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Abstract: Raster logs are scanned representations of the analog data recorded in subsurface drilling.
Geologists rely on these images to interpret well-log curves and deduce the physical properties
of geological formations. Scanned images contain various artifacts, including hand-written texts,
brightness variability, scan defects, etc. The manual effort involved in reading the data is substantial.
To mitigate this, unsupervised computer vision techniques are employed to extract and interpret the
curves digitally. Existing algorithms predominantly require manual intervention, resulting in slow
processing times, and are erroneous. This research aims to address these challenges by proposing
VeerNet, a deep neural network architecture designed to semantically segment the raster images
from the background grid to classify and digitize (i.e., extracting the analytic formulation of the
written curve) the well-log data. The proposed approach is based on a modified UNet-inspired
architecture leveraging an attention-augmented read–process–write strategy to balance retaining
key signals while dealing with the different input–output sizes. The reported results show that the
proposed architecture efficiently classifies and digitizes the curves with an overall F1 score of 35% and
Intersection over Union of 30%, achieving 97% recall and 0.11 Mean Absolute Error when compared
with real data on binary segmentation of multiple curves. Finally, we analyzed VeerNet’s ability
in predicting Gamma-ray values, achieving a Pearson coefficient score of 0.62 when compared to
measured data.

Keywords: raster log; digitization; transformer; deep learning; well-log curves

1. Introduction

Development or production wells are drilled specifically for extracting oil or gas
from fields that have been proven to have economic viability and recoverable reserves.
Well-logging is the process of taking measurements of various rock properties along the
length of the well down into the ground by drilling tools. The digital log curves are
functions of lithology, porosity, fluid content, and textural variation of formation. The well-
logging parameters are used to derive lithofacies groups and facies-by-facies descriptions
of rock properties. Before the advent of digital logging instruments, well-logging data were
drawn on the parameter graph in curve format. Well-logging parameter graphs have many
disadvantages: large size, ample memory space, and interference like gridlines. Therefore,
it is necessary to convert well-logging parameter graphs into X-Y coordinates, where
X represents parameter values and Y represents depth values. Raster logs are scanned
copies of paper logs saved as image files. Well-log data saved as depth-calibrated raster
images provide an economical alternative to digital formats for preserving this valuable
information in the future [1]. Although often discarded after vectorization, raster imaged
well-logs may be the key to a global computer-readable format for legacy hardcopy data.
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These legacy data are stored on multiple media and contains information for various
applications in addition to resource exploration and development, such as environmental
protection, water management, global change studies, and primary and applied research.
A raster log needs to be digitized using software, and digitized data are used for geological
subsurface modeling [2].

Well-logs are the primary means of determining formation depth and oil in place. A
log records information about the geological formations that were drilled. There are many
types of logs; each is used to determine specific information about the subsurface. Various
tools, such as electrical, radioactive, or acoustic, are used to take downhole measurements,
where an electrical cable and winch are lowered downhole, and the signal from the tool is
transmitted, received, and processed by displaying graphs on a computer that geologists
and engineers can interpret to determine the depths and thickness of formations of interest,
contour map of the formation, etc. [3]. In the pre-digital (1930–1970) era, energy profes-
sionals faced the problem of making profitable use of wireline well-log data, as they were
recorded as paper prints (analog), which are known as raster logs [4] (Figure 1). Up until
the 1970s, all well-log recordings were made using analog systems. The logs were made on
paper with ink or a light beam on photographic film. All the recordings were made in real
time. There were no recordings made for later playback. All these raster logs are archived
today in back room filing cabinets and/or on microfiche. The lost art of extracting vital
petrophysical “answers” from single-point readings taken off wavy curved lines on a paper
print can be quite daunting to those schooled in modern digital well-log recordings and
continuous data processing.

Figure 1. (a) 1,2,3 logs corresponding to GR, Caliper, and tension. (b) Header section showing the
scales, of curves (c) depth line coding for 5′ ′ log corresponding to 1000 m. Bottom: Flow chart
showing the proposed approach.

