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Abstract: This paper deals with Generative Adversarial Networks (GANs) applied to face aging. An
explainable face aging framework is proposed that builds on a well-known face aging approach,
namely the Conditional Adversarial Autoencoder (CAAE). The proposed framework, namely, xAI-
CAAE, couples CAAE with explainable Artificial Intelligence (xAI) methods, such as Saliency maps or
Shapley additive explanations, to provide corrective feedback from the discriminator to the generator.
xAI-guided training aims to supplement this feedback with explanations that provide a “reason” for
the discriminator’s decision. Moreover, Local Interpretable Model-agnostic Explanations (LIME) are
leveraged to provide explanations for the face areas that most influence the decision of a pre-trained
age classifier. To the best of our knowledge, xAI methods are utilized in the context of face aging for
the first time. A thorough qualitative and quantitative evaluation demonstrates that the incorporation
of the xAI systems contributed significantly to the generation of more realistic age-progressed and
regressed images.

Keywords: explainable AI (xAI); generative adversarial networks (GANs); face aging

1. Introduction

Face aging attempts to synthesize a person’s future facial appearance as they age or
their past appearance as they regress. As individuals age, their facial features gradually
and cumulatively change, resulting in certain common patterns, such as fine lines around
the eyes and mouth and changes in skin texture. Although the effects of aging on facial
appearance may differ from person to person, these patterns can be learned and applied
to produce accurate simulations of how a face may age or become rejuvenated. The
topic of face aging has triggered the interest of the research community due to its diverse
range of applications, such as age-invariant face recognition for security purposes [1–3],
entertainment-related applications [4], and the cosmetics industry [5].

Generative Adversarial Networks (GANs) [6] have played a vital role in generating
realistic synthetic images for various applications. In [7], GANs were applied to face aging,
which involved generating face images across different age groups. In [8], GANs were
used to create synthetic images of traffic signs. Although GANs are highly effective in
generating new data, they typically require a large and balanced dataset for proper training.
Methods for addressing the class imbalance in classification tasks through the employment
of GANs are explored in [9,10].

This paper deals with GANs applied to facial images in the context of face aging.
Figure 1 illustrates an example of face progression, where a young subject’s input face
image is used to extract identity-related and age-related features fed into a face aging model.
The model’s output is expected to preserve the identity-related features while incorporating
aging patterns. In this paper, a state-of-the-art face aging GAN, namely, the Conditional
Adversarial Autoencoder (CAAE) [7], is enriched with explanatory methods that provide
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insight into the discriminator’s decisions. The CAAE maps any face to a latent vector
through a convolutional encoder. Then, the latent vector is projected to the face manifold
conditional on age through a de-convolutional generator. More specifically, a facial image is
faithfully reconstructed following the inversion process [11] by the generator. Simultaneous
age progression and regression can be achieved by manipulating the age attribute.
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Figure 1. The face aging task.

The proposed framework integrates two explainable Artificial Intelligence (xAI) meth-
ods, namely, Saliency maps [12] and Shapley additive explanations (SHAP) [13], into the
CAAE network. Saliency maps resort to the explanation matrix whose elements take values
in the range [0, 1], referring to pixels. A value close to zero indicates that the pixel has no
impact on the classification decision made by the discriminator. Similarly, a value close
to one implies the pixel significantly contributes. Here, we are interested in a modified
gradient descent to update the generator’s weights. That is, the gradient of the discrimi-
nator’s decision with respect to the generator’s output (i.e., generated image) is used to
derive the explanation matrix by taking the absolute value element-wise and scaling it
in the range [0, 1]. The explanation matrix is multiplied by a weight and added to the
generator’s gradients with respect to the loss. The origin of the SHAP method is traced
back to cooperative game theory. The payoff is the discriminator’s output, while the pixels
of the images generated by the generator are treated as actors. Assume that one pixel is
hidden from the rest of the pixels. The Shapley value is defined as the average marginal
contribution of the withheld pixel in the discriminator’s output, which is calculated by
averaging over all the different subsets that emerge along the path to form the grand
coalition of pixels (i.e., the fully generated image) from the empty coalition of pixels. Let us
refer to the CAAE coupled with xAI methods as xAI-CAAE. We explore whether improved
corrective feedback from discriminator to generator occurs with the xAI-CAAE, improving
its performance against CAAE.

A third xAI technique called Local Interpretable Model-agnostic Explanations (LIME) [14]
is employed to determine the significant facial features contributing to face aging. By
perturbing a set of facial images and collecting age classification decisions, LIME trains
a regression model that approximates the age classifier in the local area of the training
image. Consequently, if the explanation is consistent locally, it can be used to identify the
significance of features.

The proposed framework incorporates xAI explanations by Saliency or SHAP into its
training to enhance age progression and regression performed by GANs on facial images.
LIME posterior explanations are derived as well. To the best of our knowledge, explainable
methods are utilized in face aging employing several benchmark datasets for the first time.
The main contributions of the paper are as follows:

1. Explainable gradient-based methods are added to CAAE: To add the reasoning
of the discriminator’s decision into the generator’s training, the gradients of the
generator are modified using either Saliency [12] or SHAP [13] explainable meth-
ods. The impact of xAI on the training process is explored by assigning different
weights to the modified xAI gradients. The proposed xAI-CAAE is trained on a
combination of images from the Cross-Age Celebrity Dataset (CACD) [15] and the
UTKFace [7] datasets.
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2. Face aging assessment: Both qualitative and quantitative evaluations of the generated
facial images are conducted. The qualitative evaluation resorts to a visual inspection
of the GAN-generated facial images. The quantitative assessment is two-fold: (i) The
Fréchet Inception Distance (FID) [16] is computed for images produced by CAAE and
xAI-CAAE applied to the FGNET dataset [17] to assess their visual quality; (ii) To
estimate the age range of the generated age progressed and regressed FGNET images,
the age estimation algorithm described in [18] is used. A thorough performance
evaluation demonstrates the strengths of the proposed xAI-CAAE.

3. Interpretation of age classification results using explainable occlusion-based meth-
ods: To identify which facial areas are essential for age classification, experiments that
utilize LIME’s posterior explanations are conducted on the Adience dataset [19].

The remainder of the paper is structured as follows. Related work and the proposed
framework are surveyed in Section 2. Experimental evaluation is conducted in Section 3.
Finally, Section 4 concludes the paper and recommends future work.

2. Materials and Methods

In Section 2.1, relevant research approaches on face aging are surveyed. Section 2.2
provides a brief overview of the xAI algorithms associated with the proposed method.
Finally, the proposed xAI-CAAE is described in detail in Section 2.3.

2.1. Face Aging

Before the advent of deep learning, age progression and regression methods were
primarily divided into physical model and prototype approaches. Physical model
techniques [20,21] were focused on modeling the physical attributes of face aging, such as
the alterations in hair, mouth, and skin texture, over time. These methods required a sub-
stantial amount of matched data and were time-consuming. Prototype-based approaches
were focused on investigating the differences in facial images among different age classes to
determine the aging patterns of each age class. Typically, these methods involved averaging
the faces of individuals within the same age range to identify common features [22,23]. The
face rejuvenation/progression process involved removing/adding textures that exhibited
signs of aging, which was accomplished by applying a learned transformation across
facial surfaces. Since this procedure produced smoothed facial images for each age class,
maintaining identity information was challenging.

