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Abstract: The automatic detection of dermoscopic features is a task that provides the specialists
with an image with indications about the different patterns present in it. This information can help
them fully understand the image and improve their decisions. However, the automatic analysis of
dermoscopic features can be a difficult task because of their small size. Some work was performed
in this area, but the results can be improved. The objective of this work is to improve the precision
of the automatic detection of dermoscopic features. To achieve this goal, an algorithm named yolo-
dermoscopic-features is proposed. The algorithm consists of four points: (i) generate annotations in
the JSON format for supervised learning of the model; (ii) propose a model based on the latest version
of Yolo; (iii) pre-train the model for the segmentation of skin lesions; (iv) train five models for the five
dermoscopic features. The experiments are performed on the ISIC 2018 task2 dataset. After training,
the model is evaluated and compared to the performance of two methods. The proposed method
allows us to reach average performances of 0.9758, 0.954, 0.9724, 0.938, and 0.9692, respectively, for
the Dice similarity coefficient, Jaccard similarity coefficient, precision, recall, and average precision.
Furthermore, comparing to other methods, the proposed method reaches a better Jaccard similarity
coefficient of 0.954 and, thus, presents the best similarity with the annotations made by specialists.
This method can also be used to automatically annotate images and, therefore, can be a solution to
the lack of features annotation in the dataset.

Keywords: features detection; single-shot object detection algorithm; dermoscopic images

1. Introduction

In skin imaging, a common modality for visualizing tissue structure is dermoscopy.
Dermoscopy is a non-invasive method that allows for the observation of more information
about the skin structure, and this observation can be saved as an image. A dermoscopic
image is characterized by the presence of dermoscopic structures (patterns) used by spe-
cialists to make diagnoses. Some dermoscopic structures present in malignant lesions are
the pigment network, dots, globules, and streaks.

The pigment network corresponds to the visualization of melanin located in the
keratinocytes and in the melanocytes along the dermal–epidermal junction. It forms a
honeycomb pattern with meshes (pigmented lines) and intermeshes (hypopigmented
holes) [1]. The pattern formed can be regular (typical) or irregular (atypical). Dots [2]
are small, round, well-circumscribed structures (less than 0.1 mm). These dots are said
to be regular if they are grouped in the center of the lesion or located on the lines of the
pigmentary network. Globules [2] are round to oval well-demarcated structures that are
larger than 0.1 mm. When dots and globules are atypical (differences in size, shape, color,
or distribution), the diagnosis of melanoma is preferred. Streaks [2] are linear pigmented
projections that localize at the edge of lesions and include radial streaks (linear streaks) and
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pseudopodia (bulbous projections). Some lesions may also have areas without structures.
Lesions with only a structureless pattern are difficult to diagnose by dermoscopy. This work
is particularly interested in lesions or parts of lesions that have dermoscopic structures.
Figure 1 shows some examples of dermoscopic structures.
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Figure 1. (a) Atypical pigment network on a dermoscopic image of nevus, (b) Irregular dots on a
dermoscopic image of nevus, (c) Irregular globules on a dermoscopic image of melanoma, (d) Streaks
on a dermoscopic image of melanoma, (e) Area without structure on a dermoscopic image of
nevus [3–5].

The difficulty in the automatic detection of dermoscopic features is on several levels.
First, dermoscopic features are generally small. For example, according to [2], dots are
oval and round structures smaller than 0.1 mm and globules are oval structures larger
than 0.1 mm. Second, dermoscopic structures are complex and their analysis requires
some expertise [6]. In addition, there is a lack in annotated images. To train automatic
detection algorithms, it is necessary to have large databases with labels. Finally, the existing
annotations reveal that some features are more present than others.

The objective of this paper is to propose a high-performance method that estimates
the location of five relevant dermoscopic features: globules, milia-like cysts, pigment
networks, negative networks, and streaks. This work will help specialists to gain a complete
understanding of the image and improve their decisions.

The contributions of this work are: (i) the generation of annotated images in the JSON
format from annotations made by experts and provided in the ISIC challenge 2018 task
2 databases. This format is required for state-of-the-art detection algorithms. The resulting
annotation will be made freely available for further research. (ii) This paper proposes
a framework for the automatic detection of five dermoscopic features. (iii) This paper
contains a review of the literature on the subject.

In the remainder of this paper, Section 2 reviews methods for detecting dermoscopic
features and presents the proposed method. Next, Section 3 reports the experimental
results, followed by Section 4, which discusses the results. Finally, there are a conclusion
and perspectives.