A typical raster log includes the header, which provides specific information about
the well, such as the operating company, well location information, and type of log run.
Even the very oldest log print is the standardized API log grid (see Figure 1). It consists of
three “tracks”, each 21/2 inch wide, with a “depth track”, half an inch wide, between the
first (left-hand) track and the other two, conventionally known as “Tracks 2 and 3”. The
main log section, or the graph, charts the depth reached vertically; the horizontal scale is
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the measurement scale, which can be represented linearly or by logarithms. Inserts are
found throughout the graph at each major log section, identifying each curve. Curves
on the log, also called traces, readings, or measurements, can be represented by solid,
long-dashed, short-dashed, or dotted lines to decipher between the different measurements
on the log. The final part of the log includes the tool calibrations before and after the log
was conducted, ensuring that the log is accurate. Much of the difficulty of dealing with
old analog prints arises from the scaling of the curves. Thus, a large part of the process of
making any log analysis is wrapped up in things. Hence, it is essential to create software
that is scale-agnostic.

In summary, the existing commercial raster log digitizers capture data from raster logs
by scanning the paper log and using image processing algorithms to identify and extract
relevant data points. However, existing software requires continuous manual intervention,
thus resulting in extremely time-consuming operations. In the present study, we propose
a novel transformer-based deep learning model named VeerNet , which employs self-
attention mechanisms to identify individual curves from a single track of raster paper
logs. The straightforward design of the digitizer system requires only four steps to convert
raster images to digital values. The easy-to-use approach can significantly reduce time and
increase accuracy. For the very first time, a codebase on deep-learning raster log digitization
is made publicly available so others can review and improve it, and the code can become a
valuable resource for the community.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature
on the previous work completed by researchers to extract values from the log curves and
differentiate between grid and curve values; Section 3 discusses VeerNet, our proposed
architecture, in detail; Section 4 describes the considered experimental setup, including the
used dataset, training parameters, and considered loss functions; Section 5 describes the
results generated from VeerNet and real data; Section 6 discusses the results and limitations;
finally, Section 7 offers conclusions and suggestions for future research.

2. Previous Work

The commercially used logging curve digitization software, Neuralog, is based on
Scanning, Compressing, Tracing, and Rectifying (SCTR). However, due to the interference
of the background grid, this software frequently pauses during curve tracking. Several
unsupervised computer vision methods have been implemented to digitize the log data
embedded in the binary image. Data are usually interpolated in these situations to, in com-
parison, the original data [5]. Well-log digitization could be performed through two kinds
of approaches: pixel-based methods and non-pixel-based methods. Pixel-based methods
include the thinning process and the Global Curve Vectorization (GCV) method [6–9]. The
thinning method reduces the width of a line to only one pixel, leaving only the skeleton
that can characterize its features. The main disadvantage of the thinning process is that it
has a high time complexity, loses line width information, and is prone to deformation and
wrong branches in the intersection area. The GCV method is suitable for line processing
but poor for point line processing [10].

Non-pixel-based methods mainly fall into two categories: contour-based and adjacency-
graph-based. The contour-based approach [11] extracts the contour of the image first and
then finds the matched contour pairs. The adjacency graph method first applies run-
length encoding to graphs, then analyzes the segments and generates various adjacency
graph structures, such as Line Adjacency Graph (LAG) [12] and Block Adjacency Graph
(BAG) [13,14]. Ref. [15] used the SCTR approach by employing the LAG data structure.
Ref. [16] improved the SCTR method and put forward the Preprocessing, Compressing,
Tracing, and Rectifying (PCTR) method. Ref. [10] proposed an algorithm for erasing grid
lines and reconstructing strokes in Chinese handwriting based on BAG. However, these
methods have limitations when analyzing complex situations in well-logging parameter
graphs, especially the analysis of nodes. Ref. [10] used morphological image processing
and the pixel statistics method to eliminate gridlines, isolating the curves and the gridlines.
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Then, the remaining grid lines and noise points are cleared according to the characteristics
of the small size of their connected components. However, all these existing methods need
manual intervention, which is not the desired option, especially when the paper logs have a
huge size of >10 MB. Recently, deep-learning-based image segmentation has been used to
extract metadata from the log header and has been proposed by Laxman Katole et al. [17].
The method employs a two-stage Conditional Generative Adversarial Network (cGAN)
that extracts the curve pixels from the plot segments.

3. Proposed Approach

The resolution of raster logs is significantly higher compared to images used in tradi-
tional image segmentation pipelines. However, this poses limitations on transfer learning
due to memory requirements. To address this issue, we propose VeerNet, a modified
UNet-inspired architecture that strikes a balance between preserving key signals and
reducing dimensionality.

