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Abstract: Knowledge of the relative performance of the well-known sparse and low-rank compressed
sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We
use 3D radial T1 relaxation time mapping data to compare the total variation, low-rank, and Huber
penalty function approaches to regularization to provide insights into the relative performance of
these image reconstruction models. Simulation and ex vivo specimen data were used to determine the
best compressed sensing model as measured by normalized root mean squared error and structural
similarity index. The large-scale compressed sensing models were solved by combining a GPU
implementation of a preconditioned primal-dual proximal splitting algorithm to provide high-quality
T1 maps within a feasible computation time. The model combining spatial total variation and locally
low-rank regularization yielded the best performance, followed closely by the model combining
spatial and contrast dimension total variation. Computation times ranged from 2 to 113 min, with the
low-rank approaches taking the most time. The differences between the compressed sensing models
are not necessarily large, but the overall performance is heavily dependent on the imaged object.

Keywords: compressed sensing; T1 relaxation; quantitative magnetic resonance imaging; regularization;
image reconstruction

1. Introduction

Compressed sensing (CS) is one way to speed up magnetic resonance imaging (MRI)
by collecting less data while simultaneously retaining high image quality. Essentially,
CS theory states that only a small subset of k-space samples is required for accurate im-
age reconstruction [1,2]. In an MRI, CS can be realized by undersampling the k-space
incoherently, which produces noise-like artifacts in the image domain. Then, by utilizing
sparsifying transforms, compressibility of the MRI images is enforced in the image recon-
struction, which minimizes image noise and artifacts, allowing for the original image to be
mostly recovered [3,4].

One of the MRI methods most in need of fast acquisition strategies is the 3D quanti-
tative MRI (qMRI) approach. qMRI methods offer extra information that can be valuable
in certain situations, but they are also multiple times slower than the standard contrast-
weighted MRI. The benefits of 3D imaging include more comprehensive coverage of the
anatomy of interest, which in most cases is a welcome addition, but at a further cost to
acquisition times. Thus, combining these two time-consuming methods is problematic and
necessitates an acceleration of the acquisition methods. Coincidentally, 3D qMRI is a good
candidate for CS—undersampling in three dimensions spreads the arising artifacts better
when compared to 2D, and the added parametric dimension can be exploited in various
ways for better image quality and more aggressive undersampling [5–10].

For all CS methods, significant attention should be paid to the undersampling scheme
of the acquisition, as it heavily influences how the artifacts manifest in the images and, thus,

J. Imaging 2023, 9, 151. https://doi.org/10.3390/jimaging9080151 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging9080151
https://doi.org/10.3390/jimaging9080151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-1763-2990
https://orcid.org/0000-0001-5044-3203
https://orcid.org/0000-0002-5621-795X
https://orcid.org/0000-0002-5678-0689
https://doi.org/10.3390/jimaging9080151
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging9080151?type=check_update&version=2


J. Imaging 2023, 9, 151 2 of 15

how well the original image can be recovered [3,11]. Practical considerations and scanner
hardware limit the possible trajectories. From the standard k-space sampling schemes,
non-cartesian radial trajectories are well suited for accelerated 3D imaging. For radial
acquisitions, even for uniform undersampling, the undersampling artifacts are inherently
spread out in all three dimensions, and the k-space center is densely sampled, making the
acquisition resilient to motion and undersampling.

The downside of the non-cartesian trajectories is that the image reconstruction is
computationally much more demanding since the standard fast Fourier transform needs
to be replaced by a non-uniform fast Fourier transform (NUFFT) [12]. In addition, usu-
ally iterative reconstruction methods are utilized for non-cartesian acquisitions, further
increasing the computational cost. Since the large-scale optimization problem of the 3D
qMRI CS is usually solved with first-order optimization methods, which require many
iterations, the computational aspect of 3D radial qMRI CS needs to be considered. Recently,
preconditioned primal-dual proximal splitting was demonstrated to significantly speed up
the convergence of CS image reconstructions without the increased noise amplification of
the traditional density correction preconditioner approach [13]. The novel preconditioner
combined with algorithm implementation on a graphics processing unit (GPU) seems to
offer feasible reconstruction times for 3D qMRI CS, negating a large part of the downsides
of the non-cartesian CS.

