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Abstract: Drop-on-demand printing using colloidal or pigmented inks is prone to the clogging of
printing nozzles, which can lead to positional deviations and inconsistently printed patterns (e.g.,
data matrix codes, DMCs). However, if such deviations are detected early, they can be useful for
determining the state of the print head and planning maintenance operations prior to reaching
a printing state where the printed DMCs are unreadable. To realize this predictive maintenance
approach, it is necessary to accurately quantify the positional deviation of individually printed
dots from the actual target position. Here, we present a comparison of different methods based on
affinity transformations and clustering algorithms for calculating the target position from the printed
positions and, subsequently, the deviation of both for complete DMCs. Hence, our method focuses
on the evaluation of the print quality, not on the decoding of DMCs. We compare our results to a
state-of-the-art decoding algorithm, adopted to return the target grid positions, and find that we can
determine the occurring deviations with significantly higher accuracy, especially when the printed
DMCs are of low quality. The results enable the development of decision systems for predictive
maintenance and subsequently the optimization of printing systems.

Keywords: data matrix; pattern recognition; drop deviation; code recognition; quality assessment;
predictive maintenance

1. Introduction
1.1. Print Quality Assessment in the Context of Predictive Maintenance

Individual part marking is a technology that enables the digitization of production
processes. It allows the identification of single components, e.g., via unique identifiers
(UID), and, hence, facilitates assigning production parameters to these individual parts.
Based on these part-specific data, several measures for process optimization can be derived.
One option to carry out part marking is drop-on-demand printing (DoD, e.g., for barcodes
or data matrix codes (DMC)). If special colloidal inks containing glass and ceramic particles
are utilized, multiple unpublished experiments and use in real-world industrial applications
have shown that the printed codes can withstand the high temperatures used in hot forming
processes in the metal industry.
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An important aspect in metal processing is that marking a part means adding a
quality parameter to the component. If the print is not readable, the part does not fulfill its
quality specifications and, hence, must be considered scrap. This means that the printing
process requires constantly high quality and the printer must induce a minimum downtime.
These requirements can be met through the implementation of continuous monitoring and
predictive maintenance strategies for the printer.

In [1], we presented a new way to assess the printing system’s state for maintenance
planning, solely through the analysis of the printed pattern instead of hardware monitoring.
Our method is based on drawing conclusions concerning the remaining useful lifetime
(RUL) of the printing system from the temporal evolution of printing errors. This primarily
includes the deviation of individual printed dots from their target position.

The target positions (T) describe the center coordinates of the binary data cells (the
so-called modules) of an ideal DMC, which is perfectly aligned in a quadratic grid with
all rows and columns evenly distanced. The effect of print quality degradation goes back
to, e.g., partial nozzle clogging in the print head, which can induce different characteristic
deviations from the ideal quadratic printing result. In this work, we consider the following
two positional errors:

(1) The constant deviation of all modules in a column in the same direction from the
target position. This represents a misalignment of all ejected ink dots from one nozzle
of the print head.

(2) The so-called fading shift of the first few modules in a column. In this case, the
deviation from the target position is at its maximum for the first printed dot and
gradually decreases over the next dots in the same column. This behavior represents
a self-cleaning effect of the nozzle during printing. These errors are displayed in
Figure 1 below.

(a) (b)
Figure 1. Visualization of the different positional error modes on a specially printed test pattern of
16 columns and 20 rows (partially displayed): a fading shift of the first few dots (e.g., third and fourth
column from left) (a) and a constant shift of one or more columns (b).

In order to evaluate the temporal evolution of the printing quality and, hence, the
status of the printer, the deviation between the dots actually printed at positions P and
the target positions T needs to be calculated, while the set of positions P can directly be
retrieved from the recorded image of the DMC. The challenge of this approach lies in the
fact that the target positions T are a priori unknown. They need to be approximated from
the printing pattern itself. In this paper, we report our approach to solving this problem
computationally, which finally leads to an early quantification of printing errors not easily
noticed with the naked eye.
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1.2. Literature Review

To our knowledge, there is no previous work on analyzing drop-on-demand printing
in the described way and therefore also no previous work on how to precisely approximate
the target positions. In general, little work has been carried out on detecting and analyzing
DMCs. Few authors have contributed works towards recognizing and localizing codes
in images. Huang et al. presented an approach based on line segment detection and
border fitting by minimizing the distance of border points to the detected lines [2]. Other
authors utilized Hough transforms or the more specialized Radon transform to detect
lines and recognize the respective code symbols [3,4]. An approach that uses machine
learning (support vector machines) was published by Cho et al. [5]. Karrach and Pivarčiová
published an extensive comparison of different methods to localize data matrix codes and
compared their performances to their own method [6].