VeerNet utilizes an attention-augmented read–process–write architecture. In the
encoder, the input undergoes downsampling through a series of four blocks comprising
2D convolutions, which reduce spatial resolution by a factor of 2, followed by group
normalization and GELU non-linearity. The transformer blocks the process and refines
the internal representation learned by the encoder [18]. The sequence is then reformed
to match the encoder-level resolutions with a decoder. The decoder blocks consist of
bilinear upsampling, 2D convolution, group normalization, and RELU activation. Residual
connections enhance the signal strength at each decoder level (shown in Figure 2). The final
decoder block generates spatial masks, indicating the presence of corresponding log curves.
This approach combines the strengths of both UNet and modern transformer-based models,
enabling efficient downsampling and learning rich, global context-aware representations
using transformers.

Our model takes the user’s paper log as input and applies filters to extract feature
maps. Subsequently, the model reduces the feature map size of the scanned paper log. The
middle layer focuses on the log signals while disregarding grid lines and annotations. This
derived information is used to restore the log feature map to its original shape, effectively
removing everything except the signals from the image. Consequently, we obtain an image
containing only the desired signals without any grid lines or other noise. From this signal
image or mask, we extract a 1D signal and save it in CSV/LAS files.

The VeerNet model follows an encoder–decoder architecture. The encoder consists of
residual blocks, allowing information flow from shallower to deeper layers. Five residual
blocks encode the image into a feature map that is 1/32th the size of the original image.
Following the encoder, two transformer layers, each comprising an attention layer, are
employed. These attention layers compute weights for the input feature map, producing
an output vector that encodes information on how each pixel should attend to all other
pixels in the image. Finally, five decoder layers, each including an upscaling operation
and a convolution operation, are used to achieve the exact output size as given in the
input. The architecture consistently produces masks of the same size as the original image.
Post-processing steps are then applied to the predicted masks to generate CSV files, which
contain the digitized values of the well-log curve(s).
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Figure 2. The proposed transformer-augmented U-Net.

4. Experimental Setup

We trained on a dataset of 10,000 images. The images consist of a single track that
can either have two or three well-log curves generated from LAS and raster image files
obtained from Texas RRC data (https://www.rrc.state.tx.us/, accessed on 10 March 2022).

The well-log curves used are: gamma ray, calliper, SP, shallow resistivity, medium
resistivity, deep resistivity, neutron porosity, and density logs. First, we generated mini-
batches from the extracted well-log curves of LAS files. Then, a Gaussian process regression
fit was applied to the mini-batches, which generated about 100 distributions for the curves.
Next, the distribution was randomly selected and sampled. Finally, we created the dataset
with data sampled from the distribution. To treat the NaN values in the LAS files, we im-
plemented two methods, i.e., (a) fill the NaN value with a constant number and (b) remove
the NaN values. A detailed analysis of the real dataset is available in Table 1.

We performed several experiments with various loss functions, such as Dice, Tversky,
Lovaz, Focal, and Sparse Cross Entropy (SCE) (Table 2), considering two performance metrics,

https://www.rrc.state.tx.us/
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i.e., Pearsoncoe f f icient(rp) and p-value (Table 3), and also changing the number of trans-
formers (i.e., 4, 5, and 6). In all the experiments, the maximum number of epochs to train
the models was set to 250, while the learning rate varies from 1.5 ×10−3 to 2.5 ×10−3. We
used a cosine learning rate for the learning rate scheduler for all the runs.

Table 1. Distribution of images based on two/three tracks and the respective well-log curves used in
model training and validation. The dataset is generated from processed data.

Track Well-Log Curve Total Number of
Curves in Each Track

Number of
Images Generated

1 1600

Track 1 SP, Gamma Ray,
Caliper 2 1600

3 1600

1 1408

Track 2
Shallow Resistivity,
Medium Resistivity

and Deep Resistivity
2 1280

3 1280

Track 3 Density log and 1 1280
Neutron Porosity Log 2 1280

Table 2. Loss function used in hyperparameter tuning.