The success of GANs in image synthesis and translation tasks has led to remarkable
progress in face aging techniques. The training process of GANs involves training two
models simultaneously: the generator G, which learns to generate new samples that
resemble the training samples and captures their distribution, and the discriminator D,
which distinguishes the synthetically generated samples from the real training ones. Let
the data distribution be pdata(x), i.e., the training data x∼pdata(x). If z is sampled from the
distribution pz(z), G and D engage in the min-max game [6]

{G∗, D∗} = argmin
G

argmax
D

Ex∼pdata(x)[log D(x)] +Ez∼pz(z)
[
log
(
1− D(G(z))

)]
, (1)

where E[·] denotes the expectation operator. To circumvent the prohibitive cost of longi-
tudinal collection of multiple face images for each subject, GAN-based methods resort to
unpaired face aging data for training and primarily focus on modeling mappings between
image contents. It is crucial to enforce identity consistency to prevent matching ambiguities
when trying to simulate the aging process in an unpaired training scenario. This way, key
semantic conditional information of the input, such as the unique facial features of each
individual, are maintained. It should be noted that most GAN-based face aging algorithms
do not enforce constraints in regions that are particularly relevant to age changes. Still, the
generator re-estimates the pixel at each spatial location of the synthetical image.
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In [24], a GAN-based framework for Attribute-Aware Attentive Face Aging (A3GAN)
was proposed. By integrating facial attribute vectors into the generator and discriminator,
semantic conditional information from the input was employed to train the model to
create elderly face images with attributes faithful to the corresponding input. An attention
mechanism that limited the alterations to age-related regions improved the visual quality
of the synthesized face images. Since wrinkles, eye bags, and laugh lines are represented
mainly by local textures, a wavelet packet transform extracted features at several scales in
the frequency space, increasing aging details.

The effects of aging within a specific age class are related to the effects of aging in
neighboring age classes, as aging is a gradual and continuous process. Moreover, aging
transformations between distant age classes are likely more drastic and intense than
those between nearby age classes. In [25], face aging was addressed as an unsupervised
image-to-image translation problem. The Pyramid Face Aging-GAN (PFA-GAN) was
suggested in particular, which contains a pyramid weight-sharing method. Face aging
effects are therefore learned hierarchically, beginning with the subtle changes necessary
between neighboring age classes and progressing to the more conspicuous and drastic
changes required between distant age classes. No paired examples showing how the
person looks at the target age class were needed, alleviating a severe limitation of many
face-aging approaches.

In [26], a framework was developed to simulate aging in three dimensions. The
framework consisted of three components—a 3D estimator for vertices and textures, a
texture-aging GAN, and a module for rendering 2D and 3D faces. The 3D vertex and
texture estimator determined the spatial vertices and textures of the face. The GAN applied
aging effects to the estimated texture map. Finally, the rendering module produced 2D or
3D faces using the vertex map and the aged facial texture map.

A GAN network termed Age Gap Reducer-Generative Adversarial Network was in-
troduced in [27] to reduce the age gap between face images using automatic age estimation.
The network took into account both the gender of the individual in the input image and
the desired age group to which the input face needed to be adjusted. This enabled the
network to either regress the input image to a younger age group or progress it to an older
age group, depending on the desired outcome.

Face aging depends on accurate age estimation. Age estimation is a challenging task
because it is affected by gender, race, and various intrinsic or extrinsic attributes. An age
estimation architecture was developed in [28], which included three convolutional neural
networks (CNNs) and two extreme learning machine structures. There is a lack of large and
reliably annotated datasets for training deep neural networks to estimate age. Knowledge
distillation was exploited for accurate age estimation in [29] to address this problem. In a
nutshell, class probability vectors were derived by a large model comprising multiple CNNs
applied to a reference annotated dataset. The resulting predictions were then exploited as
target labels to train a smaller model on a face dataset without age annotations.

2.2. Basic Elements of Explainable AI

The paper’s main contribution is to enrich CAAE, described in Section 2.3, with
explainable artificial intelligence (xAI) techniques by adding an explanation system into its
training procedure. In the following, the basic xAI techniques are briefly reviewed.

Pixel and feature attribution techniques attempt to explain individual predictions by
crediting each input feature according to how much it alters the prediction. Pixel attribution
techniques are known by various names, one of which is Saliency maps. Typical examples
of feature attribution techniques include SHAP and LIME. Input pixels, tabular data, or
text are used as features. There are two sorts of attribution techniques:

1. Gradient-based: These techniques compute the gradient of the prediction (or clas-
sification score) concerning input features. The key distinction between various
gradient-based techniques lies in the method they use to calculate the gradient.
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2. Occlusion-based: These techniques, such as SHAP and LIME, manipulate image
regions to produce model-agnostic explanations.

Both techniques provide explanations in the context of a Saliency map that is the same
size as the input image or at least projected onto the input image. Each pixel is given a
value, which can be interpreted as its importance for the prediction or categorization task.

2.2.1. Saliency

Saliency maps [12] determine the significance of each feature in a given input for
subsequent classification using a deep neural network inspired by how animals focus their
attention. A nonlinear score function Sc(x) is used to determine whether an image belongs
to a particular class. This function is linearized using a first-order Taylor expansion around
a specific image x0

Sc(x) ≈ Sc(x0) +∇xS>c (x0) (x− x0). (2)

It is seen that the first term represents the classification score when the input is not
perturbed, while the gradient term weighs the impact of perturbations. By reshaping the
gradient to a two-dimensional matrix (i.e., an image), the Saliency map M is produced. The
Saliency map is frequently normalized. Accordingly, M will refer to the normalized Saliency
map hereafter. If more than one channels are present in the input image, the maximum
Saliency map across all channels is considered. One can create a visual representation
by taking the absolute values of the elements in the Saliency map or by distinguishing
between the negative and positive contributions. The process of computing the Saliency
map is not costly, as it only necessitates a single back-propagation step and does not assume
the existence of any further annotations beyond the labels employed during the initial
model training.

2.2.2. LIME

LIME [14] selectively activates or deactivates certain super-pixels in an image and
then examines how these perturbations impact the predictions made by a classifier. To
achieve this, LIME creates a synthetic neighborhood, denoted by N(x), around the input
instance to be explained, denoted by x ∈ Rd, i.e.,

N(x) =
{

xj|xj = x + pj, pj ∼ N (0, ΣΣΣ) | j = 1, 2, . . . , H
}

, (3)

where pj is a local perturbation, and N (0, ΣΣΣ) denotes the zero-mean multivariate nor-
mal distribution with diagonal covariance matrix ΣΣΣ estimated from the training set. Let
x′ ∈ {0, 1}d′ denote a binary vector for the interpretable representation of x, i.e., a binary
vector indicating the “presence” or “absence” of a super-pixel. Let f : Rd → R be the
model to be explained. f (x) can be either a probability value or a binary indicator that
indicates whether x belongs to a specific class. To learn a potentially interpretable linear
model g(x) = w>g x, LIME samples instances x′ from N(x) by randomly selecting non-zero

elements. Given a perturbed sample ζζζ ′ ∈ {0, 1}d′ for d′ < d that contains the fraction of
non-zero elements in x′, the ridge regression method is used to learn g(x) by defining a
locally weighted square loss function as

L( f , g, πx) = ∑
x′ , ζζζ ′∈N(x)

πx(x′)
(

f (x′)− g(ζζζ ′)
)2, (4)

where πx(x′) = exp
(
− ||x

′−ζζζ ′ ||22
$2

)
is an exponential kernel with width $. Next, the function

g∗(x) is sought that minimizes

g∗(x) = argmin
g
L( f , g, πx) + Ω(g), (5)
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where the minimization is performed over the set of linear models, and Ω(g) is a measure
of interpretability (i.e., the number of non-zero weights for linear models). To solve the
optimization problem (5), the least absolute shrinkage and selection operator (LASSO)
is employed.