Furthermore, a number of standards exist that describe methods of detecting and
decoding DMCs and two-dimensional codes, respectively. ISO 15415 describes a stan-
dard methodology for grading and evaluating measurements of specific attributes of
two-dimensional symbols [7]. This standard also describes the five main tasks of decode
algorithms: localization of the symbol, determination of reference points, definition of the
nominal grid, error correction, and decoding the symbol. In our context, the third task is
of especially high interest. The decoding algorithms have in common that they define the
center positions for the set of modules and evaluate the contrast of the area around this
center (the aperture) in comparison to the entire symbol area to evaluate the binary value
of each module. One reference decode algorithm for DMCs is described in ISO 16022 [8]. It
fulfills the tasks defined in [7]. The main steps of this algorithm are to detect the edges of
the DMC symbol and to follow the edges that cross a horizontal or a vertical scan line to
filter contours meeting certain criteria to identify the L-shaped finder pattern. Through this
pattern the orientation of the DMC is defined by setting all modules (compare Figure 2: left
column and top row in both DMCs). Given the outer edges of the L-shaped finder pattern,
two more scan lines, parallel to the sides of L-shape, are defined and shifted until the
transitions along the scan lines on both sides match to identify the timing pattern, where
only every second module is set.

The reference decode algorithm from [8], like the other algorithms, is designed to
work with DMCs printed in such a way that neighboring modules are connected to each
other (Figure 2a). ISO 29158 [9] includes modifications to the definitions made in [7]
and also includes an algorithm to connect dots that are separated by a distance of less
than one module width, while not connecting areas that are separated by more than the
module width.

The accuracy of the method used to approximate the target positions directly impacts
the maintenance system of the printer. Therefore, we aim to introduce different algorithms,
compare their accuracy, and investigate their limits. We compare our algorithms to an
adaption of the code recognition method from Karrach and Pivarčiová [6], which we adapt
to codes printed with individual dots (Figure 2b) by first connecting the dots with the
methods defined by the International Standardization Organization in [9]. Finally, we select
one of the algorithms based on their performance but also considering the computational
efficiency and simplicity of implementation and suitability for a broad variety of use cases.

Our work contributes to building a predictive maintenance system, which is based
purely on the printed image and does not require additional sensors and monitoring of the
actual print head. Therefore, both the necessity and the effect of maintenance actions can
be monitored with higher relevance due to the close relation to decodability.
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(a) (b)
Figure 2. (a) A standard data matrix code with connected modules. (b) A dot-printed data matrix
code printed with the DoD process analyzed here.

2. Materials and Methods
2.1. Algorithms

We compare five different algorithms to approximate the target positions of dot-
printed DMCs. The first algorithm, Adapted Connected Data Matrix Code Recognition (CDCR),
is based on the best method published in [6]. The remaining four algorithms are categorized
according to both whether or not the algorithm requires any previous knowledge about the
printed symbol (e.g., the number of rows and columns), and the underlying mathematical
method, either based on clustering algorithms or on affine transformations.

To equalize the conditions for all algorithms and achieve comparable results for the
experiments with real images, we preprocess the raw images of the DMCs. The first
preprocessing step is to segment the ink dots from the background. Given the center
coordinates of each ink region from the segmentation, we perform a rotational adjustment
by rotating all coordinates stepwise by 0.5 degrees until the bounding box that includes all
coordinate points is minimized.

2.1.1. Adapted CDCR

The algorithm described in [6] works on standard DMCs printed with connected
modules, as shown in Figure 2a. To apply this algorithm to our problem given the center
coordinates of each segmented ink dot without making significant changes to the algorithm,
we first have to create a suitable input image. Therefore, we first create circular areas with
a predefined radius on a black background and then apply the dot-connecting algorithm
from ISO 29158 [9]. We point the reader towards the original publication of this algorithm
to understand more details and will only explain a few adaptations we made.

Karrach and Pivarčiová filtered the connected regions according to their size, their
ratio of width and height, and their extent. To find the L-shaped finder pattern from the
remaining regions, the authors searched for a region where at least three points formed
the vertices of an isosceles right-angled triangle. We replace this step by searching for the
region with the longest distance between any two points that are part of the respective
region. Due to the high resolution and the characteristics of our input images, partly caused
by artifacts from the dot-connecting algorithm, the original filtering was inconclusive.