Loss Functions Description

Dice Loss
Dice Loss optimizes networks based on the dice overlap coefficient between the
predicted segmentation result and the ground truth annotation. Thus, it can
effectively alleviate the imbalance between the foreground and background [19].

Tversky Loss
Adjusting the Tversky similarity index [20] allows placing emphasis on false
negatives in training a network that generalizes and performs well in highly
imbalanced data, as it leads to high sensitivity.

Lovasz Loss The Lovasz loss achieves direct optimization of the mean intersection-over-union
loss [21]. It improves the IoU.

Focal Loss Focal Loss focuses on learning hard misclassified examples. (1− pt)γ is added to
the cross-entropy loss, with a tunable focusing parameter γ ≥ 0.

SCE Loss

SCE Loss is used when the classes are mutually exclusive (e.g., when each sample
belongs precisely to one class) [22]. It works on integers, but they must be class
indices, not actual values. The loss computes logarithm only for the output index,
which ground truth indicates. Thus, when the model output is, for example,
[0.1, 0.3, 0.7] and the ground truth is 3 (if indexed from 1), the loss computes the
only logarithm of 0.7. It calculates the logarithm once per instance and omits the
summation, which leads to better performance.

In our study, we utilized Python 3.8.12 and PyTorch 1.13.0 as the software tools for
implementing and evaluating our approach. The hardware setup consisted of five workers,
each equipped with six AMD CPU cores and one NVIDIA A100-SXM-80GB GPU. With
a total of 512 GB of RAM, we ensured efficient processing of large datasets and memory-
intensive operations.
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Table 3. Evaluation matrix and description of parameters.

Evaluation Matrix Parameter Description

Pearson Coefficient (rp)

The Pearson Coefficient measures linear correlation between two
variables X and Y for finite sample sizes [23]. It measures the
strength of the association between two variables and the direction
of their relationship. The strength of the relationship is determined
by the value of the correlation.

p-value

The p value estimates the linear relationship between two variables.
In this study, a p-value < 0.05 refers to a statistically significant
difference between variables and supports that two samples did
not come from the same distribution. When a p-value indicates no
statistically significant difference, the two samples originate from
the same distribution.

5. Results

We treat this problem in two stages: (a) a 2multi-class classification problem to identify
the well-log curves from the background and separate them into individual curves and
(b) a regression analysis of individual curves to find the goodness of fit. In both cases,
80% of the total instance were kept for training, while 20% of them were used for validation
based on the results reported.

The study’s central hypothesis is based on a low signal/noise ratio; while efforts were
made to introduce noise similar to that observed in raster paper logs, the technique still has
limitations. VeerNet achieves an overall F1 score of >35% (Table 4), while the maximum
Intersection over Union (IoU) score is >30%. In the first stage of the evaluation of the
mask, the performance metrics used were IoU and F1 Score. IoU is a metric that evaluates
deep learning algorithms by estimating how well a predicted mask matches the ground
truth data. The F1 score sums up the predictive performance of a model by combining two
otherwise competing metrics—precision and recall. The experiments were performed with
five different loss functions, with Lovasz loss performing best among all the loss functions.

We performed two different segmentation tasks: (i) Binary segmentation and (ii) multi-
class segmentation. Binary segmentation has three binary masks as ground truth, one for
each curve. Multi-class segmentation has three classes in each mask: 0, 1, 2, i.e., background,
curve 1, and curve 2, respectively. Once the masks are generated, a post-processing
step removes disconnected pixels that are not part of the actual signal. Experiments
were performed with a default learning rate (refer to Table 4). We used the number
of transformers as a hyperparameter to study the effect on F1 scores. No significant
metrics change was observed. The study on the impact of the number of transformers is
inconclusive. SCE and Dice 3 transformers obtain better F1 scores than 5, 4, and 6, whereas
for Tversky, using six transformers provided a better score. Lovasz and SCE loss displayed
the best results (see Table 4).

Experimental results obtained from VeerNet models on Gamma Ray (GR) and Caliper
(CALI) from well with API number: 42-165-369222 and well name: UNIVERSITY 6-13 No. 1 are
listed in Figures 3–6, which demonstrate that the proposed model fits the actual well-log
curve with a certain goodness of fit. To experimentally explore the potential fit of the
digitized data with native LAS data, we implemented two model variants with loss, i.e.,
Lovasz and SCE.