In this study, we approach the topic of CS qMRI by demonstrating the performance
of multiple CS models with variable flip angle 3D radial T1 mapping. The T1 relaxation
time, for example, shows promise as a potential biomarker for lung disease [14] and my-
ocardial fibrosis [15]. Additionally, a specific variable flip angle acquisition shows promise
in proton resonance frequency shift thermometry [16]. T1 mapping has also been com-
bined with compressed sensing to, for example, make single-breath-hold multiparametric
MRI feasible [17].

The CS models tested include spatial and contrast dimension total variation, spatial
and contrast dimension finite differences with the Huber penalty function, and locally
low rank and locally low rank combined with spatial total variation. These sparsifying
priors are well studied, but their performance with true 3D radial acquisitions is not well
defined. The large-scale image reconstruction problems are solved in a feasible time frame
with the primal-dual proximal splitting (PDPS) algorithm [18], as it permits precondi-
tioning for faster convergence [13,19] and allows the implementation of the sparsifying
priors [20]. Reconstructions are computed with various amounts of data to investigate the
undersampling tolerance of the methods. Ex vivo and simulation data are used, as the
former provides evidence of real-world performance and the latter gives us the possibility
to measure performance with respect to the known ground truth.

2. Theory

The standard MRI measurement model is

m = Fu + e, (1)

where m ∈ CM is the measured k-space, F is the discrete Fourier transform, u ∈ CN is
the complex-valued image, N = Nx ×Ny ×Nz, and e ∈ CM models the complex-valued
measurement noise. With radial acquisitions, the discrete Fourier transform is usually
approximated with the non-uniform Fourier transform (NUFFT) operator. Considering
also that an image series is acquired, the measurement model can be written as

mn = Anun + en, (2)

where the subscript n denotes the contrast index, An = PnFCn is the NUFFT operator,
where Pn is the combined interpolation and sampling matrix, and Cn is the scaling matrix.
Note that the NUFFT operator changes with the contrast, as the sampling trajectories differ
between the contrast images.
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The optimization problem for the standard non-regularized radial reconstruction
then reads

û = argmin
u

{
Nc

∑
n
‖Anun −mn‖2

2

}
, (3)

where u is the 4D image stack containing all Nc of the 3D contrast images. This is the least
squares solution to the problem and will be referenced as LS for the rest of the publication.

2.1. Total Variation Model (sTV + cTV)

One of the most popular regularization functions is the total variation (TV). TV regular-
izes the L1 norm of the spatial or contrast dimension image gradient, promoting piecewise
constancy in the respective dimensions. The performance of TV has been well documented
in numerous applications. However, it is plagued by the so-called staircasing effect, where
originally smooth image areas are reconstructed as piecewise constant, leading to sub-
optimal performance. By utilizing TV in the spatial and contrast dimensions separately, the
minimization problem is

û = argmin
u

{
Nc

∑
n

(
‖Anun −mn‖2

2 + α‖∇sun‖1

)
+ β‖∇cu‖1

}
, (4)

where∇s is the discrete spatial gradient operator,∇c is the discrete contrast dimension gra-
dient operator, and parameters α, β > 0 determine the weighting of the spatial and contrast
dimension regularization terms, respectively. In our testing, this model is comparable to
spatio-temporal TV, where the spatial and contrast image gradients are combined under
the same square root, i.e., in the same regularization term.

2.2. Huber Model (sH + cH)

The Huber penalty function is of the form

Hγ(x) =

 |x|2
2γ , |x| ≤ γ,

|x| − γ
2 , |x| > γ,

(5)

where γ is the tunable Huber parameter. Below γ parameter, the Huber regularization is
close to the standard L2-norm smoothness regularization, and above γ, it approximates the
TV regularization. In the context of MRI, the γ parameter can be interpreted as a threshold
where discontinuous signal change is assumed [21]. The Huber penalty function has been
proposed as a remedy to the stair-casing of TV in the denoising context [18], and it has been
applied, e.g., as a temporal regularization for DCE data [21].

The image reconstruction problem utilizing the Huber penalty function on the spatial
and contrast dimension image gradients is

û = argmin
u

Nc

∑
n

(
‖Anun −mn‖2

2 + α‖Hγ1(∇sun)‖1

)
+β‖Hγ2(∇cu)‖1

. (6)

The two separate Huber parameters, γ1 and γ2, provide a way to spatially alleviate
the piecewise constant nature of TV while also limiting excessive contrast dimension
smoothness. Contrast dimension smoothness is not a desirable property with a qMRI
image series because the resulting temporal blur can lose small nuances of the contrast
modulation, and the stair-casing effect is not as significant an issue temporally as the images
undergo the signal fitting procedure.

