or Optical Coherence Tomography.

Treatment for ROP depends on the severity of the disease and may include monitoring
the disease, laser therapy or surgery. Early detection and treatment are important to prevent
vision loss [33,34].

2.2.10. Refractive Errors

Refractive errors are a group of common vision disorders that affect the ability of the
eye to focus on objects at different distances. These conditions are caused by abnormal-
ities in the shape or size of the eye or the curvature of the cornea, which prevent light
from being properly focused on the retina. The most common types of refractive errors
include myopia (nearsightedness), hyperopia (farsightedness), astigmatism and presbyopia
(age-related farsightedness).
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Myopia is a condition where distant objects appear blurry while near objects are seen
clearly. Hyperopia is the opposite, with distant objects appearing clearer than near objects.
Astigmatism occurs when the cornea or lens has an irregular shape, causing blurred vision
at all distances. Presbyopia is a condition that affects people over the age of 40, and it
results in the gradual loss of the eye’s ability to focus on close objects.

Refractive errors can be diagnosed through a comprehensive eye exam that includes
a visual acuity test and a refraction test. Treatment typically involves corrective lenses,
such as glasses or contact lenses, or refractive surgery, such as Laser-Assisted in Situ
Keratomileusis (LASIK) [35,36].

2.2.11. Summary

Several systemic and eye diseases become manifested in the retina. This section out-
lines the different manifestations of retinal maladies that include DR, glaucoma and AMD.
It was observed in [25] that some cardiovascular diseases can also manifest themselves in
the retina. Early detection and treatment of these ocular disorders prevent complications,
some of which can be severe, including visual impairment or permanent blindness.

3. Overview of Retinal Imaging Modalities

Having come through ages of constant research, retinal imaging has become the
pillar of clinical management and care of patients with retinal and systemic diseases as
observed by [21]. Persistent research on retinal imaging has led to improved visualization
quality of retinal pathophysiology, which has resulted in early and more accurate diagnosis
and better management of several chorio-retinal abnormalities. Fundus photography,
Optical Coherence Tomography (OCT) and their variants have become the most prevalent
retinal imaging modalities [23]. This section presents an overview of these two modalities,
highlighting their suitability in various retinal disease diagnostic operations.

3.1. Fundus Imaging

Fundus imaging, as suggested by [23] is where a two-dimensional (2-D) representation
of three-dimensional retinal tissues cast onto the imaging surface is attained using reflected
light. The image intensities on the 2-D projection are proportional to the amount of light
reflected from the retinal tissue. Variants of fundus imaging include scanning laser oph-
thalmoscopy, adaptive optics SLO, color fundus photography and hyperspectral imaging,
among others. This section highlights some modalities that fall under fundus imaging.

3.1.1. Fundus Autofluorescence

Fundus Autofluorescence (FAF) allows for the mapping of the retinal pigment epithe-
lium and the photoreceptor layer in vivo [37]. Molecules are brought to glow through the
excitation of light within a certain range of wavelengths. There is no need to inject any
intravenous agent into the eye since the intrinsic molecules are already present. This imag-
ing modality has proven to be useful in comprehending pathophysiological mechanisms,
predictive marker identification and diagnosis. FAF finds applications in imaging toxic
retinopathies, AMD and retinal tumors, among other abnormalities.

3.1.2. Adaptive Optic Scanning Laser Ophthalmoscopy (AO-SLO)

The AO subsystem in AO-SLO consists of a liquid crystal spacial light modulator. It
is this technology that gives the AO subsystem the ocular optics aberration compensation
capabilities, which result in high image quality. A 780 nm laser diode is used as the light source
for wavefront sensing. The light source for the SLO subsystem is an 840 nm super-luminescent
diode (SLD). This modality produces images of high resolution through the use of custom
software to control the image acquisition process. One big advantage of the AO-SLO is its
capability to scan wider portions of the retina better than other modalities [38,39].
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3.1.3. Fundus Fluorescein Angiography (FFA)

FFA is a standard ground-truth imaging modality that has been applied in the di-
agnosis of many retinal diseases, including AMD and DR. High-resolution FFA images
help detect small lesions, such as microaneurysms (MAs), early in their development. This
could possibly help avert vision-threatening complications [40]. There are two challenges
associated with FFA. Its invasive nature leads to an inherent small risk of anaphylaxis.
Moreover, practical application constraints may lead to delays in FFA being performed.
These delays may lead to delays in treatment, potentially affecting patient visual outcomes.

3.1.4. Indocyanine Green Angiography (ICGA)

With ICGA, indocyanine green contrast dye is injected into the eye. This is followed
by ICGA using a laser light source and a charge-coupled camera. ICGA provides real-time
perfusion assessment with great resolutions and diagnostic sensitivities. Its intravenous
nature tends to lower the patient safety profile, and as a result, this modality’s use becomes
limited as clinicians tend to prefer non-invasive modalities [41].

3.1.5. Limitations of Fundus Imaging

Fundoscopy presents a few challenges. The passage of the externally illuminated
light into the retina and the retina-reflected light are limited by the small size of the
pupil and the tiny diameter of the iris. The external light incident on the retina and the
reflected light follow separate paths to avoid the elimination of image contrast. This makes
the technical setup of fundus imaging technically challenging, making the equipment
expensive and requiring operators of fairly high experience and expertise [23]. There have
been improvements in fundus imaging that have significantly made it more accessible over
the last few years. These improvements include a shift to digital imaging from film-based
imaging. This makes fundus imaging more user-friendly to allow even non-ophthalmic
photographers through the introduction of more standardized imaging protocols [21].
Fundoscopy is predominantly used for large-scale, population-based detection of DR,
glaucoma and AMD [23].

3.2. Optical Coherence Tomography (OCT)

OCT, a non-invasive imaging technique used for acquiring 3-D volumetric images,
has become the modality of choice for the examination of the retinal structure [42]. It
uses waves to capture the cross-section image of the retina. Using OCT, the eye specialist
can view each of the retina’s several layers, allowing them to estimate their thickness.
OCT attempts to estimate the depth at which an individual backscatter started from by
computing its flight time. Light flight times are longer for deeper tissue backscatters than
those coming from shallower tissues. Interferometry is employed to measure the light flight
times, owing to the minute flight time differences resulting from the small total thickness
of the retina (between 300–500 µm). As noted by [21] there are three main OCT methods
developed to attain A-scan for the required depth range of the tissue.

3.2.1. Swept Source Encoded Frequency OCT

With this technique, the reference arm is not moved, but the light source is quickly
modulated about its center wavelength. To estimate the correlogram for each center
wavelength, a photo center is used. Application of the Fourier transform helps establish
the depth of tissue scatters at the imaged spot.

3.2.2. Time Domain OCT

Time domain OCT involves moving the reference arm mechanically to distinct points.
This results in different reference arm light flight time delays. The number of A-scans
per second is limited to a few thousand with time domain OCT, owing to the limitations
inherent with mechanical arm movements.
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3.2.3. Spectrum Domain OCT

The operation of this modality is similar to the one for swept source OCT, except that
it uses a broadband light source. With this modality, diffraction and a CMOS linear sensor
are used to spectrally decompose the interferogram. Fourier transform is still applied in
this technique to establish the depth of each scatter signal.

3.3. Modalities Performance Comparisons

Adaptive Optics scanning ophthalmoscopy (AO-SLO) is an imaging modality based
on Adaptive Optics (AO) Scanning and has been growing in popularity over the years [43].
By reducing the effects of wavelength distortions, AO is able to improve the performance of
an optical system. Table 1 provides a comparison of the performance of the AO-SLO against
commonly used imaging modalities: fundus fluorescein angiography (FFA), indocyanine
green angiography (ICGA), OCT and fundus autofluorescence (FAF). The major strength
of the AO-SLO over the conventional modalities is its ability to scan wider portions of
the retina.

Table 1. Comparison of AO-SLO with FAF, FFA, ICGA and OCT.

Method Invasive
(Y/N)

Transverse
Resolution Field of View Where Method Is Applied

AO-SLO [39] N 2.5 µm 1.5◦ Observing cones, rods, capillary, vessel and nerve fiber layer

FAF [44] N 20 µm 50◦ CNV, macular edema, retinal pseudodrusen

FFA [45] Y 20 µm 50◦ Aneurysms, tumor, edema, vitreous inflammation

ICGA [46] Y 20 µm 50◦ Exudative AMD, inflammation, edema, tumor, coroidal
vasculopathy

OCT [47] N 20 µm 45◦ Vitreoretinal interface disorders, AMD, DR

Abbreviations: OCT—Optical Coherence Tomography; ICGA—Indocyanine Green Angiography; FFA—Fluorescein
Angiography; FAF—Fundus Autofluorescence; AO-SLO—Adaptive Optics Scanning Laser Ophthalmoscopy.

3.4. Summary

Ophthalmic imaging has seen explosive growth in recent years. Current retinal imag-
ing techniques have contributed immensely to our appreciation of the pathophysiology
and treatment of retinal disorders. In this section, two main ocular imaging modalities,
fundus imaging and OCT imaging, were discussed. As the retinal image quality improves,
the sensitivity and specificity of ocular malady detection and/or grading improves. The
improved capabilities of digital technology to acquire, edit, archive and transmit retinal im-
ages and continued collaborations in this area are set to further improve retinal imaging for
the benefit of patient management. Areas of continuous improvement with retinal imaging
include portable, functional imaging, cost-effective fundus imaging, longer wavelength
OCT imaging and adaptive optics.

4. A Review of Retinal Image Databases

This section outlines the major public and private image databases that have been used
to evaluate the performance of algorithms in the literature recently. These databases have
a defined gold standard, making them suitable for evaluating algorithm performance. The
databases include retinal images with DR, AMD, glaucoma, hemorrhages, neoplasms and
hypertension, among others. The public and private databases are discussed as follows.

