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Abstract: The current advancement towards retinal disease detection mainly focused on distinct fea-
ture extraction using either a convolutional neural network (CNN) or a transformer-based end-to-end
deep learning (DL) model. The individual end-to-end DL models are capable of only processing
texture or shape-based information for performing detection tasks. However, extraction of only
texture- or shape-based features does not provide the model robustness needed to classify different
types of retinal diseases. Therefore, concerning these two features, this paper developed a fusion
model called ‘Conv-ViT’ to detect retinal diseases from foveal cut optical coherence tomography
(OCT) images. The transfer learning-based CNN models, such as Inception-V3 and ResNet-50, are
utilized to process texture information by calculating the correlation of the nearby pixel. Additionally,
the vision transformer model is fused to process shape-based features by determining the correla-
tion between long-distance pixels. The hybridization of these three models results in shape-based
texture feature learning during the classification of retinal diseases into its four classes, including
choroidal neovascularization (CNV), diabetic macular edema (DME), DRUSEN, and NORMAL. The
weighted average classification accuracy, precision, recall, and F1 score of the model are found to be
approximately 94%. The results indicate that the fusion of both texture and shape features assisted
the proposed Conv-ViT model to outperform the state-of-the-art retinal disease classification models.

Keywords: retinal disease; classification; hybrid feature; Inception-V3; ResNet-50; vision transformer

1. Introduction

According to the statistics of 2019, over 2.2 billion people suffer from different eye
diseases that result in serious vision impairment and partial or full blindness [1]. One of the
main reasons for vision impairment is age-related macular degeneration (AMD). Several
categories of AMD are found at present that individually contains unique characteristics
and effect. Among these, the most well-known categories of AMD are the wet and dry
classes. The dry class of AMD also happens in three stages named early, intermediate, and
late [2]. From the wet class of AMD, choroidal neovascularization (CNV) causes severe
vision impairment and hemorrhage. Consequently, the macula and photoreceptor-dense
area are affected, which may cause blindness as this area is responsible for high-resolution
vision. Every year in the USA, about 2 million people are detected with CNV [3]. On
the contrary, diabetic macular edema (DME) is a type of disease that affects patients with
diabetes and is related to the thickening of muscle which can be considered a complication
of diabetic retinopathy. A study showed that 7.5 million people aged 40 years or older
suffer from DME [4]. Another class of AMD called DRUSEN is a type of intermediate-
age-related macular degeneration that affects 125 µm or more diameter of the macula,
which is a region of 3000 µm centered on the foveolar in either or both eyes. From the
statistical evaluation, every year, more than 7 million people in the USA are affected by
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the DRUSEN class [5]. If AMD can be detected earlier, complications can be avoided.
For this reason, faster and more accurate detection of types of AMD plays a significant
role in terms of preventing complications [2]. One of the most common approaches to
detect types of AMD is doing a test called optical coherence tomography (OCT), which is a
medical imaging technique where a special machine takes photos of the inside of the eye
that detects back reflection from different levels of biological tissue which later forms a
two or three-dimensional structural images [6]. The clinician usages OCT images to detect
the types of AMD and their severity. The detection of types of AMD from these pictures
is based on an algorithmic approach where handcrafted segmentation is followed by the
classification of each segmented object using a statistical classifier, including a machine
learning algorithm, and finally, classifying the images. This approach is not only suspected
of error but also requires many skilled people. Moreover, refining and tuning a machine-
learning model with handcrafted segmentation is a time-consuming and computationally
expensive task [7]. For this reason, with the advancement of computer vision technology,
the detection process has evolved a lot. Instead of a handcrafted feature extraction method,
the automated detection process is developed to reduce error, time, and human intervention
in performing the task.

In this case, several research works have been conducted to perform retinal eye disease
classification based on deep learning (DL) methods. For instance, Khan et al. [8] proposed
an ensemble model of ResNet50 and InceptionResNetV2 to detect ocular diseases from en-
hanced fundus images, and before training the model, the adaptive equalization technique
was utilized to improve local contrast by modifying the intensity distribution adaptive
with an object. The model achieved an accuracy of 82.05% by extracting only texture-
based information from the pre-trained ensemble model. In another study, an ensemble of
three models, including Inception-V3, InceptionResNetV2, and Xception, was proposed
by Zhang et al. [9]. The model training was initiated by performing six preprocessing
techniques, such as histogram equalization (HE), adaptive histogram equalization (AHE),
intensity rescaling, gamma correction, sigmoid adjustment, and limited contrast AHE
(CLAHE). After that, two types of classifiers, named deep convolutional neural network
(DCNN) and deep full connection network (DFNN), were used for the final classification
with an accuracy of 95.42%, which is also a result of texture-based information process-
ing. Moreover, Wijesinghe et al. [10] proposed a transfer learning-based ensemble model
consisting of DenseNet-201, ResNet-18, and VGG-16. The background removal, resolution
optimization, and resizing were performed as image preprocessing to make the dataset
more optimized for training. Then, techniques called global average pooling (GAP) and
singular value decomposition (SVD) were used to predict a single class that combined the
prediction from all the models. The extraction of only texture-based information results
in an accuracy of 98.69% for the transfer learning-based ensemble model. In one of the
studies, Gordon et al. [11] designed an ensemble model with the combination of two cus-
tomized convolutional neural networks (CNN) to reduce variance. Moreover, the inclusion
of a median filter reduces the sparkle noise. After noise removal, data augmentation is
employed for training the model. The work demonstrated the trade-off between training
time and classification performance and the effect of batch size on it. For model evaluation,
different ensemble techniques such as majority voting, weighted averaging, and stacking
were implemented with an accuracy of 99.48%, 99.47%, and 99.51%, respectively.