2.3. Locally Low-Rank Model (LLR)

A low-rank model assumes that for the Nx NyNz × Nc Casorati matrix, formed of the
Nx ×Ny×Nz×Nc qMRI image series, the rank of the Casorati matrix is much smaller than
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Nc, i.e., it is rank deficient. It has been shown that this rank deficiency can be improved
if only a small part of the image series that contains mostly similar signal dynamics
is considered. This approach is known as the locally low-rank (LLR) model [22]. The
superior performance of the LLR model when compared to the (globally) low-rank model
has been, for example, demonstrated with DCE MRI [23] and quantitative parameter
mapping of T1 and T2 relaxation times [9]. If the low-rank assumption does not hold
and low-rank regularization is enforced during image reconstruction, contrast dimension
blurring or unsatisfying noise suppression will occur, depending on the strength of the
regularization [22].

Rank-constrained optimization problems are usually infeasible in practice, but luckily,
convex relaxations that utilize nuclear norm regularization can be used [24]. Thus, the LLR
optimization problem can be written as

û = argmin
u

{
Nc

∑
n
‖Anun −mn‖2

2 + α ∑
b∈Ω
‖Cbu‖∗

}
, (7)

where ‖ .‖∗ denotes the nuclear norm, Cb is an operator that extracts an image block of size
b× b× b× Nc from the image series and reshapes it to a Casorati matrix of size b3 × Nc,
and Ω denotes the whole set of image blocks. The blocks can be chosen as overlapping or
non-overlapping, with the computational complexity increasing as a function of the overlap.
Translational invariance can be achieved by randomly spatially shifting the contrast images
prior to LLR regularization at each iteration during the reconstruction [25].

2.4. Spatial Total Variation and Locally Low-Rank Model (sTV + LLR)

Adding spatial TV regularization to an LLR model can provide multiple benefits [26–28].
If the qMRI series is not exactly low rank, the spatial TV regularization can be used to
suppress the left-over noise. Additionally, spatial TV can also be used to minimize the
blocking artifacts that the LLR might induce. The joint optimization problem then reads

û = argmin
u


Nc
∑
n

(
‖Anun −mn‖2

2 + α‖∇sun‖1

)
+β ∑

b∈Ω
‖Cbu‖∗

. (8)

2.5. Primal-Dual Proximal Splitting Algorithm

All the models detailed above can be solved by the PDPS algorithm [18]. The PDPS
solves an optimization problem simultaneously with its dual and can be applied to primal
minimization problems of the form

min
x

F(Kx) + G(x), (9)

where K is a linear transform, and F and G are convex functions. For Equation (9), the
PDPS algorithm reads (Algorithm 1) [20].

Algorithm 1. Primal-dual proximal splitting.

Choose θ ∈ [0, 1] and σ, τ such that στ < 1/‖K‖2
2

while not converged do
yk+1
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(

yk + σKxk
)

xk+1
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xk+1 + θ
(

xk+1 − xk
)

end while

Where prox denotes the proximal mapping, which is used to generate the descent
direction for the function argument.
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As an example, for Equation (3) and a single-contrast image, the optimization prob-
lem can be written as in Equation (9) by setting the primal variable x as the vectorized
complex image u, K as the corresponding NUFFT operator A, F(p) = 0.5‖p−m‖2

2,
where p = Au, and G(x) = 0. The proximal mapping of the convex conjugate of F is
proxσ[F∗](y) = (y− σm)/(1 + σ). Additionally, we let the algorithm utilize a diagonal
preconditioner P for the dual variable following [13]. With these, the preconditioned PDPS
algorithm reads (Algorithm 2).

Algorithm 2. Preconditioned primal-dual proximal splitting for least squares.

Choose θ ∈ [0, 1] and σ, τ such that στ < 1/
∥∥AT PA

∥∥2
2

while not converged do
pk+1
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end while

The PDPS implementations for Equations (4) and (6)–(8) are detailed in the Appendix A
(Algorithms A1–A4). For further information about the algorithm, the reader is instructed,
e.g., to the references [18,20].