4.1. Public Databases

The increasing need to validate or train models has driven research groups to create
their own databases and make them public [48]. The DRIVE and STARE open-access
databases are two of the most widely used retinal databases, owing to the superior resolu-
tions of their fundus images [49].
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4.1.1. DRIVE (Digital Retinal Image for Vessel Extraction)

This database was created to enable blood vessel segmentation comparative studies.
DRIVE has 40 images from retinal photos of 400 human subjects with ages ranging from
25 to 90 years. This JPEG format database has 33 images without DR symptoms and
7 images exhibiting mild DR symptoms [50]. The DRIVE website facilitates researchers to
share the performances of their vessel segmentation algorithms.

4.1.2. STARE (Structured Analysis of the Retina)

STARE has 400 retinal images, 40 of which contain manually segmented blood vessels
and artery/vein labeling. All images are labeled by specialists. The image data were
compressed into PPM format [51]. Algorithms for optic nerve head (ONH) identification
are also included. A total of 44 pathologies were detected and associated with 13 differ-
ent abnormalities.

4.1.3. ARIA (Automatic Retinal Image Analysis)

The ARIA database is a JPEG format database containing 450 images. The images
are categorized into three categories: a healthy control group, another with AMD and
a third group with DR. Two expert ophthalmologists were responsible for annotating the
images [50].

4.1.4. CHASEDB (Child Heart Health Study in England Database)

This database contains 28 manually segmented monochrome ground-truth images
with a resolution of 1280 × 960 pixels. Retinal imaging was performed for more than
1000 children to establish the link between ocular vessel tortuosity and cardiovascular dis-
ease risk factors [48]. Image segmentation was performed by expert ophthalmologists [52].

4.1.5. IMAGERET

This is a public database consisting of two parts: DIARETBD0 and DIARETDB1,
both of which are saved in the PNG format. DIARETBD0 has 130 images (20 normal and
110 exhibiting DR signs). DIARETBD1 has 5 DR-infested images and 84 images showing
signs of mild proliferative DR [53].

4.1.6. MESSIDOR

Methods to Evaluate Segmentation and Indexing techniques in the field of retinal
ophthalmology within the Scope of Diabetic Retinopathy (MESSIDOR) is a TIFF format
database originally constructed to evaluate and compare segmentation algorithms designed
to identify retinal lesions. It is a fully labeled database depicting the DR grade for each of
the 1200 color fundus images [54]. It is one of the largest available databases (1200 images)
for retinal images created to facilitate the development of CAD systems for DR.

4.1.7. MESSIDOR-2

This database of 1200 high-quality images contains 21.7% referable diabetic retinopathy
images, 10.6% vision-threatening diabetic retinopathy images with the rest of the images
being normal. The database contains two images per subject and single images for each
eye. Subjects passed through three centers during image capture. They were dilated at
the first two centers, but when they get to the third center, they were not dilated. The
mean age of the subjects was 57.6, with 57% being male [55]. The images were graded by
three board-certified specialists according to the International Clinical Diabetic Retinopathy
Severity scale (ICDR, 0–4).

4.1.8. e-Ophtha

This database, designed for diabetic retinopathy screening, was funded by the French
Research agency. The images were manually annotated by a specialist ophthalmologist and
confirmed by another. The database contains two subsets-e-Ophtha MA (Microneurisms)
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and e-Ophtha EX (Exudates). The total number of images in this dataset is 434, all gradable.
A total of 203 patients participated in this project, funded by a French hospital [56].

4.1.9. DIARET DB1

DIARET DB1 is an 89-color fundus image standard database used to benchmark
diabetic retinopathy detection algorithms. Of the 89 images, 84 contain at least mild non-
proliferative signs of DR. Several specialists were involved in the annotation of the images.
Each of the specialists attached a degree of confidence to their annotations. The degrees of
confidence are averaged to reach the agreed grade of an image. The remaining five images
have sight-threatening abnormalities. The images were captured from Kuopio University
Hospital using several cameras [57].

4.1.10. APTOS

The Asia Pacific Tele Ophthalmology Society (APTOS) dataset is a Kaggle dataset of
3662 images of different sizes that was captured with different cameras. It was constructed
by the Aravind Eye Hospital in India. In this database, only the ground truth of the training
set is publicly available. The images are classified into the five ICDR classifications. The
dataset is highly imbalanced, with most of the images (1805) being normal. Only 183 images
have severe Non-Proliferative Diabetic Retinopathy (NPDR) [58]. Because APTOS images
were taken in a real-world environment, they exhibit variations due to different camera
settings across centers.

4.1.11. AREDS

Age-Related Eye Disease Study (AREDS) was a longitudinal study of up to 12 years.
In this study, many patients’ AMD conditions were followed up for this period. The study
included Geographic Antrophy cases, neovascular AMD cases and control patients. Left-
and right-side retinal images of each patient were taken for the duration of the study.
The images were graded for AMD severity by different eye specialists. During the study,
some patients who had earlier exhibited mild AMD symptoms progressed to more severe
AMD stages. This database has training, validation and test sets of 86,770, 21,867 and
12,019 images, respectively [59].

4.1.12. ORIGA

Online Retinal fundus image dataset for Glaucoma Analysis and research (ORIGA)
was developed for segmenting the optic cup and the optic disc by the Singapore Malay
eye Research Institute (SERI). It is a publicly available database with 650 retinal images for
providing the means for benchmarking segmentation and classification algorithms. It has
168 glaucomatous and 482 healthy images, each of resolution 3072 × 2048 pixels [60]. The
images were collected between 2004 and 2007 and annotated by well-trained professionals.
The subjects in this study were aged between 40 and 80 years [61].

4.1.13. ACRIMA

The ACRIMA dataset was a culmination of a project founded by the Ministerio de
Economica y Campettividad of Spain, a unit dedicated to the development of algorithms for
ocular disease detection. The database has 705 images—396 glaucomatous and 309 normal.
The images were captured using the Topcon TRC retinal camera from previously dilated
left and right eyes. Image annotation was performed by two glaucoma experts with 8 years
of experience [62].

4.1.14. RIM-ONE

Retinal Image Database for Optic Nerve Evaluation (RIM-ONE) consists of 159 fundus
images, each with a resolution of 2144 × 1424 pixels. All images have optic cup and optic
disc annotations. Of the 159 images, 74 are glaucomatous and 85 are normal. Images from
the three RIM-ONE versions were taken from three Spanish hospitals [63].
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4.1.15. LAG DB

The Large-Scale Attention Glaucoma (LAG) database, a collection of 11,760 images
from 10,147 subjects, was created by the Chinese Glaucoma Study Alliance and the Beijing
Tongren Hospital. Of all the images, 4878 exhibit positive glaucoma, while the remaining
6882 are normal [64]. The images have an average resolution of 1977 × 2594 pixels. Apart
from the fundus image and the diagnosis label, the database also consists of an attention
region to help localize the abnormalities. Several ophthalmologists with varying expertise
were involved in the annotation process.

4.1.16. OCT2017

The OCT2017 database is a high-quality TIFF-format public database created to pro-
vide a benchmark for algorithms that seek to detect retinal diseases in a multiclass problem.
The database is labeled to distinguish between four disease stages—Normal, Choroidal
Neovascularisation (CNV), Diabetic Macula Edema (DME) and Drusen [65].

4.1.17. SERI DB

This 32-volume spectral domain OCT image database was created by the Singapore
Eye Research Institute for Diabetic Macula Edema (DME) classification. It has equal
volumes (16 each) for the DME and normal classes. Each volume comprises 128 B-scans
with a resolution of 1024 × 512 pixels [66].

4.1.18. ODIR Dataset

Ocular Disease Intelligence Recognition (ODIR) is a structured dataset of 5000 patients
from the Peking University National Institute of Health Sciences. It consists of multiple
label annotations for eight retinal diseases, namely Diabetes, glaucoma, Cataract, AMD, Hy-
pertension, Myopi, normal and others. The images are saved in different sizes in the JPEG
format. The distribution of the image class labels are as follows [67]: Normal: 3098 Diabetes:
1406 Glaucoma: 224 Cataract: 265 AMD: 293 Hypertension: 107 Pathological Myopia: 242
Other diseases: 791 Expert ophthalmologists were involved in the annotation exercise.

4.1.19. OIA-ODIR

Shanggong Medical Technology Co. Ltd. assembled a real-life dataset of 5000 subjects
in China [67]. The dataset is a large-scale multilabel disease detection database with
10,000 images captured by different cameras from different hospitals and regions of China.
The images have various sizes [68].

4.1.20. ROC (Retinopathy Online Challenge)

ROC has three different image types with varying resolutions because the photos were
taken by various camera systems in different settings. The images were split into a training
set and a test set, each with 50 images [69].

4.1.21. IOSTAR

IOSTAR has 30 retinal photos taken by a laser fundus camera and edited by the same
two specialists who were involved with the annotation of the DRIVE database. Optic disc
and the A/V ratio annotations are also included in the IOSTAR database. The images have
a resolution of 1024 × 1024 pixels [70].

4.1.22. REVIEW (Retinal Vessel Image Set for Estimation of Widths)

Al-Diri in [71] describes REVIEW as a compound directory of four datasets of reso-
lution higher than the DRIVE dataset. The four datasets are: High-Resolution Image Set,
Vascular Disease Image Set, Central Light Reflex Image Set and the Kick Point Image Set.
This database was designed for blood vessel segmentation model evaluation. It contains
16 images where 193 vessel segments showing an assortment of blood vessel types and



J. Imaging 2023, 9, 84 13 of 38

pathologies were manually identified. There are 5066 manually marked profiles in this
image set [48].

4.1.23. DR HAGIS Database

This database was created as part of a DR screening campaign in the United Kingdom
(UK). Images have different resolutions as they were taken at different centers using differ-
ent fundus cameras. The database provides a gold standard on which the performances of
DR algorithms can be compared [72].

4.1.24. VAMPIRE (Vascular Assessment and Measurement Platform for Images of the Retina)

This database is a culmination of international corporations between five clinical
centers and four image-processing research groups. VAMPIRE was captured by a fundus
camera and software designed for the identification of retinal vessels.