LIME utilizes a sequential feature selection [30,31] to fit multiple ridge regressors and
select a subset of F features for the model g repeatedly. The kernel width used is $ = 3

4

√
F,

which is chosen during the process.

2.2.3. SHAP

Shapley’s values, which came from cooperative game theory, are the cornerstone of
SHAP [13]. In SHAP, features are considered actors that can potentially form coalitions
to maximize future profits in a collaborative ecosystem. This approach has served as the
foundation for several fields due to its adaptability. KernelSHAP (abbreviated as SHAP) is
one of these branches.

SHAP approximates the original model with the surrogate model, chosen as a linear
one. Let the original black-box model (i.e., GAN) be f and the surrogate model be denoted
as g. Moreover, let z′ be a reduced vector of ones and zeros that enables or disables certain
features of z, also known as the coalition vector. If m denotes the size of z and ξ is the
number of ones in z′, SHAP’s loss function is defined as

L( f , g, πx) = ∑
z′∈Z

[
f
(
hx
(
z′
))
− g
(
z′
)]2

πx
(
z′
)
, (6)

where hx(z′) reshapes the reduced vector z′ ∈ Rξ to Rm and Z denotes the set of all possible
reduced vectors to be generated by taking subsets of features from z ∈ Rm. The SHAP
kernel πz′ in (6) is given by:

πx
(
z′
)
=
[ m!

ξ! (m− ξ)!

]−1
. (7)

The SHAP kernel is critical for giving tiny or big coalitions greater weight than
coalitions that merely combine half of the traits (or close to it). The idea behind these
behaviors is that we can learn more about individual features if we can analyze them
separately (small coalitions) or if we have nearly all features except one (big coalitions).

The SHAP method is a reliable approach that can yield results equivalent to, if not
better than, that of LIME. It also draws on well-established notions such as Shapley values,
game theory, and LIME’s intuitive reasoning. However, similar to other permutation-based
methods, SHAP has the issue of creating unrealistic data points by replacing missing
attributes with random ones, which might lead to exaggerated interpretations.

2.2.4. Overview of xAI-Enhanced Approaches

This research parallels other initiatives to equip GANs with explainable techniques.
In [32], a study was conducted to investigate the similarity of the inner structure of CNN-
based generators employed in CycleGAN. The CycleGAN was previously used for face
aging in [33]. The study introduced a cross-GAN filter similarity index to analyze the
similarity of CNN filters across different GANs. Another explainable methodology called
GAN-based Model EXplainability (GANMEX) was developed in [34] by incorporating
the classifier into the GAN to generate one versus many explanations. By using Principal
Component Analysis in the latent feature space, important latent directions were identified,
which enabled a large number of interpretable controls through layer-wise perturbation [35].
In [36], an xAI-enhanced version of a baseline machine learning model is proposed that
is proved to outperform the original model in terms of interpretability and classification
accuracy. The SHAP technique was used to extract high-contributed features that led to
more accurate identification of vegetation pixels in [37].
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2.3. Proposed Workflow

The baseline CAAE network is depicted in Figure 2. The CAAE model includes the
encoder E, the generator G, and two discriminators, namely, Dimg and Dz. G is implemented
as an autoencoder. Given an input face image, the encoder E generates an encoded z (also
known as a latent vector), preserving the high-level personal feature of the input face. The
generator G uses the encoded z and the target age information as a label to generate a facial
image conditioned on the age. Two discriminator networks are imposed on the encoder E
and the generator G, respectively. Dz regularizes z to be uniformly distributed to smooth
the age transformation. Dimg enforces G to generate photo-realistic and plausible faces for
arbitrary z and age label. The objective function contains three terms: (1) the `2 norm of the
reconstruction error between the input image and the generated image by the generator
plus the total variation loss of the generated image to remove ghosting artifacts; (2) the
min-max objective function to train the encoder and Dz; and (3) the min-max function to
train Dimg. Let x denote the input face image, l refer to an age label, and z be the encoded
variable in the output of the encoder E(x) = z. Moreover, let L(·, ·) and TV(·) be the `2
error norm and the total variation, respectively. If pdata(x) is the distribution of the training
face images, p(z) denotes the prior distribution, and z′ ∼ p(z) implies random sampling
from the prior distribution, the objective function optimized by CAAE is defined in (8), i.e.,

{E∗, G∗, D∗z , D∗img} = argmin
E,G

argmax
Dz ,Dimg

{
λ L(x, G(E(x), l)) + γ TV(G(E(x), l))

+Ez′∼pz(z)[log Dz(z′)] +Ex∼pdata(x)[1− log Dz(E(x))]

+Ex,l∼pdata(x,l)[log Dimg(x, l)] +Ex,l∼pdata(x,l)[log
(
1− Dimg(G(E(x), l))

)
]
}

,

(8)

where the coefficients λ and γ balance the smoothness and high-resolution terms.

Figure 2. The CAAE architecture.

CAAE is capable of generating highly realistic face images with both regressive and
progressive effects. Unlike other methods, CAAE does not need paired examples of data
for training or labeled faces in the testing data, making it more flexible. The separation of
age and personality information in the latent space of z results in maintained individual
personalities and the elimination of any ghosting artifacts. Finally, CAAE is not influenced
by alterations in pose, emotions, or occlusion.

Another network termed xAI-GAN refers to the technique that aims to enhance GANs
to provide better synthetic or reconstructed images through the incorporation of an xAI
system [38]. In this way, corrective explanatory feedback is provided during training from
the discriminator to the generator. Figure 3 depicts the system architecture of xAI-GAN.

Given a noise sample z from a noise distribution, the untrained generator G creates an
image G(z) that is then fed to discriminator D. The output of the discriminator D(G(z)),
the generated image G(z), and the discriminator network D are channeled to the xAI system
seeking an explanation of the loss incurred by the synthetic image G(z). The general idea
behind the xAI-guided training process of a GAN is that the xAI system works as a guide.
The xAI system acts by structuring the gradient descent in such a manner that generator
training is focused on the most essential input features that the discriminator identifies.
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Prediction 

Figure 3. xAI-GAN system architecture.