In contrast, Hendria et al. [12] proposed a model combining transformer and CNN
models to detect objects in unmanned aerial vehicles (UAV) imagery. The Swin and Dectec-
toRS with ResNet backbone were combined to extract the performance of the transformer
as shaped-based information and CNN as texture-based information. For image prepro-
cessing, augmentation techniques like random horizontal flip with a probability of 0.5
were used. The individual models were trained separately using identical training sets,
and later, the predictions were combined to obtain the final prediction. The precision of
this implemented system varied from 38.30% to 63.29%, and the recall varied from 1.42%
to 56.43%. In one study, Shen et al. [13] implemented a stacked ensemble model called
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‘CviT’ with a combination of convolution and transformer networks to detect movement
classification. Before feeding to the CviT model, the sliding window-based preprocessing
technique was utilized to divide the image into patches. For better generalization of model
classification, a convolution layer was deployed, followed by the transformer model, which
resulted in a classification accuracy of 83.47% and 84.09% on two different datasets. In
a separate study, Aldahoul et al. [14] proposed an ensemble model with a combination
of transformers to encode the retinal image. Several augmentation techniques, such as
random flipping of horizontal and vertical and 360◦ rotation, were performed to improve
the training process. The images were also rescaled between (0, 1) and cropped to remove
the black border. Finally, to combine the prediction, bagging (boot-strap aggregating) was
implemented, which used “majority voting”. The performance of the model was optimized
using early stopping, dropout, and learning rate schedules. This ensemble of transformers
processed shape-based information that achieved an f1 score of 42%. Gupta et al. [15]
proposed an ensemble model to perform person Re-ID. In this paper, a triple stream of
ensemble model was observed. The models used in this model were DeIT as a vision
transformer, ResNet-50, and Densenet-101, where the vision transformer interprets the
pixel dependency by focusing on every specific patch of images. This model achieved an
accuracy of 90.05% and 80.45% on two separate datasets, respectively.

In another study, Ullah et al. [16] proposed a stacked model in which a convolutional
neural network was stacked upon a vision transformer. The whole model was then de-
ployed to detect anomalies in video surveillance, where the convolutional neural network
detected spatial features and the vision transformer detected long-term temporal relations,
which later extracted a spatiotemporal feature. The proposed model achieved an accuracy
of 94.6%, 98.4%, and 89.6% in SanghiTech, UCUD Ped2, and CUHK avenue datasets, re-
spectively. In another scholarly inquiry, Ullah et al. [17] implemented a Vision Transformer
Anomaly Recognition (ViT-ARN) framework to identify and categorize anomalies in a
surveillance camera. This framework had two phases; in the first phase, the anomalies were
identified using a tailored, compact, and single-class deep neural network. In the second
stage, the anomaly was categorized based on the feature extracted by the vision transformer,
which was improved using a bottleneck attention mechanism to improve representation.
This ViT-ARN was trained using a total of 858 and 1600 videos from two datasets and was
evaluated based on two datasets- LAD-2000 and UCF- Crime datasets where the proposed
framework outperformed other state-of-the-art approaches with an increased accuracy
of 10.14% and 3% in these two datasets, respectively. In a separate study, Yao et al. [18]
proposed a fusion of transformers and CNN for salient object detection (SOD) where the
transformer captured the long-distance pixel relationship, and later, a CNN was applied,
which extracted the fine-grained local details. This incorporation resolved the problem of
using a CNN-based network and showed equal effectivity for both RGB and RGB-D (RGB
and depth) SOD. In a different study, Yang et al. [19] presented a novel approach designed
for Hyperspectral Image Classification where classification of each pixel was necessary.
However, CNN could interpret those local regions quite efficiently but failed to capture the
global meaning. On the other hand, the transformer could interpret the global meaning of
an image but failed to capture the local region correlation. For this reason, they proposed a
fusion of CNN and transformer known as FusionNet, which incorporates the strength of
CNN and transformer together.

In a separate study, Nanni et al. [20] demonstrated how the combined power of CNN
and transformer could generate a robust performance in segmentation. In this specific
research, the authors combined DeepLabv3+, HarDNet-MSEG, and Pyramid Vision Trans-
formers, which resulted in a dice score of 0.875. In another research, Zhang et al. [21]
implemented a novel architecture TransFuse which was designed for both 2D and 3D
medical image segmentation. In this architecture, the researcher introduced a new fusion
technique called “BiFusion” and achieved an accuracy of 94.4% in the ISIC dataset. In an-
other scholarly inquiry, Wang et al. [22] tried to solve the limitation of the U-Net framework
in medical segmentation as it could not learn global information. They incorporated the
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capability of the transformer and CNN to make a new framework known as O-Net, where
in the encoder and decoder part, CNN, and swin transformer were used and achieved an
accuracy of 80.61%.