4.1.25. KAGGLE Database

The KAGGLE database, provided by EyePACS, contains 88,702 high-quality images
taken by different cameras in different conditions. Of these, 35,126 form the training set,
while 53,576 form the test set. Some KAGGLE images do contain noise (do have dots,
circles, squares, etc.). DR detection algorithms should still be able to detect DR even under
noisy conditions [73].

4.1.26. RET-TORT

RET-TORT is a public database that contains 60 retinal images from patients with hy-
pertension and healthy patients, including information relating to their estimated tortuosity.
More details on RET-TORT are obtainable in [74].

4.2. Private Databases

Researchers have also used private databases to evaluate algorithm performance in
the retinal disease detection space. To preserve the privacy of subjects and adhere to
ethical provisions, the images are anonymized before they are used for model design and
performance evaluation. In some cases, some private databases can be availed upon request
to the authors and medical establishments who own the data or sponsored the research.
We discuss, in this section, a few private datasets that have been used in this space.

4.2.1. The RetCam3 Dataset

This is a private database created as a by-product of a premature infant screening
program. A total of 80 images of resolution 640 × 480 pixels were captured by a RetCam3
camera [75].

4.2.2. SCES

The Singapore Chinese Eye Study Ophthalmology (SCES) dataset was created in
a screening study and has 1676 images, with 1630 normal and 46 glaucomatous images. This
private database has images with resolutions of 3888 × 2592 and 3504 × 2336 pixels [76].

4.2.3. TROPIC (Telemedicine for ROP in Calgary)

TROPIC contains retinal images taken from 41 premature infants. There are 130 images
in total taken from a RetCam130 wide-angle camera with a resolution of 640 × 480 pixels.
Of the 130 images, 110 were subsequently picked at random. A total of 30 images had no
diagnosis, 30 had first-degree retinopathy of prematurity (ROP), 30 had second-degree
ROP and 20 had third-degree ROP [77].

Table 2 is a summary of the retinal image databases discussed above, providing the
number of images, resolutions, camera used and the purpose for which the databases
were created.
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Table 2. Summary of Retinal Image Databases.

Database Image
Count Resolution Camera Field of

View Purpose

DRIVE [50] 40 768 × 564 Canon CR5 45◦ Vessel Seg.

STARE [51] 81 700 × 605 TopCon TRV-50 35◦ Vessel Seg

ARIA [50] 450 768 × 576 Zeiss FF450+ 50◦ ONH boundary
Seg.

CHASEDB [52] 28 1280 × 960 Nidek NM-200-D 30◦ Vessel Seg.

IMAGERET [53] 219 1500 × 1152 50◦ DR grading

MESSIDOR [54] 1200 1440 × 960 TopCon TRC 45◦ DR Grading

MESSIDOR-2 [55] 1200 Various res Topcon TRC NWC 45◦ DR Grading

e-Ophtha [56] 434 Various res Various 45◦ DR Screening

DIARET DB1 [57] 89 Various res Various 50◦ DR Grading

APTOS [58] 3662 Various res Various DR Grading

AREDS [59] 120,656 Various res Carl Zeiss AG 30◦ AMD

ORIGA [60] 650 3072 × 2048 Disc & Cup Seg.

SCES [76] 1676 3888 × 2592 Glaucoma
detection

ACRIMA [62] 705 2048 × 1536 Topcon TRC 35◦ Glaucoma
detection

RIM-ONE [63] 159 2144 × 1424 Kowa WX 3D 20◦ (hor),
27◦ (vert)

Glaucoma
detection

LAG [64] 11,760 1977 × 2594 Various Glaucoma
detection

OCT2017 [65] 84,484 Multidisease
detection

SERI DB [66] 4096 1024 × 512 Carl Zeiss Meditec
Inc. DME classification

ODIR [78] 6426 Various res Various Multidisease
detection

OIA-ODIR [68] 10,000 Various res Various Multidisease
detection

ROC [69] 100 768 × 576 TopCon NW100 45◦ MA detection

IOSTAR [70] 30 1024 × 1024 SLO 45◦ Vessel Seg.

Kaggle [73] 88,702 Various res Various Various DR Grading

REVIEW [71] 16 3584 × 2438
(HRIS) Canon 60 UV 60◦ (HRIS) Vessel Seg.

DR HAGIS [72] 39 Various res Various Various Multidisease
detection

TROPIC [77] 130 640 × 480 RetCam130 130◦ ROP

RetCam3 [75] 80 640 × 480 RetCam3 120◦ ROP

4.3. Summary

This section presented the public and private retinal databases commonly used for
the detection and grading of retinal diseases. The STARE and the DRIVE public databases
are two of the most widely used retinal databases, owing to the superior resolutions of
their images [49]. Privately owned databases can be accessed upon request to the owners.
Algorithms can be trained from scratch, from pre-trained networks or on ensembles of
CNN networks. Model performance depends on the number of images, pre-processing
tasks, image quality and on the task at hand [79].
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5. Review of Retinal Disease Detection Research

A critical review of the application of DL for classification of retinal pathologies is
presented in this section. Case studies were drawn from diabetic retinopathy (DR), Age-
Related Macular Degeneration (AMD), glaucoma and multiretinal disease applications.
Segmentation methods were not part of this review.

5.1. Diabetic Retinopathy Classification

What makes DR the most important target for automatic detection is its persistence on
the leaderboard of sight-threatening diseases among working-age adults. In [55], authors
proposed IDx-DR X2.1, a DL device based on AlexNet, to detect DR severity. The purpose
was to compare the performance of this device against a previously designed non-DL-
based method called the Iowa detection Program (IDP). The authors used five DR levels;
moderate, severe, non-proliferative DR, proliferative diabetic retinopathy (PDR) and/or
Macular Edema (ME). The DL-based method outperformed the non-DL-based method.
The model did not miss any cases of severe NPDR or ME. Specificity was higher than
the specificity of IDP. The advantage of this study is that it was evaluated on a publicly
available database. This has a positive bearing on the reproducibility of the method. The
limitation of this method is on the dataset used, Messidor-2, which contains high-quality
images not typical of those obtained in a clinical screening setup, and besides, the dataset
only contains only one image per eye. This limits the area of the retina coverage. In [80],
a four-class DR classification model was trained on 70,000 labeled retinal images to detect 0
(no DR), 1 (mild DR), 2 (moderate NPDR), 3 (severe NPDR) and 4 (PDR). Each patient was
represented by two images, one for each eye. The model was evaluated on 10,000 fundus
images from the Kaggle DR detection challenge dataset. This model outperformed state-
of-the-art models. A significant contribution was the inclusion of images from both eyes,
which meant a larger area of the retina was covered. In [81], entropy images were used in
place of fundus photos, and they demonstrated that feature maps were produced more
efficiently. A model proposed in [82] assists with explainability by incorporating heatmaps
which highlight areas of lesion concentration. They utilized heatmaps to indicate the
pixels in the image were involved in predictions at the level of the image. Apart from DR
classification, this model detects lesions as well. The two-task method outperformed both
other lesion-detection methods and other heatmap-generating algorithms for ConvNets.
This method could be used to discover new biomarkers in image data, owing to its non-
reliance on manual segmentation for the detection of relevant lesions. The model makes an
attempt to address the lack of CNN model interpretability, which leads to a lack of trust
with patients and clinicians. One important feature of this technique was that it managed to
detect, with great precision, lesions in blurry images captured by hand-held retinography.
This provides hope for DR screening with lower resolution images taken using cellular
phones, making CAD of DR more accessible to poorer communities. One limitation of this
method is the inferior database ground truth of 1 grade per image. This leaves room for
grader subjectivity.

Two deep CNNs, Combined Kernels with Multiple losses Network (CKMLNet) and
VGGNet with extra kernels (VNXK) were developed by [83]. The two networks are im-
provements of GoogleNet and VGGNet, respectively. They also introduced a color space,
LGI, for DR grading via CNNs. The improved networks were evaluated on the Messidor
and EyePac datasets and the best ROC performances of 0.891 and 0.887 were achieved
for the CKMLNet/LGI and the VNXK/LGI networks, respectively. These performances
compared well with those of the state-of-the-art methods in [84–86]. A five-class classi-
fication model to detect and grade DR into categories ranging from 0 to 4, 0 being no
DR and 4 being proliferative DR was proposed in [87]. Authors used transfer learning
on VGG-16 and VGG-19 and evaluated their method on the EyePacs database. The best
performance they achieved was accuracy of 0.820, a sensitivity of 0.800 and a specificity of
0.8200. Classes 3 and 4 performed poorly owing to class imbalances not favoring them. The
augmentation approach adopted by the authors could have caused this poor performance.
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Prior to augmentation, they grouped classes 1 to 4 and labeled this class 1 and the no DR
class as class 0. They then proceeded with augmentation on the new classes and, in the
process, missed correcting the limited counts for classes 3 and 4.

EfficientNet-B3 was employed as the backbone model by [88] to develop DR detection
models on the APTOS dataset of 38,788 annotated images. The model obtained a Kappa
score of 0.935 on the test set, and the authors concluded that their method performed at
the level of experts. A major advantage and contribution of this work was the provision
of a more structured way of uniformly scaling the three dimensions of the EfficientNet
network—width, depth and resolution. This was an improvement from the arbitrary
scaling of the same by other authors. The drawback of this method is its complexity, and
besides, the evaluation metric that the authors used (Kappa) is a departure from the ones
employed by most models (accuracy, sensitivity, specificity), making it difficult to compare
the performance with other models.