The proposed framework follows the network structure in CAAE, which includes
an encoder E that converts RGB images to latent vectors z, a generator G that converts z
to RGB images, a discriminator Dz that enforces a uniform distribution on the encoder’s
output, and a discriminator Dimg that ensures the generator creates realistic images. CAAE
incorporates two discriminators to improve the realistic properties of the generated facial
images. The proposed xAI-CAAE aims to leverage xAI systems to strengthen and enrich
the age progression and regression accomplished by CAAE. In CAAE, the discriminator
offers feedback to the generator using a single loss value per generated image. The aim of
xAI-guided training is to enhance this feedback by providing the xAI system’s “reasoning”
for the discriminator’s decision. The architecture of xAI-CAAE is depicted in Figure 4.

Figure 4. Proposed xAI-CAAE architecture.

In xAI-CAAE, a modified gradient descent generator training process is established
so that generator training focuses on the most significant features for the discriminator’s
prediction. An xAI system employs a score function Sc to determine the explanation matrix
M = Sc(G(z)) after propagating the loss through the discriminator Dimg to find ∆G(z).
The matrix M, which refers to pixels, is made up of real numbers in the range [0, 1], with
greater values indicating more important features for the discriminator’s prediction. More
specifically, in Saliency maps, if the pixel is given a value of 0 or near 0 in M, the pixel
under consideration does not influence the discriminator’s classification decision. On the
contrary, the pixel is considered extremely essential if given a value of 1 or near 1. These
values, when approaching 1, also show high-quality classification by the discriminator. In
SHAP, the Shapley value can be described as the mean incremental impact of each pixel
that is excluded in the discriminator’s output. This is computed by taking an average of
all the different combinations of pixels that form the complete image, starting from an
empty set of pixels. Accordingly, the explanation matrix M allows us to concentrate the
learning process on the most important qualities, regardless of whether they were favorable
or harmful to the classification.

The proposed framework utilizes M to update the generator’s weights in a modified
gradient descent method. In CAAE, the adjustment of generator weights typically involves
calculating the gradient of the generator’s output with respect to the loss and then applying
the chain rule. This method is enhanced by first computing the explanation matrix M and
then multiplying it by the gradient of the generator’s output with respect to the loss. The
explanation matrix M is used to mask the latter gradient and the pixels that contributed to
the discriminator’s classification. As described, the modified gradient ∆G(z) is obtained
by taking the Hadamard product (element-wise multiplication) between ∆G(z) and M,
denoted as ∆G(z) �M, which serves as a mask for G(z) and restricts the gradient to the



J. Imaging 2023, 9, 96 9 of 23

most significant elements. Finally, the generator’s gradients ∆′G(z) are computed using the
modified gradient as

∆′G(z) = ∆G(z) + θ ∆G(z) �M, (9)

where θ is a parameter that determines the degree to which the xAI system affects the
original gradients.

3. Results

Here, experimental findings for the proposed framework are disclosed. In Section 3.1,
implementation details are provided for xAI-CAAE. Section 3.2 discusses the datasets
utilized in the experimental evaluation. In Section 3.3, the qualitative evaluation for xAI-
CAAE is described. A thorough quantitative evaluation for xAI-CAAE is discussed in
Section 3.4, while important facial features for face aging are investigated in Section 3.5
using the LIME explanation system.

3.1. Implementation Details

The implementation of the proposed xAI-CAAE framework is based on the publicly
available code for CAAE [7] (https://github.com/mattans/AgeProgression/tree/v1.0.0, ac-
cessed on 8 May 2023) and xAI-GAN [38] (https://github.com/explainable-gan/XAIGAN,
accessed on 8 May 2023). xAI-CAAE is implemented using the Pytorch 1.2.0 [39] li-
brary. The Captum 0.4.0 [40] library is also used to implement the Saliency and SHAP
explanations. For LIME, we used Lime 0.2.0.1.

The proposed xAI-CAAE, based on the setup described in [7], takes as input images of
size 128× 128× 3. Both the encoder E and the generator G use a kernel size of 5× 5. The
encoder consists of five convolutional layers, each of which is followed by a ReLU activation
function, and a fully connected layer, which is followed by the hyperbolic tangent activation
function. The generator consists of a linear layer and seven de-convolution layers, each
of which is followed by the ReLU activation function. The discriminator Dz is composed
of four fully connected layers. The discriminator Dimg uses a kernel size of 2× 2 and
comprises four convolutional layers, each of which is followed by batch normalization and
a ReLU activation function, as well as two fully connected layers followed by the sigmoid
activation function.

The input image intensities are normalized within the range [−1, 1], and then they
are fed to the encoder E. The output of E is represented by the encoded vector z, whose
elements are also limited within the range [−1, 1] due to the hyperbolic tangent activation
function. Subsequently, the age and gender information is transformed into a one-hot
vector, which is also constrained to the range [−1, 1] (instead of the usual range [0, 1]), and
then concatenated with the encoded vector z. This concatenated vector is used as input for
the generator G, which generates an image with intensities within the range [−1, 1] due to
the hyperbolic tangent activation function. During the training process, the mini-batch size
is set to 64, and the network’s four blocks (E, G, Dz, and Dimg) are updated accordingly.
The Adaptive Moment Estimation (ADAM) optimizer [41] with a learning rate of 0.0002,
β1 = 0.9, β2 = 0.999, and weight decay of 10−5 is employed. The network is trained for
200 epochs.

In order to integrate the xAI system with CAAE, a sigmoid activation layer is added to
Dimg, which provides predictions within the range [0, 1]. By doing so, the prediction of Dimg
for generated images is in the [0, 1] range, allowing images with high prediction values to
be masked. The explanation matrix derived from any of the xAI systems undergoes two
processing steps by taking the absolute value of the elements of M and then normalizing
the resulting absolute values. The processed explanation matrix M is utilized as a mask for
G. The autograd package [42] of Pytorch, which supports automatic tensor differentiation,
is utilized in the xAI implementation. To modify the gradients of the generator using the
explanation matrix M and adjust the backpropagation method, the register backward

https://github.com/mattans/AgeProgression/tree/v1.0.0
https://github.com/explainable-gan/XAIGAN
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hook method is used, as described in Section 2.3. After half of the training epochs, xAI-
guided gradient descent is utilized, as per [38].

3.2. Datasets

The proposed xAI-CAAE framework is trained on a set of images that were collected
from the CACD [15] and the UTKFace [7] dataset. This set of images was collected and
used to train the face aging approach in [25]. It includes 21,267 face images distributed to
seven age classes: 0–10, 11–18, 19–29, 30–39, 40–49, 50–59, and 60+ years old (the oldest
person is 80 years old). The same split to age classes has been considered in many facing
approaches [25,43]. Approximately the same number of images belongs to each age class.
Each gender is equally distributed in each class.

The FGNET aging dataset [17] is employed for testing xAI-CAAE. FGNET comprises
1002 face images of 82 different subjects, whose age varies from 0 to 69 years. FGNET is a
dataset frequently used in facial aging research [7,44,45].

The Adience dataset [19] is a collection of images collected from the social network
Flickr. The dataset comprises 26,580 images distributed to eight age classes: 0–2, 4–6, 8–13,
15–20, 25–32, 38–43, 48–53, and 60+. The dataset is very challenging for age and gender
classification due to the unconstrained, real-life capturing conditions of its images. This
dataset is used to investigate which facial regions are important for age classification by
leveraging LIME explanations, as described in Section 3.5.