Since we have extensive control of the imaging process and we do not simulate any
perspective distortion, we refrain from implementing the perspective distortion identifica-
tion step and continue with identifying the timing pattern. We identify the timing pattern
by copying the line segments defining the outer edges of the finder pattern and shifting the
copied segments towards and over the image center until they do not cross any foreground
pixels. We then shift the line segments back pixel-wise until we find the largest overlap
with the foreground, which gives us roughly the center of the timing pattern lines. The
number of transitions on the timing pattern determines the number of rows and columns.
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In the final step, the grid is defined as a regular coordinate matrix with equal row and
column distances.

2.1.2. Determining the Number of Rows and Columns in an Unknown DMC

Since our algorithms do not rely on finding the timing pattern to find the dimension
of the DMC, we find the possible dimensions by counting the number of positive modules
in the DMC. To find the limits to determine the dimensions, we created 100 random strings,
including uppercase, lowercase, digits and punctuation, of up to 40 characters, encoded
using the DMC standard, and evaluated the number of positive modules in each DMC. This
resulted in the limits shown in Table 1. If a DMC should fall into two possible dimensions,
we analyze it twice and use the result with lower deviation values.

Table 1. Stochastically determined limits of the number of positive modules in a data matrix code to
find the dimensions of the data matrix code from given dot coordinates.

Dimension Lower Limit Upper Limit

8 20 41
10 32 58
12 53 84
14 79 112
16 103 146
18 128 180
20 165 227

2.1.3. Clustering Algorithms

Approximating the target positions T using clustering approaches is based on the idea
that the deviation of the individual dots has a centered distribution. We create clusters of
points by projecting the entire set of center coordinates of the printed points P to either the
lowest column coordinate (to identify the row positions) or the lowest row value (to identify
the column positions). Different established clustering algorithms are tested to identify the
centers of the thereby formed clusters. We experiment using the mean-shift algorithm [10,11]
and the K-means algorithm [11–13]. The mean-shift algorithm’s independence from a priori
knowledge of the number of clusters and its performance working with uneven cluster sizes
exhibits a possible advantage when applied to DMCs with large deviations. This would be
attributed to the fact that some center coordinates might actually be closer to the next row or
column than to their respective target row or column.

Following the identification of cluster centers, the target coordinates are defined as
the combination of row cluster centers and all column cluster centers. This creates a grid
of regularly distributed coordinates, which we refer to as the set of approximated target
positions T.

2.1.4. Affine Transformations

A different approach to approximate the target positions T is described in the following
section. This approach also starts with the given coordinates of the printed modules P.
Given that an ideal data matrix code is square with the same constant distance between
each row and column, we can create a preliminary set T as a regular distributed grid of
coordinates with the required number of rows and columns. To find an appropriate seed
value for module size (equal to the distance between two consecutive rows or columns,
respectively), we use the maximum distance of two points in one dimension divided by the
approximated (see Section 2.1.2) or given dimension.

We then optimize T by minimizing the distance of each point in P to the closest point
in T over a set of affine transformation operations, viz. translation, rotation, and scaling
operations. We have shown in [1] that there are certain types of errors to be expected
when printing colloidal inks with the DoD technology. One of these errors is characterized
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by a fading deviation of the first few dots from each nozzle (typically three to four dots).
Given this knowledge, we also compare the optimization results considering this error by
applying a lower weighting to dots with a higher probability of being affected by the fading
deviation in the objective function. To determine the affected dots correctly, we recreate the
DMC matrix by either decoding the string from P and re-encoding it instead of creating the
full grid or by reading the string from our database. The latter would of course only be an
option in a production environment if the DMCs are analyzed by the same party that is
responsible for printing.

2.2. Experiments

The following section describes our experimental procedure to compare the different
algorithms in order to find the best match between the approximated target positions
Tapprox of each dot (used to compute the deviation of each printed dot) and the real target
positions T, which are only known in printing simulations, and to evaluate the results on
real data from long-term printing tests. We start the comparison by performing tests to
determine a comparable runtime and find performance differences in the different methods
of approximating the target positions. This is performed on a workstation equipped with
a 4.5 GHz CPU (Intel Core i9-10900X) by running each algorithm a hundred times and
comparing the mean computation time as well as the standard deviation. We are only
comparing the differences, not the absolute results, since the implementations are not
focused on performance at this point.

2.2.1. Simulation of Printing Errors

Quantifying the results of the individual algorithmic approximations of the target
positions requires knowledge about the real target positions, since it is insufficient to
compare approximated targets (T) to the printed positions (P). Therefore, we simulate
printed DMCs with the known failure modes from [1], which are constant column shifts (a
constant shift of all dots produced by one nozzle of the print head in the same direction),
fading column shifts (the directional shift of dots fades with the printing direction, typically
the first three or four dots), and the general positional uncertainty of all dots.