Authors in [89] used the DenseNet-121 model to design a DR detection method
and evaluated it on the same database as in [88], APTOS. Their research achieved good
performance with an accuracy of 0.949, a sensitivity of 0.926 and a specificity of 0.971.
A weighted Kappa measure of 0.88 was achieved for this model, a performance inferior to
the EfficientNet model in [88] on the same dataset. The authors claimed their method had
higher efficacy compared to some state-of-the-art models, which they did not mention, and
besides, the basis of comparison where different datasets were used for evaluation may
not be justifiable. This makes it hard to believe the authors’ conclusions. Jang et al. in [90]
developed a DR classification system using a CNN model built on the Caffe framework
and evaluated it using the Kaggle database, achieving accuracy of 0.757 on the binary
classification problem (DR, no DR). The authors concluded that their model can be used
for DR screening programs for large DR populations. The researchers, however, used
only accuracy as their evaluation metric and claimed their model performs comparably
with Pratt et al. in [91], who quoted performance accuracy alongside specificity and
sensitivity as evaluation metrics. Their claim is unjustifiable because accuracy alone results
in misleading outcomes in highly imbalanced datasets like the one they used for evaluation.
Furthermore, the authors reduced the DR classification problem to a binary classification
problem, which is a departure from the typical five-class classification problem as stipulated
in the International DR Disease Severity scale [92,93].

A two-stage Deep CNN for lesion detection and grading DR severity was proposed
in [94]. This multiclass model detected microaneurysms, hemorrhage and exudates with
recall values of 0.7029, 0.8426 and 0.9079 with a maximum area under the curve value
of 0.9590. A DR analysis method based on two-stage deep CNNs was proposed by [94].
The model was evaluated on a re-annotated Kaggle fundus image dataset and obtained
a maximum accuracy of 0.973, specificity of 0.898 and sensitivity of 0.987. Whilst this model
performed fairly well, it was designed to detect a limited number of lesions, and it would be
useful to observe its performance on an expanded range of lesions. AttenNet, a multiclass
deep Attention-Based Retinal Disease Classifier using the Densenet-169 as its backbone, was
developed by [95]. It pays attention to critical areas that contain abnormalities, a feature that
helps visualize the lesions and possibly helps interpret the outcomes of the model. AttenNet
achieved a four-class accuracy of 97.4%, a binary class sensitivity of 100%, with a specificity
of 100%. The major contribution of this work was its high performance and an attempt to
provide model explainability. Its limitation, though, is its potential computational expense
owing to the complexity of the DenseNet-169.

Using the Kaggle dataset of 35,126 color fundus images, authors in [6] proposed
a DL ensemble for predicting the five DR classes; normal, mild, moderate, severe and
PDR. They used a collection of five CNN architectures: Resnet50, Inception V3, Xception,
Dense 121 and Dense 169. The authors claimed that the model detected all DR stages
and performed better than state-of-the-art methods on the same Kaggle dataset and yet,
evidently, with a sensitivity of 0.515, specificity of 0.867 and accuracy of 0.808, this method
trails behind a few models, such as the DCNN in [94] and the CKML in [83], evaluated
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on the same dataset. Jiang et al. in [96] presented an explainable ensemble DL model for
DR disease classification. They integrated several deep learning algorithms (Inception V3,
Resnet152 and Inception-Resnet-V2) and used the Adaboost algorithm to minimize bias
in each individual model. The work provides weighted class activation maps (CAMs) to
explain the results of the DR detection. CAMs illustrate the suspected position of the lesions.
This research performed better than single deep learning models, producing an AUC of
0.946 for the integrated model against an AUC of 0.943 for the best-performing individual
model. The Adaboost algorithm helped the models reach a global minimum. Prior to model
development, the images underwent augmentation to increase their diversity. The dataset
they used is private, and this poses potential accessibility challenges in the event of the
need to confirm their results. In [97], the authors proposed ensemble classification methods
combined with vessel segmentation for the detection of diabetic retinopathy. While the
paper proposes an innovative and promising method for retinal disease prediction using
deep learning techniques, the authors did not provide more detail on the datasets used
for testing the proposed method, as well as the performance metrics used to evaluate
its effectiveness. This makes it difficult to evaluate the proposed methods against other
methods in the literature. The paper provides a comprehensive overview of the method
used; however, the deep learning methods used in the ensemble were not mentioned,
making it difficult for readers to understand how the models were combined and how
each model affected the final performance metrics. A novel method that combines a Deep
Convolutional Neural Network and vessel segmentation was presented in [98] for the early
detection of proliferative diabetic retinopathy. The proposed method achieved an area
under the curve (AUC) performance of 0.969, an accuracy of 94.1%, a specificity of 95.7%
and a sensitivity of 92.7% on the MESSIDOR-2 database. These performances mean the
proposed method can effectively distinguish between a diseased retina and a non-diseased
retina. The small size of the dataset, lack of interpretability analysis and the fact that authors
did not make an attempt to compare their method against other segmentation methods
serve as the limitations to the proposed method. It would be hard to believe this method is
generalizable, and besides, clinicians may find it hard to entrust patients’ lives on a black
box method whose decision-making process remains opaque.

In [99], ViT-DR, a vision transformer-based model for DR detection on fundus images,
is presented. The model was evaluated on four publicly available datasets: MESSIODOR-2,
e-ophtha, APTOS and IDRiD. AUC scores of 0.956, 0.975, 0.946 and 0.924 were obtained for
the datasets, respectively. The authors provide a detailed analysis of the model’s attention
maps, which highlights the areas of the fundus images that the model is focusing on
during the classification process. This way, users will have an idea of how decisions are
made. The model is a promising approach for diabetic retinopathy grading using fundus
images, but further research is needed to evaluate its generalizability to other tasks and
its computational efficiency. A lesion-aware vision transformer network was proposed
for DR detection in [100]. The authors’ approach leverages lesion awareness to improve
the model’s performance in detecting and grading diabetic retinopathy. The model was
evaluated on the MESSIDOR-2, e-ophtha and APTOS databases, achieving AUC scores of
0.956, 0.977 and 0.947, respectively. The performance of this network was quite comparable
to the ViT proposed in [99], including the provision for model explainability. This model’s
effectiveness for the detection of different types of lesions in clinical settings is yet to
be established. A vision transformer that incorporates a residual module was presented
in [101] for the classification of DR severity. The model achieved an accuracy of 0.893 on
the MESSIDOR-2 dataset and an AUC of 0.981 on the APTOS dataset. The inconsistency
in reporting performances, for example, the absence of AUC score for the MESSIDOR-2
dataset and accuracy for the APTOS dataset, is concerning. It is not possible to draw
comparisons with other models, and besides, the performance of this model on these
datasets is not fully specified. The authors have not provided an interpretability analysis
for this model. Therefore, it remains difficult to appreciate how classification decisions
are made. The authors of [102] developed an ensemble of transformer-based models
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coupled with attention maps for the detection of DR. The model was evaluated on the
MESSIDOR-2 and the APTOS datasets and achieved AUC scores of 0.977 on MESSIDOR-2
and an accuracy of 0.912 on the APTOS dataset. A major contribution of this work was the
improvement in performance and the inclusion of the attention module to help clinicians
understand the underlying pathology better. Critical omissions from this work include the
lack of analysis of its performance against other models and also computational efficiency
comparisons against CNN-based models. These are important aspects in considering the
clinical applications of a model.

Table 3 is a summary of the DL-based models applied to detect diabetic retinopathy.

Table 3. Summary of Deep Learning Methods for DR Classification.

Reference Network Dataset Accuracy Specificity Sensitivity AUC

[55] AlexNet Messidor-2 87.0% 96.8%

[80] CNN EyePACS 66.6% 96.2% 0.946

[81] CNN EyePACS 86.1% 93.81% 73.24% 0.92

[82] ConvNet EyePACS, e-optha,
DiaretDB1 0.954, 0.949, 0.955

[83] CKML, VNXK Messidor, EyePACS 0.897, 0.893 0.900, 0.892 0.893, 0.900 0.891, 0.887

[94] DCNN EyePACS 0.973, 0.959 0.863, 0.898 0.9687, 0.9687

[95] AttenNet
(DenseNet 169)

Z109 (public) , B28K
(private) 1.000, 0.915 1.000, 0.924

[6] Ensemble CNN EyePACS 0.808 0.867 0.515

[96] Inception-V3 Private 0.8791 0.9150 0.844 0.935

[87] VGG-16,
VGG-19 EyePACS 0.820 0.82 0.800

[88] EfficientNet APTOS 0.935 (Kappa)

[89] DenseNet-121 APTOS 0.949 0.971 0.926 0.88 (Kappa)

[97] Ensemble
DCNN

[98] DCNN MESSIDOR-2 0.941 0.957 0.927 0.969

[99] ViT-DR MESSIODOR-2,
e-ophtha, APTOS, IDRiD 0.956, 0.975, 0.946, 0.924

[100] ViT MESSIDOR-2, e-ophtha,
APTOS 0.956, 0.977, 0.947

[101] Res-ViT MESSIDOR-2, APTOS 0.893, − −, 0.981

[102] ensemble-ViT MESSIDOR-2, APTOS −, 0.912 0.977, −

[90] DCNN EyePACS 0.757

5.1.1. Discussion

The studies reviewed in this section have shown that DL techniques outperform
traditional methods in diagnosing and classifying DR. For example, in [55], the authors
developed a deep learning device, IDx-DR X2.1, which outperformed the Iowa Detection
Program (IDP), a non-deep learning-based method. The model achieved high sensitivity
and specificity and did not miss any cases of severe NPDR or macular edema. Similarly,
authors in [80] developed a four-class DR classification model that outperformed state-
of-the-art models. The authors also included images from both eyes, allowing for a more
extensive coverage of the retinal area. The MESSIDOR-2 and EyePacs databases were the
most commonly used databases in the papers reviewed in this work.

One of the most significant contributions of the reviewed studies is the use of DL
models for lesion detection and grading of DR severity. For instance, [94] developed a two-
stage deep CNN for lesion detection and grading DR severity, while [82] proposed a model
that assists with the explainability by incorporating heatmaps in the model. These models
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demonstrated the potential of deep learning techniques in detecting DR lesions, which can
be a useful assistive tool in clinical practice, especially if it has explainability embedded
in it.