In statistical studies, the null hypothesis is a default hypothesis where the quantity
(typically the difference between two situations) to be measured is zero (null). In this
scenario, the null hypothesis is to determine if there is an indication that the calculated and
original samples are derived from different distributions. The p-value is the probability
of obtaining test results at least as extreme as the results observed, assuming that the
null hypothesis is correct. A p-value < 0.05 is sufficient to reject the null hypothesis and
conclude that a significant difference between the two distributions does exist. To measure
the similarity derived GR from Lovasz loss and SCE loss, we determine that the rp value
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and p-value for the model with Lovasz loss and SCE for GR (Table 5) are high, indicating
that the derived value and the native LAS can correlate. Furthermore, the p-value < 0.05;
hence, the distributions are statistically significant, and therefore, the null hypothesis
is rejected. To measure the similarity derived for the CALI log from Lovasz loss and
SCE loss, we calculate the rp value and p-value. The rp value for the model with Lovasz
loss has a negative correlation. In contrast, for SCE, a low rp value of 0.12 is obtained
(Table 5), indicating that the derived value and the native LAS value remain inconclusive.
Furthermore, the p-value < 0.05 is observed for both model variants with Lovasz and
SCE; hence, the distributions are statistically significant, and therefore, the null hypothesis
is rejected.

Table 4. Results of VeerNet based on different hyperparameters. The numbers in the braces indicate
the results obtained by training for the different number of transformers.

Loss Function and Transformer Numbers F1 IoU

Lovaz, 5 0.35 0.30

SCE, 3 (4,6) 0.34 (0.33, 0.33) 0.30 (0.30, 0.29)

Focal, 6 0.32 0.28

Tversky, 6 (4) 0.24 (0.22) 0.20 (0.22)

Dice, 4 (5) 0.25 (0.23) 0.22 (0.19)

Table 5. Statistical variants for VeerNet. The rp value and p-value determine how well VeerNet
performed when compared to real data.

Loss Function and Curve Specification Pearson Coefficient p-Value

Lovasz and GR 0.62 0.0

SCE and GR 0.27 0.0

Lovaz and CALI −0.21 0.0

SCE and CALI 0.12 0.04

Figure 3. Comparison between the ground truth and prediction from the model trained using Lovaz
Loss. (a) Rsater Log-Depth 4700 to 5000 m; (c) Rsater Log-Depth 4990 to 5650 m; (e) Rsater Log-Depth
7500 to 7950 m. (b,d,f) represent the fit between Ground Truth (GT) and predicted GR values for
(a–c), respectively.

We compare our results with previous techniques proposed by Yuan and Yang [10].
The proposed graph-based gridline approach consists of two steps: in the first step, elim-
inate vertical grid lines by dilation based on structuring element followed by the pixel
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statistics method to remove horizontal gridlines. In the pixel statistics method, we count the
number of black pixels per line of the well-logging graphs, denoted by the counter. If the
counter is less than the threshold, it is a well-log curve. Otherwise, it is a horizontal gridline,
and the horizontal gridline will be removed. The major drawback of this technique is that it
can only digitize one curve at a time. The results are presented in Figure 7; while the vertical
and horizontal lines are eliminated from the well-log track, the technique also removes the
CALI logs. The method is also dependent on the threshold values for pixel statistics.

Figure 4. Comparison between GT and prediction from model trained using SCE Loss. (a) Rsater
Log-Depth 4700 to 5000 m; (c) Rsater Log-Depth 4990 to 5650 m; (e) Rsater Log-Depth 7500 to 7950 m.
(b,d,f) represent the fit between GT and predicted GR values for (a–c), respectively.

Figure 5. Comparison between GT and Prediction from model trained using SCE Loss. (a) Rsater
Log-Depth 4700 to 5000 m; (c) Rsater Log-Depth 4990 to 5650 m; (e) Rsater Log-Depth 7500 to 7950 m.
(b,d,f) represent the fit between GT and predicted CALI values for (a–c), respectively.
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Figure 6. Comparison between GT and prediction from model trained using Lovaz Loss. (a) Rsater
Log-Depth 4700 to 5000 m; (c) Rsater Log-Depth 4990 to 5650 m; (e) Rsater Log-Depth 7500 to 7950 m.
(b,d,f) represent the fit between GT and predicted CALI values for (a–c), respectively.