All the above-mentioned works generally focused on either convolution or transformer-
based classification models or an ensemble of transformer and convolution-based classifi-
cation models. In the case of ensemble models, the importance of extracted features from
every model does not obtain the proper significance because, at the decision level, the class
is already classified by a CNN or transformer network. On the other hand, in stacking,
the image goes through the model sequentially, which means the extracted feature from
CNN or transformer goes through another model where the feature extraction process
continues. In this way, the extracted feature is changed by the latter model, which is
why the extracted feature in every model does not have the same significance in the final
classification. Concerning these findings [12–22], instead of ensembling or stacking the
models, this work proposes a hybrid feature extraction method by fusing conventional
pre-trained CNN models such as Inception-V3 and ResNet-50 and a transformer model.
In this framework, the individual model extracts the feature individually, and later, the
extracted features become fused. In this arrangement, extracted features from every indi-
vidual model obtain the same significance, which provides the framework with superior
performance. This triple-stream Conv-ViT consists of three individual models- Inception-
V3, ResNet-50, and Vision Transformer. Inception-V3 and ResNet-50 are CNN-assisted
networks where convolution is performed for feature extraction. The network uses kernels
to extract texture information by correlating between nearby pixels. The Inception-V3 is a
large convolutional network that works solely based on convolution. The main advantage
of inception-V3 is the usage of several filters, i.e., 277 filters, to detect deep texture features
by building correlations between consecutive and nearby pixels [23]. Though Inception-V3
is computationally efficient, it is a very large and complex model which is suspected of
vanishing gradient problems. For this reason, the ResNet-50 model is fused to resolve the
vanishing gradient problem and extract deep features by building residual connections to
nearby pixels. The residual function helps to optimize parameters that enable this model
to avoid vanishing or exploding gradients [24]. On the contrary, the vision transformer is
focused on building long-distance pixel relationships rather than nearby pixel relationships
resulting in shape-based features [25]. Consequently, a transformer model is fused with the
Inception-V3 and ResNet-50 models to generate a shape-based texture feature for process-
ing through the deep neural network, which provides the classifier an upper hand in final
detection. The major contribution of this research includes:

• Building a three-stream fusion model called Conv-ViT for retinal disease detection by
concerning both texture and feature-based information of each class of retinal images.

• Using pre-trained models such as Inception-V3 and ResNet-50, as well as the trans-
former model, results in a hybrid feature followed by a DNN model to improve model
detection performance.

• Conducting laborious experiments for performance analysis, including quantitative,
qualitative, and ablation, to signify the model’s effectiveness.

The rest of the paper is organized as follows: Section 2 contains a detailed description
of the materials and methods of the proposed Conv-ViT framework with a detailed analysis
of all the models. Section 3 represents the performance evaluation of the proposed system,
including quantitative study, qualitative study, ablation study, and comparison with previ-
ous work in this field. Sections 4 and 5 contain the discussion and conclusion, respectively.

2. Materials and Methods

In this section, a detailed explanation of the working principle of the proposed Conv-
ViT network is presented to classify the retinal disease into four classes from the OCT image
database. In this approach for feature extraction, a triple stream network is employed,
including Inception-V3 and ResNet-50 and vision transformer. The triple-stream network
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representation of the retinal database assists in identifying four retinal classes after passing
through a deep neural network.

2.1. Conv-ViT Framework

The network architecture of Con-ViT is the fusion of three stream feature extraction
models, as illustrated in Figure 1, where the two pre-trained models, including Inception-V3
and ResNet 50, worked along with an attention-based transformer model. This triple-stream
network configuration provides robustness to extract hybrid features for final classification
through a deep neural network classifier. Moreover, in the following sub-sections of this
article, each of the individual models is discussed in part.
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2.1.1. Inception-V3

In the initial feature extraction method, the Inception-V3 is selected because of its
ability to extract high-level features with several variations of the filters having 277 along
with an effective combination of different types of convolution operation. Moreover, the
structure of Inception-V3 presents the feature of dimensionality reduction without compro-
mising the model efficiency by using two (3 × 3) layers instead of one (5 × 5) convolution
layer because with the same number of filters a (5 × 5) convolution is 25/9 = 2.78 times
more computationally expensive than a (3 × 3) convolutions. In this way, using two
(3 × 3) convolutions, a total gain of 28% is possible [23]. Additionally, factorizing larger
convolution as depicted in Figure 2, the implication of asymmetric convolution results in
further time reduction. In addition, instead of (3 × 3) convolutions, a (1 × 3) convolution
layer is followed by a (3 × 1) convolution layer reduces the computational cost. For the
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(3 × 3) convolution layer, the total number of parameters found is 9. On the other hand, a
(1 × 3) convolution layer followed by a (1 × 3) convolution layer results in a total number
of parameters of (3 × 1) + (1 × 3) = 6, which also reduces the total number of parameters
by around 33%. Concerning the computational cost, the Inception-V3 architecture addi-
tionally utilized an efficient grid reduction technique to support issues of conventional
pre-trained models. As the general pre-trained model uses max pooling followed by a
convolution layer that is too greedy. On the other hand, the utilization of max-pooling after
the convolution layer is too expensive. To address the issues, Inception-V3 performed the
efficient grid reduction using separate convolution and pooling operations followed by the
final concatenation.

Figure 2. Factorization in Inception Architecture shows how the computation cost is reduced without
degrading the performance by using multiple small filters instead of a single large one.

For the feature extraction task, initially, the images, I with size (84 × 84 × 3) are fed
to the Inception-V3 excluding the auxiliary classifier component that results in texture
features, Inceptionfeature_texture from the last concatenate layer (mixed10) and the conversion
of the texture feature into a 1D vector is performed using a flattened layer that generated
an output of YInception as presented in Equations (1) and (2):

Inception f eature_texture = Inceptionmixed10_layer(I) (1)

YInception = f latten
(

Inception f eature_texture

)
(2)

2.1.2. ResNet-50

In addition to high-level feature extraction from the Inception-V3 model, the ResNet-50
is employed to focus on low-level features as well as using the residual connections in the
architecture. During convergence, the Inception-V3 network performance gets saturated
and degrades a bit after that [26]. To tackle these problems, this work introduces ResNet-50
for the feature extraction process. In the ResNet-50 architecture, there are 50 layers within
five blocks. For each of these blocks, the residual function, F contains three convolution
layers as shown in Figure 3 with dimensions (1 × 1), (3 × 3), and (1 × 1). The output,
Z, of this block is calculated by adding the input, x, with the residual function, F, as
represented in Equation (3). Where the residual function F updates the input x with a
weight matrix Wi of three consecutive convolution layers. During feature extraction, the
input image, I, with shape (84 × 84 × 3), is fed to the ResNet-50 network, and the output
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of the conv5_block3_out layer, ResNetconv5_block3_out_layer is used for final classification. The
texture feature, ResNetfeature_texture is then converted using a flattened layer to generate a 1D
vector output of YResNet.