2. Materials and Methods
2.1. Dermoscopic Structures Localization Methods

In the last decade, several works and progress have been made on the localization of
dermoscopic structures. Recent advances in these algorithms were made possible by the
advent of deep learning methodologies. However, before deep learning was used, methods
such as scale-invariant feature transform (SIFT) [7] and gradient histogram (HOG) [8] and
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support vector machine (SVM) [9] classifiers were widely used. Therefore, there are two
categories of feature detection methods: traditional methods based on manual feature
extraction and methods based on deep learning. Figure 2 lists these different families
of feature detection methods. This section presents the recent literature on automatic
localization in dermoscopic images.
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Figure 2. Classification of object detection methods.

2.1.1. Traditional Object Localization Approach

Barata et al. in [10] proposed a method that detects a pigment network mask in two
steps. The first step is to enhance the transitions between the dark lines and the lighter
“holes” in the lesion image (to better detect the pigment network lines) using directional
filters. Then, an algorithm based on the eight-connections criterion is applied to detect
the large linked structures that represent the pigment network area. Pathan et al. in [11]
applied a Gabor filter on the green channel of the lesion image to generate the pigment
network mask. Garcia-Arroyo et al. in [12] proposed a pigment network recognition
method that first uses a fuzzy classification model to classify each image pixel into three
categories: “net”, “hole”, and “other”. Then, a set of color and texture features are extracted
to discriminate between the absence and presence of the pigment network. Benam et al.
in [13] introduced a system to locate and retrieve images with a similar pigment network
with a query image. The algorithm first finds key points in the region using a blob detection
approach, the same as in SURF. Then, using luminance and color components, it extracts
128 features as descriptors from each key point. Finally, the algorithm matched key points
in the query image with similar key points appearing in images of the database. Delibasis
et al. in [14] proposed a methodology based on Hessian multiresolution image features to
automatically detect streaks in dermoscopy images. The detected features are used for the
classification of lesions into malignant or non-malignant.

2.1.2. Deep Learning Object Localization Approach

Jahanifar et al. in [15] proposed a five attribute segmentation algorithm based on
encoder–decoder architecture to segment each dermoscopic attribute. The encoder uses
a variety of pre-trained networks, and the decoder generates the prediction map by com-
bining multi-scale information using a pyramid pooling approach. Sorokin et al. in [16]
proposed a lesion attribute detection method based on the mask R-CNN model. The model
was pre-trained on the COCO database [17] and detected five dermoscopic attributes.
Li et al. in [18] tackled the task of dermoscopic feature extraction by proposing a patch-
based CNN named the lesion feature network (LFN). The LFN framework first subdivided
the image into 996 superpixel areas. Then, each superpixel area was classified into one
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of five categories: four types of dermoscopic features (pigment network, negative net-
work, striae, and milia-like cysts) and background. Kawahara et al. in [19] implemented a
convolutional-neural-network-based method to detect the presence of four dermoscopic
criteria (pigment network, negative network, milia-like cysts, streaks) in a dermoscopic
image. The CNN architecture uses interpolated maps and concatenated feature maps
from the intermediate layers of the network. Their approach in 2017 won first place in the
ISIC-ISBI Part 2 challenge. Bissoto et al. in [20] approached the lesion attribute detection
task with a finely tuned Inception-v4 network pre-trained on ImageNet [21]. Each image
was sliced into patches of dimensions 128 × 128 or 299 × 299, and each patch was sub-
mitted to the model for classification into six classes: absent, pigment network, negative
network, milia-like cysts, streaks, and globules. Z. Chen et al. in [22] proposed a multi-task
U-Net model to automatically detect dermoscopic attributes. The characteristic of the
proposed model is that the U-Net encoding path was replaced by a pre-trained VGG16
model. Instead of using the pre-trained model with databases such as ImageNet or COCO,
which are very different from medical datasets, Nguyen et al. in [23] proposed task agnostic
transfer learning (TATL) to detect the five attributes of skin lesions. The proposed method
is inspired by the behavior of dermatologists and consists of three networks. The first
network segments the lesion regions in the image. Then, the second network identifies
any abnormal positions in the segmented image. The last network is trained to detect only
one attribute.

All these proposed methods based on deep learning have approached the dermoscopic
feature localization as a classification task [20] or a segmentation task [15], working either
on the whole image [16,18] or on the segmented lesion [19,23], or on superpixels [18–20].
Pre-processing methods were applied by some authors [16,18] to enlarge the lesion area for
feature detection and to remove artifacts present on some images. Furthermore, at the end
of the proposed frameworks, other authors [15,20] have applied post-processing to restrict
the attribute prediction maps to the lesion area and to mitigate false positives that usually
occur in abundant attributes.