Another advantage of the deep learning models developed in the reviewed studies is
their potential to be used in resource-limited settings, such as developing countries. For
example, in [90], authors developed a DR classification system using a CNN model built
on the Caffe framework and evaluated it using the Kaggle database. They achieved high
accuracy on the binary classification problem (DR, no DR), demonstrating the potential
of deep learning in providing an accessible tool for DR screening programs for large
DR populations.

However, there are some limitations to the studies reviewed. One of the limitations is
the small dataset size used in some studies, which may pose generalizability challenges.
Another limitation is the lack of interpretability of some deep learning models, which may
hinder their acceptance and use in clinical practice. The evaluation metrics used in some
studies were also limited, and this may affect the generalizability of the models developed.

5.1.2. Summary

This review explores recent advances in the use of DL methods to detect and diagnose
diabetic retinopathy (DR). The authors examined several studies that classify DR into
different categories, ranging from no DR to proliferative DR, and evaluated the strengths
and limitations of each approach. Some of the most promising methods use ensemble
models or innovative techniques, such as entropy images or lesion detection.

One of the biggest challenges faced by researchers in this field is the lack of standard-
ized datasets and ground-truth annotations for DR. Many studies use publicly available
datasets, which may not be representative of real-world screening situations. Additionally,
some studies rely on limited or imbalanced datasets, which may lead to biased results.

Overall, the authors conclude that deep learning methods show great promise for
improving DR screening and diagnosis. However, further research is needed to address
issues such as dataset bias and lack of interpretability and to determine whether these
methods can be applied effectively across different populations and screening settings.

5.2. Age-Related Macular Degeneration Classification

Some recent results on AMD classification using convolutional neural networks are
presented in this section. The outcomes of the preliminary work were presented in [103].
They applied transfer learning to fine-tune a DCNN for the purpose of detecting individuals
with intermediate-stage AMD. Accuracies up to 0.950, sensitivities of 0.964 and specificities
of 0.956 with no hyperparameter fine-tuning were attained on the AREDS dataset. Higher
performances would probably have been recorded with fine-tuning and with a bigger
training dataset. The model proposed in [104] performed binary classification between
early-stage AMD and advanced-stage AMD using Deep CNN on the AREDS database.
This model was compared with earlier models that combined deep features and transfer
learning. The researchers concluded that applying deep learning-based methods for AMD
detection leads to results similar to human experts’ performance levels. A deep CNN-based
method with transfer learning to assist in identifying persons at risk of AMD was proposed
in [79]. This model was evaluated using the AREDS database with 150,000 images. They
used an enhanced VGG16 architecture employing batch normalization. The authors solved
a binary and a four-class problem, achieving between 83% and 92%. As their main contribu-
tion, the authors debunked the belief that transfer learning always outperforms networks
trained from scratch. Their network, trained from scratch with sufficient images, pro-
duced higher accuracies compared to accuracies obtained using transfer learning. Network
depth has a positive bearing on performance, as observed with VGGNet-16 outperforming
shallower networks, such as AlexNet, on similar tasks. The work of [105] involved the
development of an AlexNet model for classifying OCT images into healthy, dry AMD, wet
AMD and DME types. The method trains the network from scratch without using transfer
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learning. It was evaluated on a four-class problem and two, binary class combinations. The
method performed better than that of presented in [18], who used transfer learning and
evaluated their network on the same dataset. The advantage of this network is the high
number of training images (83,484). What makes these results important is that AlexNet is
less computationally expensive compared to its successors, and yet it is achieving some
performance improvements. The marginal performance improvement in this method
though, compared to the model by Kermany et al. in [18] may not justify foregoing the
computational efficiencies afforded by transfer learning.

In [106], a 14-layer deep CNN was evaluated using the blindfold and cross-validation
strategies on some private AMD retinal database, resulting in accuracies as high as 95.17%.
Three fully connected layers, four max-pooling layers and seven convolutional layers were
implemented in this work. Adam optimizer was employed in parameter tuning. Mat-
sube et al. in [107], designed a network with three convolutional layers with ReLU unit and
max-pooling layers and evaluated it on pre-processed fundus images. The Deep CNN fared
well against human grading by six ophthalmologists. The authors deemed their system
capable of identifying exudative AMD with high efficacy and useful for AMD screening
and telemedicine. An ensemble of several CNN networks was proposed in [108] to classify
among 13 different AMD classes on the AREDS database. The model outperformed human
graders on the AREDS database, and they deemed it suitable for AMD classification in
other datasets for individuals with ages 55 years and above. Authors in [109] sought to
analyze the impact of image denoising, resizing and cropping for AMD detection. The
authors observed that a reduction in image size would not lead to a significant reduction
in performance, and yet results in a substantial reduction in the model size. They also
concluded that the model’s highest accuracies were obtained with original images, without
denoising and cropping. AMDOCT-Net fared better than VGG16 and OCT-Net architec-
tures for comparable model sizes. This work produces significant results regarding image
resizing; it significantly reduces model size with an insignificant reduction in performance.
The authors of [110] proposed a vision transformer network for AMD classification and de-
tection. They evaluated the model on the MESSIDOR and the APTOS databases, achieving
an accuracy of 0.913 with APTOS and an AUC score of 0.963 on the MESSIDOR dataset.
The major contributions of this work include the high performance of the model and the
explainability capability inherent with vision transformers. The limitation of this model
is that the attention maps may not always align with the underlying pathology, which
could lead to incorrect diagnoses. In [111], a vision transformer network was proposed
for AMD diagnosis on retinal fundus images and was evaluated on the AREDS dataset.
The model achieved an accuracy of 0.994 on the four-class classification task and an AUC
of 0.993 on the binary classification task. As a contribution, this work shows that AMD
detection assistive tools can be developed using ViTs and achieve performances comparable
to state-of-the-art CNN models but with the added advantage of explainability to enhance
trust with clinicians and patients alike. The drawback of this model, though, is that it was
not evaluated on many AMD datasets to allow for generalizability.

5.2.1. Discussion

This section reviewed several studies that applied DL methods for the classification
of Age-Related Macular Degeneration (AMD). A plethora of studies have demonstrated
great potential in the use of DL methods for the classification of AMD stages and also to
differentiate between healthy and AMD-affected eyes. Most studies reviewed evaluated
their models on the AREDS database.

Transfer learning has been applied in a lot of the studies, examples of which are [103,104],
to fine-tune pre-trained DL network architectures for the classification of AMD. The results
show accuracies of up to 0.950, sensitivities of 0.964 and specificities of 0.956, which compare
closely with the performance levels of human experts. It was, however, observed in [79]
that a network trained from scratch with sufficient input images could produce higher
accuracies compared to models fine-tuned on pre-trained models.
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The study observed that the depth of the network also impacts model performance.
This was demonstrated by a VGGNet-16 network outperforming shallower networks, such
as AlexNet, for similar tasks. AlexNet was utilized in [105] for the classification of OCT
images into healthy, dry AMD, wet AMD, and DME types without using transfer learning.
The high number of training images (83,484) used in this study contributed to its better
performance compared to transfer learning-based methods.

Other studies have investigated the impact of denoising, resizing and cropping images
on the accuracy of AMD detection. Studies by [109] showed that reducing the image size
does not significantly reduce performance, and yet results in a substantial reduction in
the model size’s computational expense. They also concluded that the highest accuracies
were obtained with original images, without denoising and cropping. In [110,111], vision
transformers were employed for AMD classification, achieving high accuracy and AUC
scores on the MESSIDOR, APTOS and AREDS databases. The major contribution of these
papers is the explainability capability inherent in the ViT models, which enhances trust
with clinicians and patients alike.

Overall, the papers reviewed show that deep learning-based methods, including both
CNNs and ViTs, have the potential to achieve performance levels similar to human experts
in AMD classification. However, limitations of the models include a lack of generalizability
and the potential for incorrect diagnoses due to attention maps not aligning with the under-
lying pathology. Additionally, it is important to carefully consider the trade-offs between
transfer learning and training from scratch when developing AMD classification models.

5.2.2. Summary

This section discussed recent developments in using deep learning models, specifically
CNNs and vision transformers, for Age-Related Macular Degeneration (AMD) classification.
Several studies have shown promising results in using these models to classify retinal
fundus images for various stages of AMD, with some achieving high levels of accuracy
and outperforming human graders. The use of transfer learning and network depth
has also been explored, with some studies showing that training networks from scratch
with sufficient data can produce higher accuracies compared to using pre-trained models.
However, there is still room for improvement, particularly in terms of generalizability to
different datasets and addressing potential limitations of the models, such as the alignment
of attention maps with underlying pathology in vision transformers.

Table 4 summarizes the main algorithms for AMD detection.

Table 4. Summary of AMD Detection methods.