Z = F(x, Wi) + x (3)

ResNet f eature_texture = ResNetconv5_block3_out_layer(I) (4)

YResNet = f latten
(

ResNet f eature_texture

)
(5)
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2.1.3. Vision Transformer

In addition to the kernel-based texture features, which have been extracted from the
CNN-based model, a third-stream model called vision transformer (ViT) has been utilized
in the Con-ViT network. The ViT works based on the attention mechanism by developing
relationships between nearby pixels as well as long-distance pixels. To perform the tasks
of attention mechanism, the input image is first divided into small patches. This process
is analogous to a convolution layer using a kernel where the output is a 4D matrix that is
indexed by batch, and the other three dimensions are row, column, and depth. Thereby,
the image I ∈ RH×W×C is reshaped into PP ∈ RN×P2×C where H and W are the width and
height of the image, and C represents the number of channels. On the other hand, N is the
number of patches calculated as

N =
H ×W

P2 (6)

where P is the patch size. The image size is (78 × 78) and the patch size is (6 × 6) as
shown in Table 1. From the image and patch size, the number of patches is calculated:
( H×W

P2 ) = 78×78
(6)2 = 169. After patch partition, the raw image (I) is converted into a 2D

matrix, PP and is linearly projected into a 1D embedding vector, PPLinear_Projection with a
dimension of 64:

PP =


[I1] [I2] . . . [I13]
[I14] [I15] . . . [I26]
. . . . . . . . . . . .

[I157] [I158] . . . [I169]

 (7)

PPLinear_Projection =


[I1

1 I2
1 . . . I64

1 ]
[I1

2 I2
2 . . . I64

2 ]
. . . . . . . . . . . .
[I1

169 I2
169 . . . I64

169]

 (8)
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Table 1. Selected optimum parameters of the vision transformer.

Parameter Value

Image Size 78
Patch Size 6

Number of Patch 169
Projection Dimension 64

Number of Heads 4
Transformer Unit (128, 64)

Number of Encoder 8
MLP Head Unit (2048, 1024)

As the performance of the transformer is computationally expensive, the patches are
embedded with a positional embedding where the image patches are grouped into smaller
groups and further applied to larger image sizes [27]. The position embedding, EPOS is
performed based on the mixing of sine and cosine functions of different frequencies [28]. If
the patch is in an odd position, use the function of cosine, and on the contrary, the even
position patch is embedded using the sine function. Here, pos refers to position, whereas i
refers to dimension, and the whole positional embedding is encoded in different positions
of this sinusoid. Again, d is the maximum length of the patch group. Then, the linear
projected patch is concatenated with a positional embedding which later produces an
embedded patch.

EPOS =


sin( pos

1000
2i
d
), i is even

cos
(

pos

1000
2i
d

)
, i is odd

(9)

EP = concatenate
(

PPLinearProjection , EPOS

)
(10)

After the linear projection and positional embedding, the embedded patch is passed
on to the encoded block. The encoder is a repetition of eight similar blocks, each having a
combination of six layers, including a NORMALization layer followed by a multi-head self-
attention (MSA) layer and multi-layer perceptron (MLP). At first, the input of the encoder
block, such as EP, is concatenated with the output of MSA. Later, the output passes onto
a NORMALization layer, and MLP has a dense dropout layer. Finally, a skip connection
from the input gets concatenated with this attention output which increases the impact of
position as the next layer is provided with the original embedded patch. The calculation of
attention is performed using three embedding matrices, such as key K, query Q, and value
V, where the matrices are calculated using weight matrices WQ, WK, and WV by using the
following equations:

Query, Q = EP.WQ (11)

Key, K = EP.WK (12)

Value, V = EP.WV (13)

where EP is the embedded patch, and the weight matrices are- WQ, WK, WV ∈ Rdmodel×dk

The single attention function called head is performed using the following equation that is
parallelly executed multiple times in the MHA layer, where the attention is calculated using
Equation (14). Where dk is a dot-scaled product that prevents the attention value from
exploding. This attention value works as a scoring function that represents the correlation
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between two image patches. In the proposed framework, the multi-head attention (MHA)
has four heads, so the representation is as follows:

Attention, (Q, K, V) = so f tmax
(

QKT
√

dk

)
V (14)

MHA = Attention, (Q, K, V)×4 (15)

In the later layers, the multi-layer perceptron is used, which uses a dense layer with
Gaussian error linear unit (GELU) activation, which provides non-linearity in this process
and where φ is the cumulative distribution of Gaussian distribution. Finally, the output
of the layer is taken out, which is Transformerfeature_shape, and later, we flatten it as per the
following equations:

GELU(x) = xP(X ≤ x) = xφ (x) (16)

Trans f ormer f eature_shape = GELU(MHA) (17)

YTrans f ormer = f latten
(

Trans f ormer f eatur_shape

)
(18)

Then, the YTransformer is passed onto the deep neural network classifier. Moreover, the
required optimum parameters for the transformer feature extractor of the Conv-ViT network
are summarized in Table 1. Where the value of the parameters was first anticipated by
considering the complexity and size of the dataset and later was tuned to make them more
optimized for which the model’s performance on the validation dataset was considered.