Given the imbalance observed in the annotation of dermoscopic features in the two
databases, other authors have proposed approaches to correct this. Kawahara et al. in [19]
address the problem by minimizing a Sorensen–Dice coefficient, computed over the entire
mini-lot for each label. Bissoto et al. [20] attempted to address the imbalance in the dataset;
they formed balanced batches of data that were used to train each model. Li et al. in [18]
also tried to solve the problem by assigning weights to the different classes (attributes)
when calculating the softmax loss in order to give more attention to classes with fewer
samples. A common feature of all these references is the database. Most of the works cited
exploit the databases provided by the ISIC competition (ISIC 2017 [3] or ISIC 2018 [5,24]).
These datasets have the potential to advance research on the topic. However, not all
dermoscopic structures are annotated in these databases and the number of examples
for most annotated structures is small. Furthermore, for dermatologists, providing local
annotations is a cumbersome, tedious, and time-consuming task [25].

Given these challenges, this paper proposes a method to improve the automatic
localization of dermoscopic features and to auto-generate dermoscopic feature annotations.

2.2. Dataset

The used dataset is from the ISIC 2018 challenge and contains 2594 skin lesion im-
ages and 12,970 masks corresponding to the annotated dermoscopic features (five for
each image). The masks were obtained from expert annotations, with a cross-validation
from multiple evaluators. The five annotated dermoscopic features are globules, pigment
network, negative network, streaks, and milia-like cysts. The resolution of dermoscopic
images in the dataset vary between 640 × 480 and 1944 × 2592. On the dataset, 603 images
show globules, 1523 show a pigment network, 191 show a negative network, 100 show
streaks, and 682 show milia-like cyst features. No pre-processing is applied to the images in
the database because, on the one hand, they rarely contain hairs that would interfere with
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visual and automatic analysis. Second, to avoid removing the desired features. Indeed, the
pigment network and the negative network have a brown line pattern like hairs and can be
assimilated to them and removed during pre-processing.

Figure 3 presents the feature structures, some dermoscopic images of the dataset, and
the corresponding ground truth response masks (dark images represent the absence of the
feature in the image).
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2.3. Proposed Approach

The pipeline of the proposed approach, named Yolo-Dermoscopic-Feature (YDL),
like all deep learning approaches, consists of three parts: dataset construction (orga-
nization), training, and prediction. Figure 4 presents the different steps of the Yolo-
dermoscopic-feature algorithm. The green modules represent the parts on which modifica-
tions were made.

2.3.1. Dataset Construction

The dataset construction part consists of generating the labels files from binary masks.
The binary masks were obtained from expert annotations. The file format used in this work
is the JavaScript Object Notation (JSON). JSON is a lightweight data exchange format based
on a subset of the JavaScript programming language standard ECMA-262 [26]. Algorithm
1 resumes the different steps to obtain the file.
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Algorithm 1: Generate the label file from the binary images.

Input: binary mask and the number of binary images Ni
Output: file
Initialization of the number of contours in an image Nc to 0
For each image i from 1 to Ni

Nc = Detection of the number of contours in the mask
file = Creation and initialization of the output file
For each image j from 1 to Nc

coordinates = Determination of the contour coordinates
file = Saving the coordinates on the file

end
Closing the file
end

The generated file contains, among other things, information on the types of der-
moscopic features present in the image (label), the coordinates of the points that delimit
the dermoscopic feature (points), and the dimensions of the image (imageHeight and
imageWidth). Figure 5 shows the structure of the generated file.