2.6. Variable Flip Angle Acquisition

T1 mapping can be performed by a variable flip angle (VFA) acquisition, where
multiple images with different flip angles (FA) but with the same repetition time (TR) are
acquired from which the T1 value can be solved. It is possible to estimate the T1 from only
two flip angles [29]. However, this estimation is accurate only for a very limited range of
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].

For a SWIFT-type acquisition, where the T2* effects can be neglected and the signal is
acquired in a steady state [31], the signal equation is

un = S0
(1− exp(−TR/T1))sin(FAn)

1− exp(−TR/T1)cos(FAn)
, (10)

where S0 is the proton density and n = 1, . . . , Nc. The T1 and S0 values can be solved by ei-
ther linearizing the signal equation [29,32] or by performing non-linear least squares fitting.

3. Methods

The image reconstruction is performed with the preconditioned PDPS algorithm
detailed in the previous section and in the Appendix A. Each image reconstruction problem,
Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-Band-Sweep
Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a mouse spine and
a simulated phantom. The ex vivo specimen allows us to measure real-world performance
of the models, and the phantom gives a proper ground truth reference. We detail the two
datasets and the image reconstruction specifics below.

In the spirit of open and reproducible research, both datasets, the Python codes for
image reconstruction, and the Matlab codes for signal fitting are available from Zenodo
(https://doi.org/10.5281/zenodo.8177285).

3.1. Ex Vivo Multi-Band-SWIFT Acquisition

A section of a mouse spine with the surrounding tissues was collected from a mouse
that was sacrificed according to ethical permits (for an unrelated study ESAVI/270/ 04.10.07/2017 [34])
and subsequently transcardially perfused, fixed, and stored with 4% paraformaldehyde.
For imaging, the sample was inserted into a 3D-printed holder and immersed in perfluo-
ropolyether (Galden HS240, Vacuumservice Oy, Helsinki, Finland).

https://doi.org/10.5281/zenodo.8177285
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A VFA acquisition with the MB-SWIFT was performed with a small-bore 9.4 T
Varian/Agilent MRI scanner (VnmrJ DirectDrive software v.3.2, Varian Associates Inc.,
Palo Alto, CA, USA) and a 19 mm diameter quadrature radiofrequency volume transceiver
(Rapid Biomedical, Rimpar, Germany). The magnet shimming was performed manu-
ally. The essential MB-SWIFT parameters were a bandwidth of 385 kHz, an isotropic
field of view of 3 cm, 63488 radial spokes per contrast, an image size of 2563, and flip
angles of 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, and 20 degrees. The standard MB-SWIFT data
processing pipeline [33] was followed until a radial k-space was acquired, wherefrom all
subsequent data processing was performed with the codes developed here and shared in the
Zenodo archive.

Our VFA implementation utilized unique gradient trajectories for the acquisition of
each contrast. This choice was made to achieve sampling where the image noise and
undersampling artifacts would be incoherent, to a degree, between images, thus allowing
contrast dimension regularization to effectively eliminate these in the image reconstruction.
Specifically, each contrast acquisition utilized 128 unique and complementary gradient
trajectories, each consisting of 512 center-out spokes. All these trajectories filled the k-space
uniformly, but none of them were identical. Retrospective downsampling, mimicking a
sparse acquisition, was completed using a part of the trajectories in the reconstruction,
making the downsampling readily transformable to practice. Imaging time for the whole
VFA series was 22 min and 24 s.

3.2. Simulated Phantom

For the simulated phantom, separate S0 and T1 volumes were created [35]. For the
phase, a simple linear ramp from zero to zero with a wrap in the middle was used (Figure 1).
The gradient trajectories, flip angles, and repetition time for the data simulation were taken
from the MB-SWIFT acquisition. The complex image series was generated with (10) and
the phase-component, and non-uniform discrete Fourier transform was used to generate
the complex radial k-space. Complex Gaussian white noise with standard deviation of two
percent of the mean absolute noiseless k-space was added to the simulated k-space data.
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3.3. Error Metrics

The performance of the CS image reconstruction was evaluated with the normalized
root mean squared error (nRMSE) and structural similarity index (SSIM) [36] in a man-
ually segmented region of interest covering the whole specimen. nRMSE is defined by
nRMSE(x) =