2.1.4. Deep Neural Network (DNN) Classifier

Figure 4 shows the functional structure of the deep neural network classifier that
predicts a class from the extracted feature. After taking the features from individual models,
the concatenation is performed on ConvNet-produced texture-based features and vision
transformer-produced shape-based features. Consequently, the concatenation layer produces
a single one-dimensional hybrid feature vector, a YHybrid feature comprising texture and
shape-based features. After that, the DNN classifier is employed for the final classification,
where the YHybrid passes through dense and dropout layers to produce Y1. Then, the Y1
is followed by two repetitive blocks named Block1 that contain three layers of one batch
normalization and two dense layers. Finally, a dense layer is used, followed by a softmax layer
for retinal disease classification.

YHybrid = concatenate
(

YInception, YResnet, YTrans f ormer

)
(19)

Y1 = dropout
(

dense
(

YHybrid

))
(20)

Block1 = f (batchnormalization, dense, dense) (21)

Y2 = Block1(Y1) (22)

Yprediction = so f tmax(Y2) (23)
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2.2. Hyperparameter Settings

In the case of model training, the hyperparameters are selected and tuned for optimiz-
ing the model prediction. The selected model hyperparameter and tuning technique are
mentioned in Table 2. During the training, the categorical cross entropy loss function is
employed, and the weights are updated using the Adam optimizer. The Adam optimizer
reduces the error by updating weights that result in optimum model performance. The
proposed model is trained for twenty iterations, and the learning rate is optimized using a
learning rate scheduler.

Table 2. Selected hyperparameters value for the proposed Conv-ViT model.

Hyperparameter Value

Loss Function Categorical Crossentropy
Number of Epoch 20

Optimizer Adam
Batch Size 64

Tuning Technique Learning Rate Scheduler

The experiment of developed Conv-ViT model is performed on the Google Colab
environment provided by google, located in Mountain View, California, USA with Python
3 for both training and testing. The platform has a GPU facility to accelerate the training
process faster by enhancing the computational speed. For preprocessing, the NumPy
is used for model evaluation. In addition, Keras and Tensorflow 2.9.2 framework, also
developed by google, is employed for model implementation and visualization.

2.3. Dataset

The dataset used for training and evaluation is a public dataset collected from Mende-
ley [29]. The images are collected as a part of a routine checkup, and in the dataset, a foveal
cut of the original image is used [7]. The original distribution of the validation and test
set is changed to reflect the original distribution of the training set. In this distribution,
the sample ratio of each class is kept constant in the train, test, and validation set, as this
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helps the model to simulate a result that will approximate the real-world scenario more
accurately [30]. The number of sample images in each class is given in Table 3. Table 3
represents the dataset containing a total of 109,309 images divided into 4 classes. The
dataset used here is highly imbalanced, and the percentage of training, validation, and test
set are 90%, 5%, and 5%.

Table 3. Distribution of dataset for each class in train, test, and validation.

Class Train Validation Test Total

CNV 33,711 1872 1872 37,455
DME 10,438 580 580 11,598

DRUSEN 7980 443 443 8866
NORMAL 46,250 2570 2570 51,390

TOTAL 98,379 5465 5465 109,309

2.4. Evaluation Metrics

For evaluation purposes, Accuracy, Precision, Recall, and F1 score are used as evaluation
metrics. Now, precision, recall, and F1 score are given more emphasis rather than accuracy
because the dataset is imbalanced, which can be observed from Table 3. The representation
of the matrices is given below.

Accuracy =
TP + TN

TP + TN + FP + FN
(24)

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FP
(26)

F1 Score = 2×
(

Precision× Recall
Precision + Recall

)
(27)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. The accuracy indicates how the model detects a class as positive
among all other samples. On the contrary, precision represents how exact or precise a model
is in detecting a class as positive among all the samples detected as positive, which is the
ratio of true positive and the sum of true positive and false positive. Moreover, recall is the
ratio of true positives and the sum of true positives and false negatives, indicating how the
model detects a class among all the classes detected. The F1 score is the weighted average
of precision and recall.

3. Results and Analysis

After training the model for 20 epochs due to GPU constrained, the test set is used to
evaluate this model. The model is trained for approximately 3 h, which means each iteration
takes about 10 min to complete. Figure 5 represents the variation of loss and accuracy
in terms of epoch for the train and validation set. Overall, the accuracy curve for the
training and validation set showed an upward trend, while the loss curve for the training
and validation set displayed a downward trend. First, the training loss and validation
loss are decreasing in nature, and the training loss and validation loss become almost
constant in nature after 14 epochs. The variation in this duration of the first 14 epochs
is 0.70~0.13 and 0.83~0.18 for training loss and validation loss, respectively. In terms of
training accuracy and validation accuracy, the curves displayed an increasing trend till
14 epochs, and after that, the curves almost plateaued. In this duration of 14 epochs, the
training accuracy varies from 67.51% to 96.13%, and validation accuracy varies from 65.82%
to 90.64%. After completing the training, the training and validation accuracy is 97.45% and
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92.89%, respectively. On the other hand, the training loss is 0.0882, and the validation loss
is 0.1232. In conclusion, Figure 5 displayed how the model trained and improved in terms
of accuracy and loss during the first 14 epochs, and beyond 14 epochs, the accuracy and
loss curves plateaued, which indicates the model had converged after this certain period.

1 
 

 

Figure 5. Loss and accuracy graph for train and validation set. The curve shows how the loss and
accuracy in the training and validation set are changing with respect to epoch.