Reference Network Dataset Acc Sp Sn AUC

[104] DCNN + SVM AREDS 0.950 0.956 0.964

[79] VGG16 AREDS 0.925

[106] CNN Private 0.955 0.935 0.9643

[107] DCNN Private 0.998

[108] Ensemble AREDS 0.842 0.943

[103] DCNN AREDS 0.950 0.956 0.964

[18] DCNN Private 0.966 0.974 0.978 0.999

[105] DCNN Private
1.000,
0.996,
0.998

1.000,
0.992,
0.996

1.000 *,
1.000 **,
1.000 ***

[110] ViT MESSIDOR, APTOS −, 0.913 0.963, −

[111] ViT AREDS 0.994 0.993

[109] AMDOCT-Net Private 0.991,
0.957

1.000,
0.920

0.982 +,
0.993 ++

* Classifying healthy and wet AMD. ** Classifying healthy and dry AMD. *** Classifying healthy and DME.
+ AMDOCT without cropping. ++ AMDOCT with cropping. Acc: Accuracy. Sp: Specificity. Sn: Sensitivity.
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5.3. Glaucoma

An early work in glaucoma detection was presented in [112]. The authors proposed
a CNN employing dropout and data augmentation to improve convergence. The CNN
network had six layers, four convolutional layers of decreasing filter sizes and two dense
(FC) layers. The model was evaluated on the ORIGA and SCES datasets and achieved an
AUC measure of 0.831 on the ORIGA database and 0.887 on the SCES database. Neither the
specificity nor the sensitivity of this network was reported, raising doubts about whether
this network did not suffer from overfitting, which is typical with imbalanced data in such
domains. The Inception-V3 pre-trained architecture was designed in [23] to predict glauco-
matous optic neuropathy (GON). The images were first graded by expert ophthalmologists,
and the local space average color subtraction technique was employed to accommodate for
varying illumination. The authors claimed the model was capable of detecting referable
GON with high sensitivity and specificity. False positive and false negative results were
caused by the presence of other eye conditions. In [113], the researchers took advantage of
domain knowledge and designed a multibranch neural network (MB-NN) with methods
to automatically extract important parts of images and obtain domain knowledge features.
The model was evaluated on datasets obtained from various hospitals and achieved an
accuracy of 0.9151, a sensitivity of 0.9233 and a specificity of 0.9090. ResNet-50 was used
as a base network to implement a deep CNN for the detection of early glaucoma. A pro-
prietary database with 78 images was used to train the model, and 3 additional public
datasets were used to validate it. A validation accuracy of 0.9695 was achieved. Whilst most
methods focus on advanced glaucoma detection, this method’s focus is early detection,
a more difficult and important task of detecting the more subtle changes to the images. The
few training images made the model more susceptible to overfitting. The DenseNet-201
network in [114] was developed as a model for the detection of glaucoma. The model was
evaluated on the ACRIMA dataset and obtained a maximum accuracy of 0.97, F1 score
of 0.969, AUC of 0.971, sensitivity of 0.941 and specificity of 1.0. This model performed
better than the authors’ previous work in [115] where they experimented with ResNet-121.
An added advantage of the DenseNet network is its ability to manage the diminishing
gradient problem. DenseNet suffers from computational inefficiency owing to its deep
layers and millions of parameters.

An attention-based CNN network for glaucoma detection (AG-CNN) was proposed
by [64]. The network was trained on an 11,760-image LAG dataset. Attention maps
were used to highlight salient regions of glaucoma. The model performed better than
state-of-the-art networks on the same database and also on RIM-ONE public database.
The best performances were accuracy: 96.2%; Sensitivity: 95.4%; Specificity: 96.7% and
AUC: 0.983. The main contribution and advantage of this paper was the introduction of
visualized heatmaps that helped to locate small pathological areas better than the other
methods. This helps with model explainability. The limitation of their network is that it
adds more weight parameters to the model, increasing the computational complexity. The
authors of [116] proposed a deep learning method for glaucoma detection that combines
optic disc segmentation and transfer learning. The model, which was fine-tuned on
a pre-trained ResNet50 model, was evaluated on two publicly available image databases,
DRISHTI-GS1 and RIM-ONE V3, achieving accuracies of 98.7% and 96.1%, respectively.
A significant contribution of the authors was an analysis of model interpretability. Whilst
good performances were recorded with this method, the small sizes of the datasets and
the limited number of datasets on which the model was evaluated adversely affect its
generalizability. Moreover, it would have been easier to compare the performances of
this model with other segmentation models in the literature had the authors had a wider
range of evaluation metrics, such as specificity, sensitivity and F1 score. In the work [117],
a vision transformer for glaucoma detection was proposed and evaluated on the ORIGA
and RIM-ONE v3 datasets, achieving a sensitivity of 0.941 and a specificity of 0.957 on the
RIM-ONE v3 dataset and a sensitivity of 0.923 and a specificity of 0.912 on the ORIGA
dataset. The paper provides a thorough analysis of the model’s attention maps, which
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can help clinicians understand the underlying features that contribute to the model’s
decision-making process. Additionally, the authors did compare the performance of their
model with state-of-the-art models, providing an opportunity for readers to judge the
strengths and weaknesses of different models. The small size of the datasets used for
evaluation makes it hard to generalize the performance of their approach. There is a need
for additional validation with larger and more diverse datasets. In the work of [118], the
ORIGA dataset was used to evaluate a ViT model for glaucoma classification. An AUC
of 0.960 for binary classification and an F1 score of 0.837 for multiclass classification were
registered. The authors managed interpretability well by providing a detailed analysis
of the model’s attention maps, which help identify important features associated with
glaucoma. However, like in [117,119,120], readers will be skeptical about generalizing the
performance of the model owing to the small size of the ORIGA, RIGA and RIM-ONE v3
datasets used for evaluation. In the work of Seremer et al. [121] transfer learning was
applied to train and fine-tune the ResNet-50 and the GoogleNet networks for early and
advanced glaucoma classification. The models were evaluated on the RIM-ONE public
dataset. It was observed that the sensitivity values were very low for both GoogleNet
and ResNet, reaching as low as 0.17. Specificities as high as 0.98 were achieved with the
GoogleNet architectures for early glaucoma detection. GoogleNet was also reported to
have shorter execution times compared to ResNet. A multistage DL model for glaucoma
detection based on a curriculum learning strategy was proposed in [122]. The model
included segmentation of the optic disc and cup, prediction of morphometric features and
classification of the disease level (healthy, suspicious and glaucoma). The model performed
better than state-of-the-art models on the RIM-ONE-v1 and DRISHTI-GS1 datasets, with
an accuracy of 89.4% and AUC of 0.82. Omitting specificity and sensitivity of the model
raises questions about possible overfitting owing to imbalanced data. The performances of
DL techniques for the detection of glaucoma are summarized in Table 5.

Table 5. Summary of DL Methods for Glaucoma Detection.

Reference Network Dataset Acc Sp Sn AUC

[112] 6L CNN ORIGA
SCES 0.831, 0.887

[23] 22L DCNN LabelMe 0.920 0.956 0.986

[113] MB-NN Private 0.915 0.909 0.923

[122] DCNN RIM-ONE 0.894

[114] DNet-201 ACRIMA 0.970 1.000 0.941 0.971

[121] GoogleNet
ResNet-50 RIM-ONE 0.910, 0.900 0.990, 0.940 0.170, 0.420 0.910 *, 0.840 *

GoogleNet
ResNet RIM-ONE 0.850, 0.860 0.910, 0.930 0.290, 0.210 0.750 **, 0.740 **

[64] AG-CNN LAG 0.962 0.967 0.954 0.983

[116] ResNet-50

DRISHTI-
GS1,

RIM-ONE
V3

0.987, 0.961

[117] ViT
ORIGA,

RIM-ONE
v3

0.912, 0.957 0.923, 0.941

[118] ViT ORIGA 0.960

[120] ViT ORIGA 0.737 0.964

[119] ViT RIGA 0.902 0.975

[115] ResNet-50 Private 0.970
* Performance on early glaucoma detection. ** Performance on advanced glaucoma detection. Acc: Accuracy.
Sp: Specificity. Sn: Sensitivity.
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5.3.1. Discussion

Glaucoma is a leading cause of blindness, and deep learning (DL) techniques have
been employed to aid its detection. Several studies have proposed various DL models
that employ different architectures, including Inception-V3, ResNet-50, DenseNet-201 and
vision transformers, for detecting glaucoma. Attention-based CNN networks, transfer
learning and multistage DL models have also been proposed. Most studies focus on
detecting advanced glaucoma, but some focus on early detection, which is more challenging.
While these models, most of which were evaluated on the RIM-ONE v3 database, achieved
high accuracy, sensitivity and specificity on their respective datasets, they have limitations,
such as small dataset size, limited diversity and limited evaluation metrics. Thus, additional
validation with more diverse and larger datasets is needed to generalize their findings
better. Additionally, there is a need for interpretability and model explainability. Overall,
the performance of DL techniques for glaucoma detection is promising, and they have the
potential to improve the accuracy and efficiency of glaucoma diagnosis.

5.3.2. Summary

Several deep learning models have been proposed for glaucoma detection using vari-
ous techniques, such as CNNs, attention-based networks, transfer learning and curriculum
learning. These models were evaluated on different datasets and achieved good accu-
racy, sensitivity and specificity measures. However, the small size and limited number
of datasets used for evaluation affect their generalizability. The visualized heatmaps in-
troduced in some models aid in locating small pathological areas, while others focus on
early detection, a more challenging task. The choice of architecture and evaluation metrics
depends on the specific requirements of the detection task.

5.4. Multiple Retinal Disease Detection

This section presents a review of studies that targeted classifying between AMD, DR,
glaucoma and other retinal diseases in multiclass tasks or in multiclass, multilevel tasks.
Using EfficientNet-B3 as the base model, authors in [67] developed a DL model merged with
a mixture loss function for automatic classification between glaucoma, cataract and AMD
in a four-class problem, including normal. The mixture loss function was a hybridization
of the focal loss and the correntropy-induced loss functions combined to minimize the
effects of outliers and class imbalance. The 5000-image OIA-ODIR dataset was used for
model evaluation. The FCL-EfficientNet-B3 model outperformed other baseline methods
for the detection of the three retinal diseases. The main advantages of their model include
the reduction of computation cost and training speeds. EfficientNet scales well, but it is
hard to achieve a balance in its three dimensions. The model also struggled to correctly
classify AMD and glaucoma. An ensemble of three ResNet-152 networks was proposed
in [123] for classifying Choroidal Neovascularization (CNV), Diabetic Macula Edema
(DME), Drusen and normal. The ensemble method outperformed a single ResNet-152
network, posting a maximum accuracy of 0.989, sensitivity of 0.989 and specificity of
0.996. The authors carried out experiments with different size datasets and concluded that
model performance improved with more training data. The model has a drawback of the
increased computational complexity owing to the large number of layers and parameters
in ResNet-152.