2.3.2. Yolo Algorithm

You Only Look Once (Yolo) is an object detection and image segmentation model
developed at the University of Washington by Joseph Redmon and Ali Farhadi. The first
version of Yolo [24] was released in 2015, and since then, updates have been made to the
architecture and cost functions to improve its accuracy and performance. Figure 6 shows
the timeline of the different versions of Yolo.
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This algorithm, as presented in Figure 7, incorporates three parts, a backbone (or
dorsal spine) network, a neck (or detector neck) network, and a detector head network. The
backbone is a feature extractor module based on deep learning architecture. All backbone
models are basically classification models similar to visual geometry group VGG [27],
residual transformation block (ResNet) [28], dense convolutional network (DenseNet) [29],
and cross stage partial network approach to Darknet (CSPDarknet) [30]. The neck module
aggregate feature maps from different resolutions of the backbone fuses the features of
different resolutions. Examples of the neck algorithm are the feature pyramid network
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(FPN) [31] and the path aggregation network (PAN) [32]. Finally, the head modules
perform the object detection. Multiple heads are used to perform the prediction in different
resolutions. Some of the head detectors are region proposal network (RPN) [33], Yolo [34].
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In Yolov8, the CSPDarknet, PAFPN, and YoloHead networks are used as the core net-
work, neck network, and head network, respectively. Yolov8 is the latest version of the Yolo
detection models and is written and maintained by Jocher Glenn and other contributors
from the company Ultralitycs [35]. Yolov8 is anchor-free and uses mosaic augmentation
during training. The anchor-free approach simplifies the model by removing the anchor
boxes. It allows the model to handle objects of different scales and aspect ratios without
relying on prior information. Mosaic data augmentation involves combining multiple
images into a single mosaic image and using it as input during training. Mosaic augmen-
tation helps Yolov8 generalize better by forcing the model to learn from a more varied
and challenging set of training samples. Yolov8 uses varifocal loss (VFL) as classification
loss and distribution focal loss (DFL) and complete intersection over union loss (CIoU)
as bounding boxes loss. These improvements make learning and inference much faster
and improve the accuracy of the model. These are the reasons that motivated the choice of
this algorithm.

In this work, instead of directly using a pre-trained ImageNet back-end, the model is
first trained to segment the lesion area in the dermoscopic images. Then, the pre-trained
model is used for dermoscopic feature localization. Furthermore, to correct the observed
imbalance in features, five models are trained for the five dermoscopic features (globules,
pigment network, negative network, milia-like cysts, and streaks). That means there is one
model per feature.
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3. Results
3.1. Experiments Setup and Evaluation Metrics

The experiments are performed on a machine with GPU NVIDIA A100 Tensor Core
and 40GB RAM, and 70% of the dataset is used for training and 20% for validation and 10%
for testing. The number of epochs is set to 100.

Three different losses are used to display model performance. These are: box loss
(box_loss), segmentation loss (seg_loss), and classification loss (cls_loss). The box loss
indicates how well the model can locate the center of an object and how well the predicted
bounding box covers an object. Segmentation and classification losses indicate the ability
of the model to, respectively, segment and predict the correct class of a given object.

Evaluation measures such as Dice similarity coefficient (DSC) [33], Jaccard similarity
coefficient (JSC) [36], precision [25,37], recall [25,37], and average precision (mAP) [38] are
used to evaluate the performance of detection with bounding boxes, segmentation, and
feature classification. The average precision compares the ground truth bounding box to
the detected box and returns a score. A high score means that the model is accurate in its
detections. DSC and JSC are statistical measures used to evaluate the similarity of two
samples. DSC, JSC, precision, recall, and average precision are, respectively, defined by
Equations (1)–(5):

DSC =
2TP

2TP + FP + FN
(1)

JSC =
TP

TP + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Average precision =
Precision + Recall

2
(5)

where TP are the true positives, FP the false positives, and FN the false negatives.
Finally, a comparative study is conducted to measure the performance of the proposed

framework against two state-of-the-art methods.

3.2. Experimental Results

This section presents the experimental results obtained for each of the five dermoscopic
features during the training and prediction phase.

3.2.1. Training

The training or learning step consists of updating the parameters of a neural network
to obtain the combination of parameters allowing the best possible prediction [39]. Figure 8
displays the loss charts of models during training and validation.

The loss functions all converge to zero from epoch 80 onwards. Furthermore, there is
similarity between the pairs of training and validation curves. This means that the model
generalizes well and fits the observed data on the training set, as well as the unobserved
data on the validation set [40]. To avoid slowing down the learning speed, i.e., when the
accuracy of the models stops improving after a certain time or even degrades due to noise
learning (early stopping [40]), the number of epochs is limited to 100.
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represent charts of the globule localization model, the milia-like cyst (MLC) localization model, the
pigment network (PN) localization model, the negative network (NN) localization model and the
streak localization model. The epoch number is on the x-axis, and loss is on the y-axis.

Figure 9 shows the performance measures during the training. The models start to
improve in terms of precision, recall, and average precision after approximately 50 epochs.
A stabilization is observed after approximately 80 epochs, and the measures converge
to 1, which is the higher performance value. These curves allow us to observe that the
learning process is progressive and that the model really improves at each epoch. The
convergence of all the models towards 1 is consistent with the convergence of the loss
curves (see Figure 8) towards 0 and motivates the choice to limit the number of epochs to
100 to avoid overfitting [25,40].