3.3. Qualitative Evaluation of xAI-CAAE

The proposed framework generated age progression and regression results on the
FGNET dataset using two xAI systems, Saliency and SHAP. These results are depicted in
Figure 5a and 5b, respectively. Figure 5c depicts comparative results for the original CAAE.
The images in the first column of each figure illustrate the sample FGNET images from each
age class, while the rest of the columns illustrate the generated images in each age class.
The ground truth age class of each image is indicated by a red box. In the experiments
shown in Figure 5, the xAI-CAAE parameters were set to a z size of 100 and θ = 0.2 in (9).
In Figure 6, results with a z size of 100 and θ = 0.5 in (9) are depicted.

Comparison between xAI-CAAE and CAAE. As can be observed in Figure 5, xAI-
CAAE yields plausible and satisfying age progression and regression results. The images
generated by xAI-CAAE are more realistic, with fewer distortions compared to the images
generated by CAAE. For example, in the second row of Figure 5a–c, age-progressed and
regressed images generated by xAI-CAAE using either Saliency or SHAP are notably
more pleasing compared with the images generated by CAAE, which produced blurring
in the image, especially around the area of the eyes. The same can be observed for
the images in the fourth row of Figure 5a–c, where xAI-CAAE using either Saliency
or SHAP generates more realistic facial images compared to the images generated by
CAAE that include eye distortions, especially for age progression (columns 6–8). Similar
observations can be made for the age progression and regression results in Figure 6a–c.
For example, inspecting the images in the second, third, and fifth rows shows that the
proposed framework produces more realistic images with fewer artifacts compared to
the images generated by CAAE. The qualitative inspection reveals the advantages of
using xAI techniques in the CAAE network.

Comparison between different xAI techniques in xAI-CAAE. Comparing the results
achieved by xAI-CAAE in Figures 5a,b and 6a,b, xAI-CAAE with Saliency achieves com-
petitive performance to xAI-CAAE using SHAP. In some cases (e.g., the fifth and sixth
rows in Figure 5a,b), the images generated by xAI-CAAE using Saliency are sharper and
more detailed compared to the ones generated by xAI-CAAE using SHAP. However, in the
same rows, the images generated by xAI-CAAE using SHAP more realistically represent
the process of face aging, especially in the older age classes. More specifically, the SHAP
method seems to render with greater success the characteristics of face age progression,



J. Imaging 2023, 9, 96 11 of 23

i.e., faces with wrinkles around the eyes and mouth (see column 8 in the sixth row of
Figure 5a,b).

Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

(a)

Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

(b)

Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

(c)

Figure 5. Age progression and regression results obtained by xAI-CAAE for the size of latent vector
z equal to 100 and θ = 0.2, when using (a) Saliency and (b) SHAP xAI systems to sample images of
FGNET. The results in (c) are obtained by the original CAAE without incorporating any xAI system
for the same size of the latent vector z. The first column depicts input images, and the rest of the
columns depict the age-progressed and regressed images. The red boxes indicate the generated
images belonging to each input image’s ground truth age class.
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Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

(a)

Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

(b)

Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

(c)

Figure 6. Age progression and regression results obtained by xAI-CAAE for the size of latent vector
z equal to 100 and θ = 0.5, when using (a) Saliency and (b) SHAP. The results in (c) are obtained
by the original CAAE without incorporating any xAI system for the same size of the latent vector
z. The first column depicts input faces, and the rest of the columns depict the age-progressed and
regressed generated images. The red boxes indicate the generated images belonging to each input
image’s ground truth age class.

3.4. Quantitative Evaluation of xAI-CAAE

In this Section, xAI-CAAE is evaluated using the quantitative evaluation metrics
described in Section 3.4.1.
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3.4.1. Evaluation Metrics

Fréchet Inception Distance. To evaluate the quality of images generated by CAAE
and xAI-CAAE, the Fréchet Inception Distance (FID) is employed. This metric has been
shown to align with human perception of image quality [16]. FID works by mapping a set
of images to a feature space defined by a specific layer of the Inception model. The layer’s
activation values are used to estimate statistics such as the mean vector and the covariance
matrix, which are employed to create a multi-dimensional Gaussian distribution. Finally,
the Fréchet Distance between the distributions estimated from the real and generated
images is calculated and denoted by the FID score. When the FID score is lower, it signifies
that the generated images closely resemble the real images, indicating that high-quality
visual images have been produced.

Age Estimation. In order to assess the plausibility of the images generated for a
specific age group, the DEX age estimation model [18] is used to estimate the age of both
the age-progressed and regressed images. The classification accuracy and 1-off classification
accuracy, which measures the accuracy when the estimated age class is off by one age group
from the actual age class, are the evaluation criteria used. Additionally, the Adjusted-Mean
Absolute Error (MAE) is also employed as an evaluation metric, following the methodology
in [25]. The MAE considers the discrepancy between the estimated age and the age range
of the targeted age group. Let ã be the estimated age for a generated image that resembles
the aging characteristics of an age class with range [al0, al1]. If ã < al0, Adjusted-MAE
is calculated as |al0 − ã|. If ã > al1, Adjusted-MAE is calculated as |al1 − ã|. Finally, if
al0 < ã < al1, Adjusted-MAE is zero.

3.4.2. Evaluation Results Using FID Score

FID scores for the original FGNET images. Table 1 summarizes the FID scores for
the original FGNET images. The FID score is a measure of how closely the training images
resemble the original FGNET images and is calculated by comparing the two sets of images.
The results show that the FID scores for the images in the older age classes (C5 − C7) are
higher than those in the younger age classes, suggesting that the training images in the
older age classes are less similar to the original FGNET images in those classes compared to
the training images selected from the younger age classes and the original FGNET images
in those classes.

Table 1. FID scores for the original FGNET images across age classes Ci, i = 1, . . . , 7. The number of
images that belong to each age class is listed in the second column.

Age Class Number of Images FID Score

C1 = [0, 10] 411 76.81
C2 = [11, 18] 276 61.69
C3 = [19, 29] 167 68.03
C4 = [30, 39] 79 87.53
C5 = [40, 49] 46 104.21
C6 = [50, 59] 15 141.61
C7 = [60, 80] 8 162.13

FID scores for images generated by CAAE. In Table 2 the FID scores of the images
generated by CAAE in age classes Ci, i = 1, . . . 7 are listed. Following the analysis in
Section 3.4.1, the images with higher visual quality result in a lower FID score. The best
value in each row is indicated in boldface. The lowest FID score is obtained in all age
classes when the input age class is the same as the target age class (C5) or when the input
and target age classes are adjacent (C1 − C4, C6). As can be seen, the input age class C7 has
the lowest FID score for translations to target class C2. Since a relatively limited amount of
FGNET images are contained in this age class (see Table 1), the estimated distribution for
the real FGNET images that belong to class C7 may be unrepresentative.
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Table 2. FID scores for the images generated by CAAE for the size of latent vectors z equal to 100 in
age classes Ci, i = 1, 2, . . . , 7. The best value in each row is indicated in boldface.