∥∥∥x− xre f

∥∥∥
2
/
∥∥∥xre f

∥∥∥
2
, where xre f is the ground truth. Obviously, ground

truth data are only available for the simulation. Thus, for the ex vivo data, for each model,
the reference T1 and S0 maps were formed by performing non-linear least squares fitting
on image series reconstructed from the full data with slight regularization. Regularization
for the reference reconstructions is important, as even fully sampled radial reconstruction
can suffer from increased noise and undersampling artifacts [37]. Our approach, thus,
visualizes the relative tolerance to undersampling for each method for the ex vivo data.
The simulation data then describe each model’s absolute tolerance to undersampling.
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3.4. Computation

The image reconstruction was performed by solving Equations (3), (4), and (6)–(8) with
the preconditioned PDPS algorithm. The data used in the reconstruction are presented with
acceleration factor (AF), which is defined as (#full data)/(#data used in the reconstruction).
Our definition of full data reconstruction is close to that of a corresponding cartesian
acquisition, i.e., our full data reconstruction is already accelerated by about a factor of
pi. Since the amount of data acquired during imaging is almost directly proportional to
imaging time, AF mirrors the proportional imaging time speed up.

The preconditioner was calculated for each contrast image prior to the PDPS recon-
struction. The step-size scheme for the PDPS algorithm was adapted from [13] as we set
σ = 1 and τ = 1/

∥∥KT PK
∥∥

2, where the operator norm was calculated with the power
method. Each reconstruction was continued for a maximum of 500 iterations or until
relative difference of 20 objective function values less than 10−2 for the ex vivo data or 10−3

for the phantom data was reached. All the optimal reconstructions, regularization-wise,
stopped due to the stop criterion. Different stopping tolerances were used because of
the possible slight k-coordinate inaccuracies and higher noise level of the ex vivo data.
The optimal regularization parameters were chosen with a grid search by minimizing T1
nRMSE against the respective reference reconstruction. For the grid search, linearized T1
fitting was completed for every reconstruction to obtain quick estimate for the T1. Once
optimal reconstruction was found, the T1 and S0 maps of the optimal reconstruction were
updated to the non-linear least squares fit estimates.

4. Results

The significantly faster convergence of the preconditioned PDPS algorithm was veri-
fied and is visualized in Figure 2, where the objective function value of Equation (3) for
fully sampled simulation data reconstruction is plotted. With the preconditioner, the PDPS
algorithm reached the stop criterion in 72 iterations. The non-preconditioned variant that
utilized step sizes of σ = τ = 1/

√
‖K‖2 [18,20] ran 5000 iterations (500 shown in the image)

and did not achieve the same objective function value as the preconditioned version. Simi-
lar gains in convergence were achieved for all the reconstruction models. Slight oscillations
that are visible in the objective function value were largely unaffected by the choice of the
step sizes.
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Figure 2. Convergence of Equation (3) with and without utilizing the preconditioner [13] in the
reconstruction. The preconditioned PDPS algorithm convergences significantly faster.

With the simulation data, we observed good tolerance for undersampling for all the
regularized models. T1 maps, with AFs up to 20, remain of high image quality. The
sTV + cTV and sTV + LLR models outperform every other method, with the latter achiev-
ing the lowest nRMSE scores while being almost identical in performance SSIM-wise.
Staircasing is increasingly visible as AF grows, with the sTV + LLR model generally suf-
fering less from it. The sH + cH model clearly leaves more noise in the reconstructions
and subsequently performs slightly worse nRMSE-wise and a lot worse SSIM-wise when
compared to the TV model. The LLR model demonstrates some residual noise in areas
where the blocks overlap multiple image details, e.g., around the outer ring of the phantom,
and the reconstructions also look over-regularized with faint block artifacts (Figures 3a and 4).
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Figure 4. The T1 and S0 map error metrics as a function of AF for the simulated phantom.