Using the simulated printing, we determine the impact of these three errors and ensure
that the results are independent of the encoded string and therefore the exact positions
in the DMC grid, which are printed or not. For the simulation we create square DMCs
with 16 rows and columns. We encode seven different strings and of each DMC up to
seven columns (out of the 16 columns) are manipulated to contain either both or one of the
shifting error modes. Additionally, one of seven different mean values is used to generate
the general positional uncertainty distribution, which is added to the positions P of each
simulated DMC and superposed with the shifting error modes. Each combination is created
ten times, resulting in 31,360 simulated DMC position arrays, which are used to compare
the algorithms. The quality of the approximation is quantified by the relative number of
positions in the DMC that is approximated correctly within a certain threshold (e.g., within
a five-pixel threshold away from the center of the module with a module size of 30 pixels,
which we named t1/6). Figure 3 displays how a single string is encoded as a DMC and
how the algorithms we describe are applied to evaluate their performance in matching the
approximated target positions Tapprox to the real target positions T.

2.2.2. Time Series

In addition to comparing the individual algorithms quantitatively, we apply the algo-
rithms to the printed positions segmented from real DMC prints by segmenting the dots
from the background and applying connected component labeling (compare [1,14]). The
DMCs are printed in experiments on our test bench. We produce two time series of DMCs
with 92 and 63 prints, respectively. All prints from both time series are analyzed individ-
ually before the mean deviation values computed through the individual algorithms are
plotted for comparison. The time series are compared qualitatively to find any irregularities
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that either do not match the visual impression of the printed DMCs or are caused by the
wrong behavior of the algorithms towards segmentation failures. The flowchart in Figure 4
shows how the images of the printed DMCs are preprocessed to find the coordinates of the
printed positions P before approximating the target positions T.

Figure 3. Flowchart of the methodology for the performance evaluation of our algorithms and
comparison against the Adapted CDCR algorithm. After creating the synthetic DMCs with the target
positions T, deviations are applied for the printed positions P. The algorithms are evaluated by the
distance between the approximated target positions Tapprox and the actual target positions T.

Figure 4. Applying the algorithms to actually printed DMCs after preprocessing by localizing the
region of interest (ROI) and segmenting the ROI to find the center positions of each blob. The printed
positions P are rotated until the smallest bounding box is found to ensure that the DMCs finder
pattern is parallel to the image axes. After applying the algorithms, the found positions are rotated
by the inverse rotation matrix from the previous step to match P.
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3. Results and Discussion
3.1. Runtime Performance

Even though runtime is not the primary decision factor used to determine which
algorithm is used for real-time maintenance information, it still gives an important insight
into the suitability of the algorithms. Both the clustering approach (C) and the affine
transformation approach (AT) can be combined with additional information if available to
guide the algorithm towards finding the correct target positions. We named the algorithms
accordingly as unguided and guided affine transformation (UGAT and GAT) and unguided
and guided clustering (UGC and GC). Figure 5 shows clear differences in how quickly the
target positions can be approximated by the algorithms based on affine transformations
and clustering, respectively, as well as a comparison to the adapted CDCR. It is important
to note that the implementations in this work are not optimized for performance. The
comparison only serves to show relative differences. It clearly indicates that the algorithms
based on affine transformations have a better performance than the algorithms based on
clustering and that both methods outperform the adapted version of the algorithm by
Karrach and Pivarčiová.

Figure 5. Runtime of the compared algorithms for a single data matrix code averaged over 100 runs,
including the standard deviation of the runtime.

3.2. Theoretical Performance Evaluated through Simulated Prints

Before comparing the algorithms on drop-on-demand-printed DMCs, we compare
them theoretically using simulated prints with known position grids and applying the
error modes previously described at different strengths. This allows us to compare the
approximated targets to the position grid, which represents the actual target positions,
and therefore to quantify the results accurately. Figure 6 displays how each algorithm is
capable of approximating the correct target positions when faced with either a significant
amount of fading shift errors (a) or constant shift errors (b). For this visualization, only
simulations with seven columns impacted by one or the other error and a general positional
uncertainty of ten percent of the module size were chosen. The results clearly indicate
that the algorithms have different capabilities when it comes to dealing with these errors.
The affine transformation algorithms are less affected by both the fading shift and the
constant shift error when compared to the clustering-based methods. The unguided affine
transformation clearly shows a greater number of matches in the case of the constant shift
error. Even though the results are not as clear for the fading shift error, due to the simple
implementation, which does not require any additional knowledge, the unguided affine
transformation (UGAT) is preferred over the guided affine transformation algorithm.