Input Target Age Class

Age Class C1 C2 C3 C4 C5 C6 C7

C1 93.51 77.30 78.50 80.83 78.63 79.71 80.49
C2 79.96 77.50 76.58 80.77 76.92 77.93 79.04
C3 83.57 74.71 78.58 77.54 76.09 75.42 77.43
C4 97.57 92.40 91.86 90.06 89.42 94.41 91.21
C5 115.48 108.74 105.38 105.82 103.31 109.18 108.22
C6 137.41 129.38 132.62 127.72 126.99 127.10 124.24
C7 145.50 131.44 143.80 137.37 134.87 132.69 137.51

FID scores for images generated by xAI-CAAE. Tables 3 and 4 summarize the FID
scores for the generated images by xAI-CAAE for latent vectors of size 100 and θ = 0.2 using
Saliency and SHAP explanations, respectively. The best value in each row is indicated in
boldface. Explanatory methods are used in order to more effectively assimilate the features
of a facial image and provide images of higher quality than those generated by CAAE.
In Tables 3 and 4, the FID scores that outperform the original CAAE are marked with
gray color to facilitate visual inspection. It is clear that when compared with the original
CAAE, the xAI-CAAE using SHAP produces better FID scores for more translations than
the xAI-CAAE utilizing Saliency explanations. Comparing the two xAI systems, it can
be seen that the SHAP explanation method in Table 4 gives marginally improved images
in some cases compared with the Saliency explanation method in Table 3. For example,
all generated images by xAI-CAAE using SHAP to target age class C3 (fourth column in
Table 4) demonstrate lower FID scores compared with the images generated by xAI-CAAE
using Saliency (fourth column in Table 3).

Comparison of FID scores for different θ values. To investigate the impact of pa-
rameter θ, another experiment is conducted by assigning a greater value to parameter
θ, i.e., θ = 0.5. This way, the modified gradient multiplied by the explanation matrix M
is given greater weight, expecting to affect face aging more intensively. Tables 5 and 6
summarize the FID scores for the images generated by xAI-CAAE with latent vectors of
size 100 using Saliency and SHAP explanations, respectively. The best value in each row
is indicated in boldface, while the FID scores that outperform those of the original CAAE
are highlighted in gray. By inspecting Tables 5 and 6, it can be seen that the proposed
framework achieves lower FID scores when using SHAP than when using Saliency. More
specifically, in 73.47% of the cells (36 cells out of 49) in Tables 5 and 6, the xAI-CAAE
with SHAP explanations achieved a better performance than the xAI-CAAE with Saliency
explanations with respect to the FID score.

Table 3. FID scores for images generated by the proposed xAI-CAAE for latent vectors z of size 100
and θ = 0.2 using Saliency explanation in age classes Ci, i = 1, . . . , 7. The best value in each row
is indicated in boldface. The FID scores that outperform those of the original CAAE (Table 2) are
highlighted in gray.

Input Target Age Class

Age Class C1 C2 C3 C4 C5 C6 C7
C1 88.44 76.81 79.77 79.73 77.61 77.93 79.62
C2 83.91 81.68 81.47 81.12 79.80 80.16 78.72
C3 83.16 82.64 83.09 83.15 81.47 82.02 83.61
C4 103.90 92.46 94.31 100.82 94.27 91.95 96.96
C5 119.68 107.53 112.02 112.97 113.55 105.92 113.72
C6 153.28 132.22 142.72 123.51 136.57 139.22 139.33
C7 134.93 133.58 136.56 120.42 128.27 133.16 136.79



J. Imaging 2023, 9, 96 15 of 23

Table 4. FID scores for images generated by the proposed xAI-CAAE for latent vectors z of size
100 and θ = 0.2 using SHAP explanation in age classes Ci, i = 1, . . . , 7. The best value in each row
is indicated in boldface. The FID scores that outperform those of the original CAAE (Table 2) are
highlighted in gray.

Input Target Age Class

Age Class C1 C2 C3 C4 C5 C6 C7
C1 91.76 75.31 72.07 77.33 75.06 78.38 76.11
C2 85.24 78.74 79.19 79.38 79.12 79.16 79.17
C3 82.59 80.25 77.81 74.43 76.85 77.73 77.74
C4 101.42 89.87 91.11 92.76 92.86 92.01 94.62
C5 119.23 106.70 108.25 107.91 109.82 112.48 111.47
C6 145.47 116.81 121.69 121.18 126.64 130.71 127.28
C7 137.68 141.90 134.83 145.01 133.76 129.72 146.28

By comparing Tables 3 and 5, it can be seen that the increase in parameter θ has
lowered the FID scores in almost all cases of xAI-CAAE with Saliency explanations. Only
six cells in Table 5 have greater FID scores than the corresponding cells in Table 3, i.e.,
cells [C1, C1], [C7, C1], [C5, C4], [C7, C4], [C7, C6], and [C7, C7]. Comparing the FID scores for
xAI-CAAE with SHAP explanations in Tables 4 and 6, it is found that FID is reduced by
increasing θ. FID scores for θ = 0.5 in Table 6 are smaller than the FID scores for θ = 0.2 in
Table 4 in the vast majority of translations. Only six cells in Table 6 resulted in a larger FID
than the same cells in Table 4. By inspecting the gray cells in Tables 5 and 6, one finds that
the increase in the value of θ has led to improved FID scores than those achieved by the
original CAAE (see Table 2) as well as when θ = 0.2. The quantitative evaluation using the
FID score has demonstrated the improved performance of xAI-CAAE when explanations
are incorporated from either Saliency or SHAP compared to the original CAAE without
explanations. Notably, FID reduces when parameter θ increases, i.e., when a greater weight
is assigned to the explanation system during training for both Saliency and SHAP. These
quantitative results agree with the qualitative results depicted in Figures 5 and 6 that
demonstrate the visual quality of the age progressed and regressed images generated by
xAI-CAAE.

Table 5. FID scores for images generated by the proposed xAI-CAAE for latent vectors z of size 100
and θ = 0.5 using Saliency explanation for age classes Ci, i = 1, . . . , 7. The best value in each row is
indicated in boldface. The FID scores that outperform the original CAAE (in Table 2) are highlighted
in gray.