3.2.2. Prediction

The prediction phase follows the learning phase. The predictions were made on new
images that were not used to train the models. The five trained models are first loaded.
Then, based on the test set, each model makes predictions. Figures 10–14 each consist of
three lines. The first line shows example dermoscopic images, followed by the second
line, which shows three binary masks corresponding to the three images in the first row.
Finally, the last line shows the prediction results of the five features, respectively. For each
prediction, the model return detected bounding boxes, the segmentation mask, and the
corresponding predicted class and confidence scores. Moreover, the YDL algorithm allows
for the generation of an annotation file based on the predictions. This label can then be
used to annotate unannotated images and, thus, increase the number of annotated images.
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Figure 11. (a) Dermoscopic images. (b) Experts’ annotation masks of milia-like cyst (MLC).
(c) Predictions of milia-like cyst (MLC) positions.
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Figure 12. (a) Dermoscopic images. (b) Experts’ annotation masks of the pigment network (PN).
(c) Predictions of pigment network (PN) positions.
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Figure 13. (a) Dermoscopic images. (b) Experts’ annotation masks of the negative network (NN).
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Figure 14. (a) Dermoscopic images. (b) Experts’ annotation masks of streaks. (c) Predictions of
streaks positions.
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Visual Evaluation

Looking at the prediction visually, we notice some strengths of the YDL algorithm:

• The segmentation masks for the predictions made (Figures 10c, 11c, 12c, 13c and 14c)
show great similarities to the expert annotations (Figures 10b, 11b, 12b, 13b and 14b).

• The model detects well the presence of the dermoscopic structures in different regions.
• In some images, the features are located right on the edges. In these cases, the algorithm

accurately detects the affected areas while delineating the central parts that do not
have the feature.

• The method allows us to make predictions on images of small and large diameters.

Metrics Evaluation

Table 1 shows the performance of the models on the test set. The statistics presented
correspond to the average obtained on all images on the test set. The calculated values
for each of the metrics, DSJ, JSC, precision, recall, and average precision, converge to the
highest performance score 1. The same is true for dermoscopic characteristics that are
poorly represented in the database (negative network and streaks).

Table 1. Performances of the YDL algorithm.

Metrics Globules Milia-Like Cysts Pigment Network Negative Network Streaks All Features

DSC 0.984 0.979 1 0.947 0.969 0.9758
JSC 0.970 0.960 1 0.900 0.940 0.954

Precision 0.985 0.946 0.995 0.940 0.996 0.9724
Recall 0.950 0.935 0.992 0.871 0.942 0.938

Average
precision 0.980 0.976 0.994 0.915 0.981 0.9692

Based on the results obtained using the metrics, we can objectively conclude that the
predictions made by the models have strong similarities with the annotations made by
the experts. However, even if the results are interesting for all features, we notice a better
performance for the dermoscopic structures that are well represented in the database.

Comparative Study

Finally, we compare the YDL algorithm results with two other state-of-the-art methods.
The first method was proposed by Kawahara et al. [19] for detecting the presence of
four dermoscopic criteria (pigmentary network, negative network, milia-like cysts, and
streaks) in a dermoscopic image. Their approach in 2017 won first place in the ISIC-ISBI
Part 2 challenge. The second method was proposed by Li et al. [18] for classifying four types
of dermoscopic features (pigmentary network, negative network, streaks, and milia-like
cysts) and the background.

Table 2 presents a comparison of the different dermoscopic feature extraction methods.
We notice that all the methods are based on deep learning, use ISIC databases, and can
detect several features. The YDL method is the one that extracts the most features (five
features against four for the others). We make an estimation of the complexity of the three
compared methods based on the feature extraction approach. Kawahara et al. [19] proposed
a global approach for feature extraction similar to the proposed YDL method. Nevertheless,
to improve the diagnostic accuracy, we chose to train multiple models, which increases
the number of parameters to be trained and, consequently, the learning and prediction
time. Li et al. in [18] chose a local approach for feature extraction, which means that
they first subdivided the image into superpixel areas and then applied their method to
each superpixel. This approach makes the algorithm more cumbersome and increases
the learning time. Finally, we believe that the fastest and least complex method is that
of Kawahara.
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Table 2. Comparison of different dermoscopic feature detection methods.