Kamran et al. in [124] proposed an architecture to differentiate between a range of
pathologies causing retinal degeneration. The authors claim their model outperforms expert
ophthalmologists. In [125], an ensemble, four-class classification model to automatically
detect Choroidal Neovascularization (CNV), Diabetic Macula Edema (DME), Drusen and
normal in OCT images based on the ResNet50 neural network was presented. This model,
which the authors claim performs better than ophthalmologists with significant clinical
experience, attained an accuracy of 0.973, a sensitivity of 0.963 and a specificity of 0.985.
Global accuracies of up to 0.95 were attained in [126] with their deep learning classifier of
inherited retinal diseases using fundus autofluorescence (FAF). Their classifier detected
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retinitis pigmentosa, stargardt disease and normal out of 389 images. A CNN-automated
multiclass classifier for retinal diseases using spectral-domain OCT images was developed
by [3]. The model detected AMD, Choroidal Neovascularization (CNV), Diabetic Macula
Edema (DME), Drusen and normal cases. The model correctly detected AMD with 100%
accuracy, CNV with 98.86% accuracy, DME with 99.17% accuracy, Drusen with 98.97%
accuracy and normal with 99.15% accuracy. The overall accuracy achieved was 95.30%.
Gour and Khanna (2020) proposed an automated multiclass, multilabel transfer learning-
based CNN for the detection of ocular diseases. Leveraging the power of transfer learning,
they built two models using four CNN architectures, VGG16, InceptionV3, MobileNet and
ResNet and evaluated the models on the ODIR database to predict the presence or absence
of eight ocular diseases from the dataset. Model 1 passes the left and right eye images
separately as inputs to the CNN architectures for feature extraction before the features
are later concatenated. Model 2 concatenates the images followed by feature extraction.
For both models, the architectures were trained for 100 epochs and the sigmoid activation
function was used to predict the probability of each of the eight labels corresponding to the
eight ocular diseases depicted in the ODIR database. The disease categories represented in
the database are normal (N), Diabetes (D), glaucoma (G), Cataract (C), AMD (A), Hyperten-
sion (H), Myopia (M) and other diseases (O). The VGG16 architecture with SGD optimizer
on model 1 outperformed the other architectures, achieving AUC and F1 score values of
84.93 and 85.57, respectively. This work provides a fairly viable solution to the multiclass,
multilabel classification problem for the prediction of ocular diseases, but its limitation was
the low performance of categories with fewer images owing to the imbalanced nature of
the dataset. Table 6 presents a summary of the DL-based methods for the detection of mul-
tiple retinal diseases. An Ensemble Label Power-set Pruned datasets Joint Decomposition
(ELPPJD) technique was developed in [127] to solve the multiclass, multilabel classification
problem. They transformed the multilabel problem into a multiclass classification problem.
They adopted 10-fold cross-validation and used average accuracy, precision, recall and
F-measure to evaluate the models. The authors developed two variants of the ELPPJD
method, ELPPJD_SB (size-balanced strategy) and ELPPJD_LS (Label similarity), two de-
composition strategies in ELPPJD. ELPPJD_LS outperformed not only ELPPJD_SB but
also two widely used multilabel classification methods, RAkEL and HOMER. ELPPJD_SL
produced an average accuracy of 88.59%, a good result in multiclass classification [127].
The authors utilized transfer learning and fine-tuning techniques in [128] to adapt a pre-
trained Inception-v3 architecture, combining it with a novel feature attention layer for the
prediction of four common retinal diseases, diabetic retinopathy, Age-Related Macular De-
generation, glaucoma and retinal vein occlusion. With the feature attention layer helping to
highlight important regions of the input image, the model had some remarkable accuracies,
outperforming state-of-the-art models in the process. Specifically, EyeDeep-Net achieved
an accuracy of 95.4% on the IDRiD dataset and an accuracy of 96.5% on the MESSIDOR
dataset for multiclass classification. Whilst this method achieves considerably good accu-
racies compared to state-of-the-art methods, the datasets used were comparatively small,
which may affect the generalizability of the model. Moreover, the authors did not provide
a thorough interpretability analysis of the proposed method, which could have helped
understand the model’s decision-making process. A vision transformer was presented
in [129] for the classification of multiple diseases in fundus images. Evaluation performed
on the IDRiD, Messidor-2 and APTOS datasets yielded promising accuracies of 0.9847,
0.9667 and 0.9576, respectively. The authors performed extensive experiments to evaluate
their approach and provide a detailed analysis of the model’s attention maps to identify
the regions of interest for each disease. Although the authors compared their results with
those of previous studies on individual diseases, they did not compare their approach
with other multidisease classification models. There was no attempt by the authors to
provide an analysis of the computational cost of their model with CNNs, which have been
dominating computer vision. A novel attention-guided approach to identify the most
important regions in retinal images for disease classification was proposed by [130]. The



J. Imaging 2023, 9, 84 26 of 38

authors demonstrated that their approach outperforms several state-of-the-art models on
two publicly available datasets, achieving a macro F1-score of 0.871 on the MESSIDOR-2
dataset and 0.845 on the EYEPACS dataset. The use of attention-guided vision transformers,
which can improve the interpretability of the model’s predictions and provide insight into
the most important regions for disease classification, was a major contribution of their
work. However, the authors failed to provide a discussion of the computational complexity
of their model. Given the large number of parameters in vision transformer-based models,
the computational cost of training and deploying the model may be a limiting factor in
real-world clinical applications. Two deep learning architectures, RetinaNet and ViT, were
combined in the work of [131] for the automated detection of retinal diseases. Their method
achieved state-of-the-art performance on the IDRiD and the MESSIDOR-2 datasets, scoring
a sensitivity of 0.944 and a specificity of 0.966 on the IDRiD dataset and an accuracy of
0.971 on the MESSIDOR-2 dataset. One limitation of this model is the lack of discussion
on the explainability of the model. Given the black-box nature of deep learning models,
it would be valuable to provide insights into the most important regions of the retinal
images for disease detection. An approach for multilabel classification of retinal diseases
using a self-attention mechanism-based Vision Transformer was proposed in [132]. The
authors demonstrated that their approach outperforms several state-of-the-art models on
the Kaggle Diabetic Retinopathy Detection (KDD) dataset, achieving a mean F1-score of
0.865 and an accuracy of 0.897. The use of a self-attention mechanism-based ViT allows the
model to focus on relevant features in the retinal images for disease detection. However,
one limitation of this paper is the lack of evaluation of other publicly available datasets,
which limits the generalizability of the proposed approach. Additionally, the authors do not
provide insights into the most important regions of the retinal images for disease detection,
which limits the interpretability of the proposed approach.

Table 6. Summary of Deep Learning Methods for the Detection of Multiple Retinal Diseases.

Reference Network Dataset Acc Sp Sn AUC

[127] Ensemble ELPPJD Private 0.886 0.8859 0.886

[124] OpticNet-71 OCT2017 0.998 0.999 0.998

[125] ResNet50 Private 0.973 0.985 0.963

[126] ResNet101 FAF images 0.950 0.983 0.935 0.999

[3] AOCT-NET SERI DB 0.971 0.993 0.971 0.995

[14] VGG16 ODIR 0.891 0.689

[123] Ensemble
(ResNet-152) Private 0.989 0.996 0.989

[67] FCL-EfficientNet-B3 OIA-ODIR * 0.994 ** 0.991 ***
0.995

[128] Inception-v3 IDRiD, MESSIDOR 0.954, 0.965

[129] ViT IDRiD, Messidor-2,
APTOS

0.9847,
0.9667,
0.9576

[130] Att-ViT MESSIDOR-2,
EYEPACS

[131] RetinaNet-ViT IDRiD, MESSIDOR-2 −, 0.971 0.966, − 0.944, −

[132] Att-ViT KDD 0.897
* Performance for AMD class. ** Performance for cataract class. *** Performance for glaucoma class. Acc: Accuracy.
Sp: Specificity. Sn: Sensitivity.
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5.4.1. Discussion

The use of deep learning (DL) models for the detection and classification of retinal dis-
eases is a promising area of research, with numerous studies showing significant progress
in recent years. However, there are several critical issues that need to be addressed in order
to improve the reliability and generalizability of these models.

One of the primary challenges is the lack of diverse and well-annotated datasets. Many
studies have reported using relatively small datasets, and the lack of diversity in these
datasets can limit the generalizability of the developed models. Moreover, it is important to
consider that the prevalence of retinal diseases varies widely across different populations
and ethnicities. This can limit the generalizability of models developed using datasets from
a specific population or region. Therefore, efforts to collect and annotate large, diverse
datasets are critical to ensure the generalizability of these models. The MESSIDOR-2
database was the most frequently used database for evaluating the models.

Another challenge is the interpretability of DL models. It is often difficult to under-
stand how these models arrive at their predictions, which can limit their utility in clinical
settings. While some studies have proposed the use of attention mechanisms or visualiza-
tion techniques to identify important regions in retinal images, more research is needed to
develop methods for interpreting the predictions of DL models.

Additionally, DL models require significant computational resources for training and
inference, which can limit their scalability and feasibility in clinical settings. Therefore,
there is a need for more research on developing efficient DL models that can be trained and
deployed on resource-constrained devices.

Finally, it is important to recognize that DL models should not replace expert ophthal-
mologists. While these models can provide valuable insights and support to clinicians, they
should be used as a tool for aiding diagnosis and not as a replacement for clinical expertise.

5.4.2. Summary

This section presents an overview of several studies that have targeted the classification
of multiple retinal diseases using deep learning (DL) models. Common approaches used
in these studies are pre-trained convolutional neural networks (CNNs), such as ResNet,
EfficientNet and ViT, and ensemble methods. The main challenges are class imbalance and
the interpretability of DL models. Some studies have proposed the use of mixture loss
functions or transfer learning to overcome class imbalance and attention mechanisms or
visualization techniques to improve interpretability. The reviewed studies have shown
promising results, but larger and more diverse annotated datasets are needed to improve
generalizability, and more research is needed on the interpretability and explainability of
DL models.

6. Discussion

While the DL approach to retinal disease detection brings with it a lot of positives,
there are a number of challenges that still need to be overcome. This section discusses some
of the challenges associated with the DL approach, including image acquisition challenges,
model training challenges and the lack of explainability of DL approaches.