Input Target Age Class

Age Class C1 C2 C3 C4 C5 C6 C7
C1 89.13 74.18 73.19 76.73 77.11 77.10 75.58
C2 81.34 76.53 79.04 79.40 76.61 77.23 75.80
C3 80.04 81.52 78.92 75.37 77.52 76.44 77.20
C4 94.75 87.55 89.68 86.18 89.43 89.89 88.95
C5 114.29 105.91 101.32 118.98 112.86 100.82 110.00
C6 141.69 117.76 120.19 116.91 126.94 118.87 125.98
C7 137.04 122.92 135.70 123.84 127.32 134.07 149.07

Diagram comparison of FID scores for images generated by CAAE and xAI-CAAE.
To simplify the comparison of xAI-CAAE with the original CAAE, the FID score for all
generated images in each age group is presented in Table 7. The distribution of the original
FGNET images belonging to each age class, such as Ck, and all the generated images
that resemble the aging features of this class, i.e., the images generated to age classes
Cl → Ck, l = 1, . . . , 7, are used to calculate the FID score. Table 7 gathers FID scores for xAI-
CAAE when parameter θ takes value either 0.2 or 0.5. As can be seen in Table 7, xAI-CAAE
with SHAP explanation marginally outperforms CAAE for θ = 0.2. When θ = 0.5, xAI-
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CAAE with both Saliency and SHAP explanations outperforms CAAE. Notably, xAI-CAAE
using SHAP achieves a large percentage of improvement in FID score compared to the
original CAAE. The FID scores obtained from the calculations in Table 7 are comparatively
depicted with bar diagrams in Figure 7. This representation was chosen in order to provide
a visual illustration of the impact of the parameter θ on the scores. For θ = 0.2, the
proposed framework achieves competitive performance compared to the original CAAE
(Figure 7a). For θ = 0.5, xAI-CAAE with either Saliency or SHAP explanations consistently
outperforms CAAE (Figure 7b), while the greatest performance gain is achieved by xAI-
CAAE that employs SHAP explanations. Figure 7a,b demonstrate that increasing the value
of parameter θ, which enhances the impact of the incorporated xAI technique, results in
improved FID scores for the proposed xAI-CAAE, thus enabling the xAI-CAAE to surpass
the original CAAE.

Table 6. FID scores for images generated by the proposed xAI-CAAE for latent vectors z of size 100
and θ = 0.5 using SHAP explanation for age classes Ci, i = 1, . . . , 7. The best value in each row is
indicated in boldface. The FID scores that outperform the original CAAE (in Table 2) are highlighted
in gray.

Input Target Age Class

Age Class C1 C2 C3 C4 C5 C6 C7
C1 89.49 70.90 69.95 70.22 69.25 73.65 72.88
C2 76.00 74.77 73.08 74.26 72.86 74.79 74.50
C3 79.17 76.56 76.54 73.36 74.71 73.33 72.67
C4 93.85 87.22 86.05 86.58 89.39 88.05 90.12
C5 112.37 101.81 109.32 107.68 109.64 107.66 106.52
C6 135.24 134.39 117.76 126.24 152.73 118.30 142.22
C7 131.26 136.74 134.48 128.89 144.58 142.89 135.19

Table 7. FID scores for the images generated by xAI-CAAE and CAAE for latent vectors z of size 100
in age classes Ci, i = 1, . . . , 7. The best value in each row is indicated in boldface.

Age Class CAAE
xAI-CAAE (θ = 0.2) xAI-CAAE (θ = 0.5)

Saliency SHAP Saliency SHAP

Ck → C1, k = 1, . . . , 7 65.16 65.37 65.76 62.79 61.69
Ck → C2, k = 1, . . . , 7 58.16 60.20 59.45 57.39 54.67
Ck → C3, k = 1, . . . , 7 58.78 61.20 58.31 57.77 54.75
Ck → C4, k = 1, . . . , 7 61.18 62.18 59.18 58.51 54.97
Ck → C5, k = 1, . . . , 7 58.97 60.39 58.96 58.92 54.55
Ck → C6, k = 1, . . . , 7 59.75 60.99 59.69 58.71 55.79
Ck → C7, k = 1, . . . , 7 61.04 61.74 59.54 58.24 56.24

3.4.3. Evaluation Results Using Age Estimation

Age estimation results for images generated by CAAE and xAI-CAAE. The pre-
trained DEX age estimation model [18] was employed to determine the age estimation
results of images produced by xAI-CAAE. The results of the age estimation are presented
in Table 8, using the Adjusted-MAE evaluation metric described in Section 3.4.1. The fourth
and fifth columns of Table 8 show the age estimation results for xAI-CAAE with latent
vectors of size 100 and θ = 0.2, while the last two columns display the results for the
same size of latent vectors but with θ = 0.5. In addition, age estimation results for images
generated by CAAE are presented in the third column of Table 8, and the second column
displays the evaluation metric computed for the original FGNET images. Table 8 includes
results in the second column that serve as evidence of the accuracy of DEX age estimations
on the 1002 FGNET images considered as ground truth. It should be noted that these results
are not directly comparable to those computed for xAI-CAAE (columns 4–7) and CAAE
(column 3), which were obtained for translations of the FGNET images to each of the 7 age
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classes resulting in a total of 7041, i.e., 1002 × 7 images per column. The evaluation of age
classification accuracy and 1-off accuracy are summarized in Tables 9 and 10, respectively.

(a)

(b)

Figure 7. Bar diagram comparison of the FID scores in Table 7 achieved by the xAI-CAAE with latent
vectors z of size 100 and (a) θ = 0.2, (b) θ = 0.5 against the FID scores of CAAE with latent vectors of
the same size for all images generated to resemble the aging characteristics in each age class.
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Table 8. Adjusted-MAE in age estimation for the proposed xAI-CAAE using Saliency and SHAP
explanations. Age prediction is performed using the pre-trained model in [18]. Adjusted-MAE for
the original FGNET images and the images generated by the original CAAE are also listed. The best
value in each row (excluding column 2) is indicated in boldface. The results in the second column
prove the correctness of the DEX age estimations on the ground truth FGNET images and cannot
directly be compared to the results listed in the remaining columns.

Adjusted-MAE

Age Class FGNET CAAE
xAI-CAAE (θ = 0.2) xAI-CAAE (θ = 0.5)

Saliency SHAP Saliency SHAP

C1 13.03 12.99 15.29 11.41 12.93 11.03
C2 5.83 5.65 5.98 4.56 5.31 4.12
C3 5.81 3.08 3.94 3.09 2.30 2.74
C4 10.94 9.30 10.01 9.60 8.76 9.47
C5 9.15 16.08 16.19 15.90 16.34 16.91
C6 0.20 22.56 21.54 22.83 22.44 23.96
C7 10.13 29.64 29.20 30.29 30.64 31.01

Ck, k = 1, . . . , 7 18.05 17.45 18.37 17.46 17.15 16.90

Table 8 shows that xAI-CAAE achieves the best Adjusted-MAE for all age groups,
using either Saliency or SHAP and either θ = 0.2 or θ = 0.5. While the differences in
Adjusted-MAE between xAI-CAAE and CAAE are negligible for some age groups (such
as C7, where the top Adjusted-MAE for xAI-CAAE is 29.20 years compared to 29.64 years
for CAAE), the differences are more significant for younger age groups, particularly C1
and C2, where xAI-CAAE achieves Adjusted-MAE scores 1.96 and 1.53 years lower than
CAAE, respectively. Furthermore, xAI-CAAE using SHAP with θ = 0.5 achieves the best
Adjusted-MAE for all generated images (as indicated in the last row of Table 8). Hence,
incorporating xAI systems in CAAE has made it easier to generate images that closely
resemble the aging characteristics of the target age class.