3.1. Quantitative Analysis

In quantitative analysis, the performance of the model is evaluated and analyzed
using the quantitative value of four metrics. The model performance is evaluated using
the test set. In terms of the test set, the model shows an overall accuracy of 94.46%. The
precision and recall of the model are found to be 0.9447 and 0.9425, respectively. The F1
score is achieved at 0.9436. In addition, the class-wise performance of the Conv-ViT model
is evaluated, as summarized in Table 4, due to highly imbalanced dataset distribution.
The highest F1 score of 0.98 is found for the NORMAL class, and the lowest score of
0.78 is obtained for the DRUSEN class. The recall of the DRUSEN class is lower than the
precision, which indicates that the false negative in the DRUSEN class reduced the model’s
performance. On the other hand, the DME and CNV classes have an F1 score of 0.89 and
0.94, respectively. The weighted average of the F1 score is 0.94, whereas the macro average
is 0.89. From Table 4, it can be observed that the highest precision, recall, and F1 score are
found as 0.98, 0.99, and 0.98, respectively. Moreover, Figure 6 shows the AUC curve for
each class with an overall accuracy of 0.98. In this case, class 0, class 1, class 2, and class
3 refer to CNV, DME, DRUSEN, and NORMAL, respectively. The figure shows that the
lowest AUC score is 0.95 for the DRUSEN class. On the other hand, it is 0.99 for CNV and
NORMAL classes. The AUC score is 0.98 for the DME class. The overall AUC score of
0.98 indicates that the model has a probability of 0.98 in the case of classifying a randomly
chosen sample as positive higher than a randomly chosen negative instance.

Table 4. Class-wise performance analysis of proposed Conv-ViT network.

Class Precision Recall F1 Score

CNV 0.94 0.95 0.94
DME 0.88 0.89 0.89

DRUSEN 0.83 0.72 0.78
NORMAL 0.98 0.99 0.98

Macro Average 0.90 0.89 0.89
Weighted Average 0.94 0.94 0.94
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3.2. Qualitative Analysis

The qualitative performance of the proposed Conv-ViT model is evaluated using
sample images where the error is calculated based on the correct or wrong prediction of
the model. For this evaluation purpose, an image from each class is chosen. After that, the
image is given to the models, and then the error is analyzed. The qualitative analysis is
performed using seven different models where all the models are trained using the same
model parameter and tuning technique. All the models have their unique feature extraction
techniques. Table 5 contains all the predictions that are made by these models. The first
sample is from CNV class which is correctly predicted by all the models. That means
this class is not dependent on the combination of shape or texture-based features. Any of
these standalone feature extractors can classify this class. On the contrary, only four of
the models can classify the DME class. Analyzing the models, the DME class is predicted
correctly when the shape-based feature extractor, such as ViT, is present. In the case of
the DRUSEN class, only the proposed mode is predicted correctly because of extracting
a combination of three types of features: specific texture-based feature by Inception-V3,
generalized texture-based feature by ResNet-50, and shape-based feature by ViT. Despite
having lower samples in this class, the proposed model is capable of identifying the class
correctly. Finally, in the case of the NORMAL class sample, only ViT produces a wrong
prediction. The ViT-produced shape-based feature is not adequate to predict the NORMAL
class. Therefore, all other models associated with a ConvNet or a combination of ConvNet
and ViT can produce either texture-based or hybrid features that are required to predict the
NORMAL class correctly.

Among the seven models, Inception-V3, ResNet-50, and ViT are used as standalone
feature extractors. All these models predicted two of the classes properly. The Inception-V3
and ResNet-50 Predicted DME and DRUSEN as CNV and NORMAL, respectively. On
the other hand, in the case of ViT, the false negative is DRUSEN and NORMAL, which
are predicted as NORMAL and DME. The combination of Inception-V3 and ResNet-50
feature extractors can extract two types of texture-based features. This feature extractor
cannot predict DME and DRUSEN class. This class needs a shape-based feature that cannot
be extracted using the combination of Inception-V3 and ResNet-50. The ViT is used with
Inception-V3, which cannot predict the DRUSEN class. However, ViT with ResNet-50 has
produced a false negative for the DRUSEN class. On the other hand, the proposed model
predicts all the classes correctly.



J. Imaging 2023, 9, 140 14 of 20

Table 5. Prediction of each class from sample images on different model variations. The symbol (4)
and (×) indicates the correct and incorrect prediction, respectively.

Class Model Actual Class Predicted Class
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Inception-V3 + ViT NORMAL (×) 

ResNet-50 + ViT NORMAL (×) 
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ture extractors can extract two types of texture-based features. This feature extractor can-
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Inception-V3, which cannot predict the DRUSEN class. However, ViT with ResNet-50 has 

produced a false negative for the DRUSEN class. On the other hand, the proposed model 

predicts all the classes correctly. 

3.3. Ablation Study 

To justify the effectiveness of the self-attention component in the proposed Conv-ViT 

framework, several experiments are performed on different networks with and without 

utilizing the self-attention component. Table 6 represents the impact of self-attention on 

the model’s performance for different classes of OCT images. In the case of CNV class, 

Inception-V3

NORMAL

NORMAL (4)
ResNet-50 NORMAL (4)

Inception-V3 + ResNet-50 NORMAL (4)
ViT DME (×)

Inception-V3 + ViT NORMAL (4)
ResNet-50 + ViT NORMAL (4)

Inception-V3 + ResNet-50 + ViT (Proposed) NORMAL (4)