Convolutional Neural Networks (CNNs) and ViTs thrive on huge amounts of data for
better performance, but retinal images are seldom found in big numbers and are usually
not annotated. DL models tend to overfit when trained with little data. Data augmentation,
transfer learning and generative adversarial neural networks (GANs) have been used to
try and mitigate the overfitting challenge [133–137]. GANs are hard to train; the model
parameters oscillate and do not converge easily [138]. Often, pre-trained networks used in
transfer learning belong to a different domain, possibly adversely affecting the performance
of such networks due to a lack of domain adaptation. These shortcomings make the
overfitting problem an open research issue. There is a significant number of misdiagnosed
abnormalities due to limited visibility of the lesions, low image contrast or noisy images.
There have been quite some advances in this area, but choosing the right pre-processing
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techniques to achieve satisfactory CNN classification accuracy remains a problem worth
pursuing. In medical imaging classification and segmentation problems, there is usually an
imbalance between the positive and negative classes. This leads to bias in classification,
where more common classes get favored. Because of this challenge, it is not sufficient to rely
on accuracy alone as the ultimate measure of performance, sensitivity and specificity have
often been used, in addition to accuracy, to provide a more realistic overall performance
evaluation. There has not been enough research to establish the effect of imbalanced data
on the performance of CNNs.

Training DL models is an iterative process that involves repetitively computing the
derivative of the loss function, which, in turn, causes the vanishing gradient problem,
especially when the sigmoid function is used as the activation function. The dying ReLU
problem is a version of the vanishing gradient problem that is experienced when the ReLU
activation function is used [139]. InceptionNet tried to mitigate the vanishing gradient
limitation inherent in some CNN architectures, but this problem has not been sufficiently
addressed [139–142]. Deep networks are associated with great performance, but they are
computationally expensive. There is still an ongoing search for lightweight CNNs with
sufficient generalization capabilities [91,143,144]. The choice of hyperparameters influences
the performance of CNNs. A small change in the hyperparameter values can have a signifi-
cant bearing on the overall performance of the CNN model. The design of hyperparameter
optimization strategies is a research area worth pursuing [145]. Combining multiple and
diverse architectures as network ensembles can help to improve the generalizability of
diverse categories of images [146,147]. There have been successful research on the applica-
tion of ensembles in other domains, but there has not been much research on the extent of
performance of ensemble CNN architectures in multiple retinal disease detection.

Neural Networks, by their very nature, are black boxes and their outputs are not easily
interpretable. This raises trust issues with patients and clinicians alike. Developers of DL
methods are at pains explaining how their models arrived at a conclusion. There have been
attempts to use class activation maps (CAM) to activate pixels in regions where the lesions
exist, but sometimes CAM activates pixels far from the relevant object [148,149]. Model
explainability, therefore, remains an area of active research, especially with CNNs. ViTs
can be computationally complex and require large amounts of training data. This can limit
their applicability in some scenarios. They have built-in interpretability features, such as
self-attention mechanisms, that allow the model to focus on relevant features in the input
image. This can make ViTs more suitable for building explainable models compared to
traditional CNNs. Further research is needed to better understand the trade-offs between
interpretability and computational complexity in ViTs and to identify the most effective
techniques for building lightweight explainable models using ViTs [150].

More often than not, a single retinal image could contain more than one disease,
therefore, there is a need for models capable of detecting multiple diseases from single
images [14]. There is a number of challenges to achieving this feat. One of the challenges is
the lack of large-scale, high-quality annotated datasets, which is critical for training deep
learning models. Many existing datasets only contain a limited number of images with
a single disease label, which makes it difficult to train deep learning models for multiple
disease detection. Another challenge is the high variability and complexity of retinal
diseases, which can lead to high false-positive or false-negative rates in disease detection.
Retinal images can also contain various artifacts and noise, which can negatively impact
the accuracy of disease detection [151,152].

The detection of retinal diseases using CNNs and ViTs faces an uncertainty problem
due to the complex and variable nature of retinal disease manifestations and variability in
image quality and other imaging artifacts [153]. This variability can make it challenging for
deep learning models to accurately detect and classify retinal diseases, particularly when
the training data are limited or does not fully capture the variability of the disease [154].
Additionally, retinal images can be subject to variability in image quality, lighting conditions
and other imaging artifacts, which can further increase uncertainty in automatic detection.
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For example, the presence of imaging artifacts such as blurring or distortion can make it
difficult for deep learning models to accurately detect disease features in the image. To
address these challenges, various approaches have been proposed, including the use of large
and diverse datasets, data augmentation techniques and the incorporation of contextual
information into deep learning models. These approaches can help to reduce uncertainty
and improve the accuracy and reliability of automatic detection of retinal diseases using
CNNs and ViTs. However, ongoing refinement and validation of these approaches are
necessary to ensure their effectiveness and reliability in clinical practice [137,150,155,156].

In the case when there is limited information available, such as limited training data
or a lack of diversity in the dataset, the performance of deep learning models for retinal
disease detection may be negatively impacted. This can be particularly challenging when
trying to detect rare or complex diseases, where the limited information environment
may make it difficult for the model to learn the necessary features to accurately classify
the disease [151]. Transfer learning and data augmentation techniques can be effective
solutions to improve the models’ performance. However, further research is needed to
explore the optimal combination of these techniques and to evaluate their effectiveness in
clinical practice [157–159].

In the case where there is limited time and a small number of data available, the
development of deep learning models for retinal disease detection using CNNs and ViTs
can be challenging. The limited amount of data may not be sufficient to train a deep
learning model, and this can lead to overfitting or poor performance on unseen data.
Additionally, the limited time available for model development and optimization can result
in suboptimal performance [154,160–162]. To address these challenges, researchers have
explored various approaches, such as transfer learning, data augmentation and the use of
smaller, more focused datasets. These approaches can help to improve the performance of
deep learning models even in a limited data environment. For example, transfer learning
can be used to leverage pre-trained models to learn new features and improve performance
on limited data, while data augmentation can be used to artificially expand the dataset and
improve model generalization. Recent studies have shown promising results for the use of
these approaches in retinal disease detection using both CNNs and ViTs. However, further
research is needed to fully evaluate their effectiveness in clinical practice, particularly for
rare or complex retinal diseases where limited data are available. Overall, the development
of deep learning models in a limited data and time environment remains a challenging
problem, and ongoing research is necessary to improve model performance and reliability
in clinical settings [159,163–165].

In the big-data situation, automatic detection of retinal diseases using deep learning
methods such as CNNs and ViTs face a different set of challenges. With a large volume
of data, the complexity of the models can increase significantly, leading to longer train-
ing times, increased computational resources and potential overfitting. However, the
availability of large datasets can also provide opportunities for model optimization and
generalization, leading to improved accuracy and reliability of disease detection. Recent
studies have demonstrated the effectiveness of deep learning methods in detecting reti-
nal diseases under big-data situations, particularly for common diseases such as diabetic
retinopathy and glaucoma [136,164]. Overall, deep learning methods like CNNs and ViTs
have shown promising results in detecting retinal diseases under big-data situations. How-
ever, the complexity and resource requirements of the models can pose challenges, and
ongoing research is necessary to optimize these models and ensure their reliability and
effectiveness in clinical settings.

In summary, the following areas remain open research items worth prioritizing:
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• Generation of synthetic image data to address the challenge of model overfitting.
• Establishing the right mix and sequence of data pre-processing techniques to enhance

image quality.
• Potential impact of ensemble learning for improvement of the performance of

CNN architectures.

7. Conclusions

This work presented a comprehensive review of the application of deep learning (DL)
techniques for retinal disease detection. Several diseases emanating from the eyes, the
cardiovascular system or the brain manifests itself through the retina [166,167]. The most
prevalent of these are diabetic retinopathy (DR), Age-Related Macular Degeneration (AMD),
glaucoma and cardiovascular diseases. If not detected early, these diseases could lead to
irreversible loss of vision, putting a heavy burden on individuals, families and already
overburdened economies, mostly in undeveloped countries. Fundoscopy and OCT imag-
ing have emerged as the most prevalent noninvasive retinal imaging modalities [168,169].
Manual analysis of retinal images is tedious, time-consuming and prone to subjective assess-
ment, and besides, ophthalmologists who should interpret the images are in short supply
and more so in underdeveloped countries [170]. The cited challenges with manual retinal
abnormality detection have given rise to the advent of automatic disease classification
and segmentation.

The reviews on AMD, glaucoma and multiple disease detection demonstrate that
both convolutional neural networks (CNNs) and vision transformers (ViTs) are effective
deep learning approaches for retinal disease detection using different imaging modalities
and databases.

As noted by [171], CNNs have been widely used for retinal disease detection, and
their success can be attributed to their ability to automatically extract features from retinal
images without requiring manual feature engineering. CNNs have shown high accuracy in
detecting different retinal diseases, including AMD and glaucoma, as well as the ability to
detect multiple diseases simultaneously.

Although CNNs have been widely used for retinal disease detection, some authors,
for example in [150] concur that there is still limited research on the performance of ViTs
for this task. Further research is needed to compare the performance of CNNs and ViTs
in terms of accuracy, computational complexity and interpretability. Most of the existing
studies focus on the detection of individual diseases, such as AMD, DR and glaucoma, with
limited research on the detection of multiple diseases in the same image. Further research
is needed to develop deep learning models that can accurately detect multiple diseases in
retinal images using both CNNs and ViTs.

Therefore, it is premature to conclude that ViTs are more capable than CNNs for retinal
disease detection. Both CNNs and ViTs have their strengths and limitations, and their
effectiveness depends on the specific application and the dataset used. Further research
is needed to compare the performance of these two deep learning approaches in retinal
disease detection using different imaging modalities and datasets [150].

The existing studies mostly use public datasets such as the EyePACS and Messidor
datasets, which may not be representative of the general population. Further research
is needed to evaluate the performance of deep learning models on diverse datasets and
populations using both CNNs and ViTs. Although deep learning models have shown high
accuracy in retinal disease detection, there is limited research on their clinical utility and
feasibility using both CNNs and ViTs. Further research is needed to investigate the practical
application of deep learning models in clinical settings [172].
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