Generally, for the S0 component, the small details on the phantom are visible for all
models for all Afs but with varying amounts of blur, and the nRMSE values are overall
larger than with the T1 maps. The sTV + LLR model is again the best model, with the
sTV + cTV model a close second, as agreed by both error metrics. The sH + cH model
suffers from image blur the most and is the second-worst model here. The LLR model has
the most noise and thus the highest nRMSE and the worst SSIM values (Figures 3b and 4).
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The ex vivo data do not tolerate undersampling as well as the phantom data. For
all regularized models, T1 maps with Afs up to four remain visually similar and under
10% in nRMSE when compared to the respective reference. Afs larger than four suffer
from significant image blur, and image details are consequently lost. This is clearly visible
in the space between the vertebra, where the areas with high T1 values are lost. All the
regularized models are relatively close in performance, with the sTV + LLR outperforming
others for all Afs tested nRMSE-wise and being the optimal model for the Afs up to four
SSIM-wise. The LLR model outperforms the sH + cH and sTV + cTV models in nRMSE,
but the reconstructions are clearly noisier, and the SSIM suffers greatly. The SSIM favors
the Huber model as it outperforms the LLR and sTV + cTV models for all Afs. Additionally,
the Huber model is the optimal one, SSIM-wise, for Afs of 10 and 20. Note that the error
metrics are calculated with respect to the corresponding full-data reference reconstructions
(Figures 5a and 6).
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ex vivo acquisition. The lower left corner of each image shows the SSIM (top) and nRMSE (bottom)
values of the respective reconstruction.

For Afs of four and below, all the reconstruction models perform similarly and pro-
duce low nRMSE and high SSIM values for the S0-component, but further data reduction
quickly deteriorates the image quality. The sTV + LLR model is the best below fourfold
acceleration by a small margin in both error metrics. However, the LLR model retains the
most image details and noise as AF increases, while all others suffer from significant image
blur (Figures 5b and 6).
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5. Discussion

We demonstrated the performance of multiple CS image reconstruction models in
a qMRI setting and how the preconditioned PDPS algorithm, relying additionally on
fast GPU implementation, allows for a computationally fast solution of the chosen mod-
els. Without the preconditioner, computation times for the reconstructions would have
been prohibitively long, even with the GPU implementation. By nRMSE and SSIM of
the T1 maps, generally the best-performing model was the sTV + LLR for both phan-
tom and specimen data. However, the differences between all the tested models are not
necessarily large.

The similar performance of the models is not very surprising, as they do promote
sparsity in a reasonably similar manner. For the models utilizing contrast dimensions
TV and Huber, the minimum solution, regularization-wise, would be an image series
of constant contrast, as the contrast differences would then be zero. Similarly, for the
low-rank model, the minimum solution would be a rank-one matrix, meaning that the
matrix can be represented as a matrix product between a contrast dimension vector and
a spatial dimension vector (vectorized image). That is, the minimum solution is a matrix
where only specific (though not necessarily constant) signal evolution is allowed in the
contrast dimension. For locally low rank, this holds block-wise. These slight fundamental
differences seem not to significantly affect the performance of the models.

The best-performing model was the sTV + LLR, with the TV model being a close
second, indicating that LLR regularization is slightly better than cTV for the VFA acquisition.
The combination of large (from a flip angle of one to two) and small (from a flip angle of
seven to eight) signal jumps is known to be non-optimal for TV. Thus, discarding the flip
angle of one from the acquisition might close this performance gap.

The Huber model was tuned so that most of the small signal changes were below the
Huber parameter value, i.e., flat image areas would be reconstructed piecewise-smooth.
However, here the models are compared after a non-linear fitting procedure, and the
effect of the Huber penalty function is mostly seen as increased noise in the phantom T1
maps. A positive feature of the Huber model is that it also permits classical gradient-based
reconstruction methods (e.g., conjugate gradient) to be used, but in our case, the loss of the
preconditioner with the classical methods makes these still slower than the PDPS. However,
as the Huber and TV models were close in performance, Huber could still be an interesting
choice for cartesian reconstructions where no preconditioner is needed.

With the LLR model, optimal regularization would threshold out the singular vectors
corresponding to pure noise, with over-regularization then affecting the signal evolution
itself and under-regularization leading to residual noise. Thus, by under-regularizing,
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noise can be selectively retained without imposing strict a priori information (i.e., piecewise
smoothness) on the image estimate, which might explain why the LLR model performs
well with the noisy ex vivo specimen. For the phantom data, the LLR minimum nRMSE T1
maps suffer from block artifacts, which could be alleviated with 50% block overlap, with
substantial increases in computation time or with an sTV as shown. The block artifacts are
also amplified in the signal fitting, as no clear artifacts are visible on the magnitude images
(not shown here).

The model combining spatial TV and LLR alleviates the block artifacts and further
suppresses the leftover noise of the LLR regularization, making it the best model with the
simulation data. With the ex vivo specimen, the sTV + LLR is not a significant improvement
over the LLR model, and the LLR reconstructions can retain even more image details, as is
particularly visible in the S0 maps. This behavior can probably be admitted to the noise
and more complex structure of the reference reconstruction since, with the simulation data,
the sTV + LLR clearly outperform the LLR model.