If all simulations described above are taken into account, i.e., including combinations of
both shifting error modes, this tendency continues (Figure 7): in comparison to the adapted
CDCR algorithm, the UGAT algorithm shows a much better performance. This includes
simulated DMCs where both the fading and the constant shift error are apparent and
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combined with larger general positional uncertainty than those in Figure 6. This explains
why the difference in performance is even more clear than in the previous comparison.

It is easily noticed that even though cases exist where the CDCR algorithm matches
all target positions, there are many cases where only an insufficient amount of positions is
matched at this threshold. This shows that even though the algorithm is highly capable
of decoding even low-quality DMCs, the requirements for decoding differ from what
we require to assess the quality of the prints and state of maintenance of the print head,
respectively.

(a) (b)
Figure 6. Distribution of the number of matches of real target positions and approximated target
positions T after applying a threshold of 1/6 of the module size for each of the tested algorithms.
(a) shows the distributions considering only the fading shift error while (b) shows the distributions
of matches when analyzing only the constant shift error. The blue bar displays the range between the
first and the third quartile. The whiskers span over 1.5 times the interquartile range (IQR) (Q3 − Q1)
and the outer contour is approximated through kernel density estimation (KDE).

Figure 7. Comparison of the best-performing algorithm from our work to an adapted version of the
best-performing algorithm with respect to decoding DMCs from [6], over all simulations described in
Section 2.2.1.

3.3. Comparison of Time Series of DoD-Printed DMCs

Last but not least, the algorithms are compared on DMCs printed using the drop-
on-demand technology. This is important as the preprocessing steps (localization and
segmentation) can introduce additional errors and uncertainties, which have to be com-
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pensated for by the algorithms. It is furthermore important to note that we do not know
the actual target positions in this experiment and can therefore only compare the results
qualitatively by observing the time series.

The time series printed in this case does not show any time-dependent behavior
according to the expert evaluation and our previous method of analysis. As a consequence,
it is easier to compare the time series and find differences as we do not have to compare
any rising trends, possibly measured with different increases. As seen in Figure 8, the time
series differ significantly. We do not consider the absolute values of the individual prints
but rather only the characteristics of the series and especially the variation over time.

It is clear to observe that the clustering approaches produce a signal with greater
variance and noise. The affine transformation approaches are similar both in absolute
values and in their evolution. Having a smoother signal with less noise enables more
confident conclusions to be made about the maintenance state of the system.

Figure 8. Comparison of the time series analysis by both versions of both the clustering- and the
affine-transformation-based methods. The differences in absolute values are not of as much interest
as the variance along the time axis.

4. Conclusions

In this paper, we present an in-depth analysis on how to accurately quantify the
printing quality of DMCs produced with a DoD printing system. The quality of the
evaluation depends on the quality of the underlying data. Therefore, our results are an
important step towards the practical implementation of a predictive maintenance system
for DoD printers. We investigate the performance of a number of different algorithms
to approximate the dot target positions. The results were compared quantitatively for
simulated data matrix code positions and qualitatively for real time series of printed
data matrix codes to validate the theoretical results and evaluate the consistency with
real-world data.

We show that the choice of algorithm used to measure the positional deviation of the
individual dots from the DoD printing technology has a large impact on the measured
printing quality. Even though detecting the rows and columns by clustering algorithms
works well for DMCs with little to no deviation, the quality of the approximation decreases
when there are more errors present. Overall, using affinity transformations results in more
accurate approximations of the target positions with, in most cases, almost 100 percent of
positions matched within the applied threshold, whereas the adapted decoding algorithm
in many cases only matches a small number of positions with the same threshold. The
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affinity transformations additionally result in more consistent evaluations of the printing
quality when applied to real-world data.

We conclude that even though the results of the affinity transformation can in certain
cases be increased by using additional knowledge, e.g., the encoded string, we generally
achieve sufficient results without additional knowledge. This makes our approach suit-
able for a wide range of applications, including those where no additional information
is available. We are currently working on implementing these results in an extensive
software environment for continuous system monitoring and the collection of data to build
a production-integrated decision system.
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ROI Region of interest
IQR Interquartile range
KDE Kernel density estimation
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UGAT Unguided affine transformation
GAT Guided affine transformation
UGC Unguided clustering
GC Guided clustering
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