Similar observations can be made for the age classification results in Tables 9 and 10.
The proposed framework (using either Saliency or SHAP, with either θ = 0.2 or θ = 0.5),
achieves the top accuracy and the top 1-off accuracy for all age classes (all rows in
Tables 9 and 10). It should be noted that the most significant gain in accuracy (+5.69%) for
xAI-CAAE compared to the original CAAE is achieved for age class C2 when using SHAP
with θ = 0.5. As can be seen, the best results on age estimation accuracy are reported for
age classes C2 = [11, 18] and C3 = [19, 29] for both CAAE and xAI-CAAE. From the results
in column 2, which as mentioned are not directly comparable to the results in columns 3–7,
it can be seen that the pre-trained age estimation model achieves better accuracy scores
for the age classes C2 = [11, 18], C3 = [19, 29], C6 = [50, 59], and C7 = 60+ on the original
FGNET images. The accuracies achieved by both CAAE and xAI-CAAE for classes C2 and
C3 are also high, but lower scores are achieved for the elder age classes C6 and C7. The
results in column 2 for the age classes with a small number of original FGNET images (see
Table 1) may not be fully representative due to the limited sample size.

Regarding 1-off accuracy, in Table 10, the most significant differences between xAI-
CAAE and CAAE are noted for age classes C1, C4, and C6 where the absolute differences
compared to the results achieved by CAAE are 10.88%, 6.48%, and 5.59%, respectively. It
can be seen that 1-off accuracy is significantly better than accuracy for all age classes,
with the highest increases reported for age classes C1 and C4 (2752.11% and 1999.09%,
respectively for xAI-CAAE with SHAP and θ = 0.5). The improved performance of
the images generated by xAI-CAAE on age classification illustrates the strength of
xAI explanations to guide the generator for realistic age progression and regression
more effectively.
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Table 9. Accuracy of age classification for the proposed xAI-CAAE using Saliency and SHAP
explanations. Age prediction is performed using the pre-trained model in [18]. Accuracy for the
original FGNET images and the images generated by the original CAAE are also listed. The best
value in each row (excluding column 2) is indicated in boldface. The results in column 2 prove the
correctness of the DEX age estimations on the ground truth FGNET images and cannot directly be
compared to the results in the remaining columns.

Accuracy (%)

Age Class FGNET CAAE
xAI-CAAE (θ = 0.2) xAI-CAAE (θ = 0.5)

Saliency SHAP Saliency SHAP

C1 10.22 1.70 3.99 2.99 3.39 1.90
C2 38.41 35.03 34.33 39.02 34.43 40.72
C3 52.69 59.68 55.99 54.39 61.48 59.68
C4 8.86 4.29 2.69 4.89 5.19 3.29
C5 4.35 3.29 2.59 2.99 3.69 2.89
C6 26.67 5.99 7.88 6.89 6.79 5.79
C7 75.00 10.08 13.37 9.58 9.18 10.88

Ck, k = 1, . . . , 7 25.45 17.15 17.27 17.25 17.74 17.88

Table 10. Results for 1-off accuracy of age classification for the proposed xAI-CAAE using Saliency
and SHAP explanations. Age prediction is performed using the pre-trained model in [18]. The 1-off
accuracy scores of age classification for the original FGNET images and the images generated by the
original CAAE are also listed. The best value in each row (excluding column 2) is indicated in boldface.
The results in column 2 provide proof of the correctness of the DEX age estimations on the ground
truth FGNET images and cannot directly be compared to the results in the remaining columns.

1-Off Accuracy

Age Class FGNET CAAE
xAI-CAAE (θ = 0.2) xAI-CAAE (θ = 0.5)

Saliency SHAP Saliency SHAP

C1 52.80 45.01 43.71 55.89 51.00 54.19
C2 88.04 89.02 87.13 91.02 89.72 92.71
C3 80.84 90.22 87.82 91.02 92.81 91.42
C4 48.10 66.37 64.97 64.37 72.85 69.06
C5 54.35 12.48 15.57 16.07 13.07 11.18
C6 100 18.26 23.85 19.26 18.86 15.97
C7 75.00 19.66 22.06 18.06 16.77 17.96

Ck, k = 1, . . . , 7 67.76 48.72 49.30 50.81 50.73 50.36

Comparison of age estimation results for different θ values. Regarding the impact of
parameter θ on xAI-CAAE, it can be seen in Table 8 that both xAI-CAAE using Saliency and
SHAP achieve better Adjusted-MAE scores for θ = 0.5 compared with the corresponding
results for θ = 0.2 for the younger age classes (C1–C4). The opposite is true for the older age
classes (C5–C7) where both xAI-CAAE using Saliency and xAI-CAAE using SHAP achieved
better scores for θ = 0.2. It is noted that, in general, the predictions of the pre-trained age
estimation model for the images generated by both xAI-CAAE and CAAE to these age
classes (C5–C7) are less accurate, resulting in higher Adjusted-MAE scores compared with
the ones achieved for age classes C1–C4.

3.5. Interpreting Age Classification Using LIME xAI-System

This experiment uses the LIME explanation system to investigate which facial features
are essential for face aging. As described in detail in Section 2.2.2, LIME provides an
insight into image areas (known as super-pixels) that a model trained on age classification
considers critical for the classification decision. The pre-trained age classification model
in [46], which is trained on the Adience dataset (see Section 3.2), is assessed using LIME.
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More specifically, the predictions of the pre-trained age classification model are fed to the
LIME explanation system. Subsequently, LIME is used to explain the areas of the image
that mainly influence the classification decision. A good classification model is expected to
highlight areas of the face and not noise from the background. Since this is a fine-grained
classification problem, we expect the model to highlight areas in the face that indicate each
age class.

LIME provides a local interpretation of the age classification model and can be used to
explain the model’s behavior for each testing image, i.e., explain the individual predictions
to find out which input features are essential for the particular prediction. Figure 8 shows
a subset of the experimental results, which includes two examples of correctly classified
testing images and two examples of misclassified testing images in each class. It can be
seen that specific areas of the face light up according to age class, indicating the facial
areas that contributed the most to the classification decision. For example, the area around
the cheeks is highlighted in C1 (age 0–2), a characteristic of humans at that age. In C4
(age 15–20), the model identifies the area of the eyes as important, while the neck area
is highlighted in C7 (age 48–53). For the misclassified images, we notice that the same
regions are highlighted, but the noise from the background is also considered important.
This experiment demonstrates that by leveraging LIME in the training process of an age
classifier, the classifier’s attention can be directed toward the facial areas that play a crucial
role in accurate classification decisions. Additionally, considering the significant facial
areas of misclassified images can help the classifier reduce its attention to these areas and
improve the accuracy of age classification.

Figure 8. Explaining age classification predictions on Adience dataset. Two examples of correctly
classified images and two misclassified images in each class are shown. Super-pixels highlight
important areas of the face in each age class.

4. Discussion and Conclusions

In this paper, a novel explainable Conditional Adversarial Autoencoder, termed
xAI-CAAE, aims to provide corrective feedback from the discriminator to the generator
through an explanation matrix using Saliency maps and Shapley values as explanatory
techniques. The proposed framework has been thoroughly evaluated both qualitatively
and quantitatively. It has been demonstrated to have great potential as a competitive
framework for generating more realistic face images. The xAI system has contributed
significantly to face aging, as can be confirmed by quantitative evaluation metrics, such
as the FID scores and the age estimation on the generated images. LIME has also been
leveraged to investigate the facial areas important for age classification, yielding interesting
results. Future work will focus on deepening the xAI methods for face aging.
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