3.3. Ablation Study

To justify the effectiveness of the self-attention component in the proposed Conv-ViT
framework, several experiments are performed on different networks with and without
utilizing the self-attention component. Table 6 represents the impact of self-attention on
the model’s performance for different classes of OCT images. In the case of CNV class,
Inception-V3 performs better without self-attention, where removing the self-attention
increases the accuracy from 92.41% to 93.32%, and the F1 score increases from 0.92 to 0.93.
On the contrary, self-attention on ResNet-50 makes this model more efficient by increasing
the accuracy by 2.35%, and the F1 score is increased from 0.91 to 0.92. In terms of the
combination of Inception-V3 and ResNet-50, the accuracy and F1 score decreases because
of using self-attention. The accuracy decreases from 94.87% to 92.09%, and the F1 score
decreases from 0.93 to 0.91. Again, the combination of the three networks using sum fusion
produced an accuracy and F1 score of 94.83% and 0.93 when self-attention was applied
on all of the models and 94.27% and 0.93 without self-attention in the convolution-based
network. For the proposed framework, self-attention increases the accuracy from 94.55% to
96.74%, and the F1 score rises to 0.95 from 0.94. For the DME class, Inception-V3 performs
better without self-attention, where the accuracy increases from 0.72 to 0.75. Again, the
ResNet-50 performs better with self-attention, where the accuracy increases from 71.03%
to 69.83%, and the F1 score increases from 0.72 to 0.71. Moreover, the combination of
Inception-V3 and ResNet-50 works better with self-attention. The accuracy and F1 score
increased by 1.55% and 0.04, respectively. In this class, the accuracy and F1 score both
increased by 2.27% and 0.01, which was 85.78% and 0.85, respectively, when self-attention
was only used in the vision transformer. The proposed framework performance decreases
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when self-attention is used for the individual ConvNet model. The accuracy decreases
from 90.07% to 87.07%, and the F1 score decreases from 0.89 to 0.87. On the contrary, for
the DRUSEN class, the Inception-V3 extractor works better without self-attention, where
the F1 score increases from 0.48 to 0.49. ResNet-50 works better with self-attention, where
the accuracy increases from 33.86% to 37.92%, and the F1 score increases from 0.41 to 0.39.
The self-attention in the combination of Inception-V3 and ResNet-50 increases the accuracy
from 37.02% to 36.52%. Furthermore, the sum fusion of the three models performed
better without self-attention, where the accuracy increased from 58.61% to 60.76%, and
the F1 score rose to 0.60 from 0.56. The Conv-ViT framework performs better without
self-attention, where the accuracy decreases by 6.19%, and the F1 score also decreases
by 0.03. In the NORMAL class, the accuracy of Inception-V3 increases to 96.34%, and
the F1 score increases to 0.93. The ResNet-50 with self-attention shows a minor impact
though there is a slight increase of 0.82% in accuracy when self-attention is applied; the
F1 score remains constant. The combination of Inception-V3 and ResNet-50 works better
with self-attention, where the accuracy increases to 95.60% from 94.05%, and the F1 score
Increases to 0.93 from 0.92. While the F1 score for sum fusion of Inception V3, ResNet-50,
and vision transformer remained constant with and without self-attention, the accuracy
had a slight increase from 96.12% to 96.38% when self-attention was not applied. The Conv-
ViT framework works better without self-attention with an increment of the accuracy of
1.34% though the F1 score remains constant. However, except for CNV class, the proposed
Conv-ViT framework without self-attention in Inception-V3 and ResNet-50 outperforms all
other models. Moreover, our proposed framework, where the fusion was performed using
concatenation, achieved a higher accuracy and F1 score in every class than the sum fusion
of these three models, which indicates that combining features with the concatenation
method increased the model’s capability to interpret the complex interaction of features
than fusing them using sum rule.

The observation from the ablation study can also verify the findings of the qualitative
study. From qualitative analysis, it is observed that DME is correctly observed when there is
a shape-based feature extractor. In Table 6, for the DME class, there is a significant increase
in the F1 score from 0.76 to 0.89 when the vision transformer is used with Inception-V3
and ResNet-50. On the other hand, for the DRUSEN class, the F1 score is low compared
to other classes. However, the proposed model has a comparatively high F1 score of 0.77,
whereas, in the case of other models, the highest F1 score is 0.49. In the qualitative study,
only the proposed Conv-ViT correctly predicted this class. Moreover, in the case of CNV
and NORMAL classes, the performance of the models is comparatively constant for other
models. For CNV class, the performance of the models varied from 0.91 to 0.95, and for
the NORMAL class, the performance of the models is in the range of 0.91 to 0.97, which
supports the qualitative analysis as the sample for CNV and NORMAL class is classified
correctly by most of the models.

3.4. Analysis of Significance of Feature Level Concatenation

Table 7 evaluates the performance of two strategies, feature-level concatenation and
decision-level concatenation, implemented within the Conv-ViT framework. In the case
of decision-level concatenation majority voting technique was used. The feature level
concatenation outperformed the decision level concatenation with an accuracy of 94.46%,
whereas it was 87.36% for decision level concatenation. The value of precision, recall, and F1
score were persistently higher in feature level concatenation with values of 0.94, 0.94, and
0.94, respectively. On the other hand, the precision, recall, and F1-score for decision-level
concatenation were 0.87, 0.86, and 0.86, respectively. This analysis implies that combining
features at the feature level can provide better performance than combining decisions at
the decision level.
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Table 6. Significance of attention component on proposed Conv-ViT model. The symbol (4) and (×)
means with and without self-attention mechanism respectively. Bold font indicates the result of the
proposed framework.