Method Techniques Dermoscopic Structures Dataset Estimated Complexity

Kawahara J. [19] CNN and
interpolated map

pigment network, negative network,
milia-like cysts, streaks ISIC Low

LFN [18] CNN
pigment network, negative

network, streaks,
milia-like cysts

ISIC Hight

YDL Yolo

globules
pigment network, negative

network, streaks,
milia-like cysts

ISIC Hight

Table 3 presents the results of the comparisons. For JSC and the recall metrics, the
proposed method shows interesting results. This result confirms the performance observed
during the training and prediction phase.

Table 3. Performances of different dermoscopic feature detection methods that use the ISIC
challenge dataset.

Method JSC DSC Recall

Kawahara J. [19] 0.895 - 0.534
LFN [18] 0.833 0.710 0.693

YDL 0.954 0.976 0.938

4. Discussion

The results of the visual evaluation (Figures 10–14), the metrics evaluation (Table 1),
and the comparative study (Tables 2 and 3) show interesting predictions with YDL com-
pared to other methods. Averaging the results for each of the dermoscopic features, we
obtain 0.9758 for DSC, 0.954 for JSC, 0.9724 for precision, 0.938 for recall, and 0.9692 for
average precision.

The main constraints for the automatic localization of dermoscopic features are related
to the very small size of these features; the complexity of their analysis, which requires
some expertise; and the lack of annotated images for model training. Based on the results
presented in the visual and metrics evaluation, we find that the proposed YDL algorithm
can achieve near expert detection despite the constraints associated with this task. Moreover,
when comparing the YDL method with two other methods in the literature, the proposed
method extracts the most dermoscopic features and achieves better results. These results
confirm those obtained with the metrics evaluation.

The applications of the proposed method are multiple. In consultation, it can be
used to provide the specialist with a mask of the dermoscopic features present in the
image. Knowing that some features are difficult to observe with the naked eye. It can
also be used for the automatic classification of skin lesion images. For example, when
the globules are atypical (differences in size, shape, color), the diagnosis of melanoma is
favored. This principle can be transformed into a rule that is applied to the mask that our
method provides to distinguish melanoma from non-melanoma. Finally, our method has
the great advantage of generating the annotation file based on predictions, knowing that
the annotation of images is a tedious task. This label can be used to annotate unannotated
images and, thus, increase the number of annotated images.

Automatic image classification is another approach to improving the accuracy of
skin lesion diagnosis. In fact, this is one of the approaches most frequently proposed in
the literature [39,41–44]. Classification involves determining the class to which the lesion
belongs. The lesion may be, for example, a melanoma, a basal cell carcinoma, or a nevus.
Some references focus on binary classification (benign or malignant) [39] or multi-class
classification [41,42]. Kamrul et al. in [41] have proposed a multiclass classification method
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for dermoscopic images called DermoExpert using convolutional networks. Instead of
predicting the class of the entire lesion, our proposed YDL method first predicts the class to
which certain areas of the lesion belong. The classes are, therefore, the dermoscopic features
(pigment network, negative network, globules, milia-like cysts, or streaks). Secondly, the
contours of these zones are delineated to distinguish them from zones that do not have the
desired features. Thus, unlike lesion classification, feature detection presents specialists
with arguments or elements that enable them to confirm or refute their diagnosis.

5. Conclusions

In this paper, a dermoscopic localization feature method-based, single-shot object
detection algorithm is proposed as a solution to obtain a complete understanding of
dermoscopic images and give physicians more relevant information to increase their
accuracy. The objective of this work is to propose a more efficient method than those
existing in the literature. To achieve this goal, we proposed an algorithm named YDL,
defined in four points: (i) to generate annotations in the JSON format for supervised
learning of the model; (ii) to base it on the latest version of Yolo; (iii) to pre-train the model
for the segmentation of skin lesions; (iv) to train five models for the five dermoscopic
features. The results show an improved prediction with YDL compared to other methods.

One limitation of this work is the number of models used (as many models as dermo-
scopic features). This choice was made because of the very small size of the dermoscopic
elements, the complexity of some structures, and the fact that in an image, the same feature
can be found in different places. While this choice provides interesting predictions, one
prospect would be to use a single model to locate all dermoscopic features. The future
work will explore advanced techniques to achieve this goal. We will also study different
pre-processing methods adapted to dermoscopic images that can be used to improve the
visibility of dermoscopic features and, thus, their automatic localization. Finally, to address
the limited number of images, we plan to combine, in the future work, images with clinical
metadata to improve the accuracy of the feature localization model.
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