(a) (b) (c)

Figure 7. Comparison between native LAS Gamma Ray and the graph-based method with corre-
sponding depth sections of the raster log image. (a) Depth 4700 to 5000 m; (b) Depth 4990 to 5650 m;
(c) 7500 to 7950 m.

6. Discussions

In this study, we proposed VeerNet, a deep learning model for digitizing raster well-
log images. The model achieved satisfactory results in classifying well-log curves and
separating them from the background grid, with an average classification accuracy of over
35%. The experimental results demonstrated the effectiveness of VeerNet in generating
digitized GR and CALI values. The comparison between the derived values and the native
LAS data showed a significant correlation for the GR log. We also explored different loss
functions and variations in the number of transformers used in VeerNet. Among the tested
loss functions, Lovasz loss and SCE loss yielded the best results in terms of the F1 score.
Although efforts were made to introduce noise similar to that observed in raster paper logs,
the technique still has its constraints. The low signal-to-noise ratio remains a challenge,
which can affect the accuracy of the digitized values. Overall, VeerNet provides a promising
solution for digitizing raster well-log images.

One of the reasons for CALI logs not performing well is their skewed distribution. A
larger dataset for CALI from diverse geology is required to improve the model’s accuracy.
The model is not trained on a specific reservoir; we want to keep it generic. For future
studies, we will include data from geologic reservoirs and inspect the performance on logs
such as resistivity, sonic, etc.

Another limitation of this study is when using one track, the user needs to provide a
cropped section from the front end. This functionality could include an error in manual
analysis in providing the scale value. To overcome these difficulties, we propose (1) keeping
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all three or four tracks of the raster well-log images and (2) designing Optical Character
Recognition (OCR) architecture to automatically read scales of the well-log curves rather
than providing them manually. In the next iteration of VeerNet, we will provide a detailed
analysis of all the hyperparameters discussed above.

While we acknowledge that some of the accuracy scores obtained in our experiments
may not be ideal, it is important to note that this is primarily due to the lack of large open-
sourced datasets available for training our model. Unfortunately, the limited availability of
such data adversely affects the overall performance. However, we firmly believe that our
proposed approach is still a valuable and promising solution. We believe that this paper
serves as a gateway to a new and improved method/framework for digitizing well-logs,
offering the potential for significant developments in the field.

7. Conclusions

In this study, we have addressed the significance of scanned raster logs and their crucial
role in geological reservoir studies. We have provided an overview of the importance of
digitizing raster logs and discussed relevant software. Additionally, we have explored
previous studies and algorithms pertaining to the digitization of raster logs.

To train our deep learning models, we have presented the methodology for generating
synthetic and real data. We have thoroughly described the experimental setup, including
the components of our proposed deep learning model, VeerNet. Moreover, we have made
our code base publicly available, aiming to contribute to the wider research community.

Our proposed solution for digitizing raster well-log images offers a simplified and
less manual approach compared to existing techniques. The solution is not only efficient
but also scalable. VeerNet has demonstrated remarkable proficiency in classifying well-log
curves, achieving an average classification accuracy exceeding 35%. This model effec-
tively identifies well-log curves from the background grid, surpassing the capabilities of
current technology.

Furthermore, we have showcased the digitized GR values obtained from various
sections of the well, highlighting their close alignment with native las data, as indicated by
a high Pearson coefficient of 0.62. This correlation demonstrates a substantial improvement
in the overall goodness of fit to real data.

As this study represents a novel approach, no baseline model exists for a direct
comparison of results. However, we have introduced innovative techniques for generating
synthetic well-log data using Gaussian process regression, ensuring basin-independent
synthetic data generation.

Unlike traditional well-log digitization software that often encounters interference
with the background grid and experiences frequent pauses during curve tracking, VeerNet
provides a rapid and easily deployable solution. It streamlines the process into four simple
steps: uploading scanned paper logs, selecting the desired section for cropping, verifying
the scales and range values of curves, and finally saving the digitized values.

In conclusion, this study emphasizes the significance of scanned raster logs and
introduces VeerNet as a robust solution for digitizing raster well-log images. Our research
contributes to the field by offering an efficient, scalable, and accurate approach to well-log
digitization, paving the way for improved geological reservoir studies.
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