Class Model Self-Attention Accuracy F1 Score

CNV

Inception 4 92.41% 0.92
× 93.32% 0.93

ResNet
4 91.88% 0.92
× 94.23% 0.91

Inception + ResNet 4 94.87% 0.93
× 92.09% 0.91

Inception + ResNet + ViT (Sum Rule Fusion) 4 94.83% 0.93
× 94.27% 0.93

Inception + ResNet + ViT(Concatenation) 4 96.74% 0.95
× 94.55% 0.94

DME

Inception 4 72.41% 0.72
× 71.03% 0.75

ResNet
4 71.03% 0.72
× 69.83% 0.71

Inception + ResNet 4 71.21% 0.76
× 69.66% 0.72

Inception + ResNet + ViT (Sum Rule Fusion) 4 83.51% 0.84
× 85.78% 0.85

Inception + ResNet + ViT(Concatenation) 4 87.07% 0.87
× 90.07% 0.89

DRUSEN

Inception 4 42.66% 0.48
× 41.53% 0.49

ResNet
4 37.92% 0.41
× 33.86% 0.39

Inception + ResNet 4 37.02% 0.45
× 36.57% 0.43

Inception + ResNet + ViT (Sum Rule Fusion) 4 58.61% 0.56
× 60.76% 0.60

Inception + ResNet + ViT(Concatenation) 4 69.30% 0.75
× 75.49% 0.78

NORMAL

Inception 4 92.96% 0.92
× 96.34% 0.93

ResNet 4 92.96% 0.91
× 92.14% 0.91

Inception + ResNet 4 95.60% 0.93
× 94.05% 0.92

Inception + ResNet + ViT (Sum Rule Fusion) 4 96.12% 0.95
× 96.38% 0.95

Inception + ResNet + ViT(Concatenation) 4 96.73% 0.97
× 98.43% 0.98

Table 7. Significance of feature level concatenation over decision level concatenation in Conv-
ViT framework.

Performance Matrices Feature Level Concatenation Decision Level Concatenation

Accuracy 94.46% 87.38%
Precision 0.94 0.87

Recall 0.94 0.86
F1 Score 0.94 0.86

3.5. Complexity Analysis

Table 8 analyzes the computational complexity of the proposed hybrid Conv-ViT
framework over individual models in terms of multiply-accumulate (MAC) operation. The
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number of parameters in the MAC unit for the proposed Con-ViT framework is found to be
around 93 M, which is a bit larger compared to individual models, including Inception-V3,
ResNet-50, and Vision Transformer to capture complex patterns of the retinal images.

Table 8. The computational complexity of the proposed Con-ViT framework in terms of multiply
accumulate (MAC) operation.

Models Parameters (MAC)

Inception-V3 24,527,268
ResNet-50 43,070,724

Vision Transformer 26,645,252
Conv-ViT 92,919,716

4. Discussion

In pursuit of observing the generalization capability of the proposed framework, as
presented in Table 9, the model is tested on another dataset called the optical coherence
tomography image database (OCTID). The dataset is collected from the work of P. Gho-
lami et al. [31]. This dataset consists of two classes, including AMD and NORMAL. The
accuracy and F1 score are found to be 92.37% and 0.92, respectively, on this dataset which
closely approximates the performance on the Mendeley [29] dataset. Therefore, this is
evidence of the proposed model’s good generalization on retinal disease classification.

Table 9. Performance of proposed framework on Mendeley and OCTID datasets.

Dataset Predicted Class Accuracy F1 Score

Mendeley [29]

• CNV
• DME
• DRUSEN
• NORMAL

94.46% 0.94

OCTID [31] • AMD
• NORMAL

92.37% 0.92

A comparative analysis of the proposed framework performance with the existing
state-of-the-art models on Mendeley [29] and OCTID [31] datasets is performed as pre-
sented in Table 10. The results are regenerated on this dataset for all the existing models
to compare performance superiorly with the proposed framework. Among the model
examined, the proposed Conv-ViT framework demonstrates the highest accuracy of 94.46%.
This indicates the robustness of the model compared to other state-of-the-art techniques.
The proposed framework outperforms other state-of-the-art models, including Inception-
V3 [23], ResNet-50 [26], Vision Transformer [27], VGG-16 with initialized weight [32], and
iterative fusion convolutional neural network [33]. While the other models performed
significantly better, with an accuracy of more than 80%, the vision transformer performed
poorly, with an accuracy of 65.95%. The experimental results provide insight into the lim-
ited efficacy of a shape-based extractor, such as the vision transformer, in robustly detecting
different types of AMD, while it also proves enough evidence about the performance
enhancement achieved by incorporating a texture-based feature extractor. This analysis
signifies the excellence of the proposed framework specifying the prospect of the Conv-ViT
framework in classifying different types of age-related macular degeneration. As a part of
a further evaluation of the performance of the Conv-ViT framework on the OCTID dataset
was also compared with other state of the other art method. Table 10 demonstrated that our
proposed framework had the highest accuracy of 92.37%, whereas Inception V3 achieved
second place with an accuracy of 85.03%. This evaluation illustrates that the proposed
framework can produce robust and significant results irrespective of the dataset being used.
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Table 10. Comparison of the proposed framework performance with existing state-of-the-art methods
on the Mendeley and OCTID Datasets (Bold font indicates the best results).

Reference No. Model
Accuracy (%)

Mendeley Dataset OCTID Dataset

Szegedy et al. [23] Inception-V3 88.18 85.03

He et al. [26] ResNet-50 85.51 80.09

Trockman et al. [27] Vision Transformer 65.95 61.37

Li et al. [32] VGG-16 with Initialized Weight 82.53 84.19

Fang et al. [33] IFCNN 89.56 82.47

Proposed Method Conv-ViT 94.46 92.37

5. Conclusions

In this paper, a hybrid feature extraction method is proposed with the inclusion
of Inception-V3, ResNet-50, and ViT model where Inception-V3 and ResNet-50 extract
specialized and generalized texture-based features and on the other hand, attention-assisted
ViT network extract shape-based feature. The combination of these three types of features
makes the Conv-ViT framework flavorsome in the detection of three types of age-related
macular degeneration and separates them from NORMAL OCT images. With the help of
extracting triple stream features from OCT images, this model outperformed some notable
work in the field of macular degeneration grading. Despite outperforming the proposed
triple stream model over the single stream models, the higher computational complexity
should have been the concern for the practical feasibility of the model. Thereby, as an
extension of the work, the time complexity could be reduced in the future. In addition,
concerning the robustness of the model, a high-resolution image can be processed with
GPU availability for classifying different types of age-related macular degeneration.
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