In this study, we are missing one widely acknowledged regularization model, the total
generalized variation (TGV) [38]. TGV was not included because the memory footprint
of the model is much larger than that of the TV approach. The larger memory footprint
prevented us from doing the reconstruction using the GPU, as all other reconstructions
were completed, and the CPU implementation would have been infeasibly slow. As the
3D TV demonstrated some staircasing artifacts, it is a shame that no comparison to TGV
could be performed, as minimizing the staircasing artifacts is what TGV was originally
proposed for.

Ex vivo data were utilized to tie the performance of the tested models to a more realistic
case compared to the ideal phantom data. Although the ex vivo data cannot be used to
address the possible motion and complications of multiple coils of clinical in vivo data,
the ex vivo data at least introduce slight k-coordinate inconsistencies that are inherent in
radial acquisitions. Additionally, the noise might also differ slightly from the ideal assumed
complex white Gaussian noise, as in ex vivo acquisition, there are multiple possible sources
of noise and artifacts, such as eddy currents.

The comparison of the methods between the simulation and ex vivo data is not
straightforward because of the lack of real ground truth for the ex vivo specimen. However,
the ex vivo specimen can be thought to be the more “correct” comparison, as it represents
the image that we are usually trying to match with CS methods. With our ex vivo specimen,
the reference happens to be quite noisy, which opens up the topic that the fully sampled
reference could also be improved with stronger regularization (suppressing more noise).
Doing this would likely increase the performance of the tested models, as the CS methods
inherently denoise images. Thus, trying to optimize denoised CS reconstructions for a
noisy reference with error metrics that have their own problems does impose some biases.
However, as it is unknown which parts of the (reference) image are noise and which are
actual details, and further considering that the regularizations impose a priori information
on the reconstruction, tuning the optimal reference reconstruction is not clear. Here, we
thus chose to use the noisy reference.

Clear differences between the behavior of nRMSE and SSIM error metrics were ob-
served. Especially SSIM seems to greatly punish the presence of any image noise, even if,
to the eye of the reader, the slightly noisy reconstruction looks more “natural”. nRMSE, on
the other hand, does not discriminate where the error comes from, i.e., whether it is image
noise or loss of detail, and just measures the global error. Using the lowest nRMSE of the
T1 maps seemed to produce images that matched with the expectation of natural-looking
reconstructions; hence, that criterion was used. If the same was completed with SSIM, the
individual contrast images and the T1 maps looked over-regularized.

We chose not to report any computation time metrics in the results, as the absolute
performance is greatly related to the hardware used and implementation details. We
note here that for our Python implementation, the reconstruction times in minutes on a
computational server with an RTX A6000 GPU ranged between 2.2 and 13.9; 2.3 and 14.3;
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26.4 and 111.5; 28.0 and 113.5; and 0.9 and 7.7 for the sTV + cTV, sH + cH, LLR, sTV + LLR,
and LS models, respectively. The models utilizing LLR regularization are considerably
slower than the rest, as multiple singular value decompositions are needed per iteration.
Still, from the reconstruction times, it can be concluded that, with the preconditioner,
the reconstruction times are feasible for the large-scale radial 3D qMRI problem. This
still ignores the problem of how to set the regularization parameters without a reference
reconstruction, which remains an issue for most models. There are some methods that
utilize automatic or data-driven regularization parameters, for example, with the wavelet
regularization [39] and with TV regularization [40], but to our knowledge, no such methods
exist for the models tested here in the qMRI setting.

Lastly, with the chosen VFA acquisition, the ex vivo results are affected by the unifor-
mity of the B1 + field, which we did not correct in any way. However, it does not affect the
results error-metric-wise since the reference contains the same error.

6. Conclusions

The performance of the tested models varied depending on the dataset and error
metric used, but the differences between models were not necessarily large. By T1 map
nRMSE and SSIM, the best-performing model was sTV + LLR, with sTV + cTV generally
being a close second. The latter model might even be preferred due to the much shorter
computation time. The Huber model did remedy the staircasing artifact at the cost of
increased T1 map noise, and, overall, the performance of the Huber model was inferior to
the sTV + cTV. The significantly faster convergence of the preconditioned PDPS algorithm
with 3D radial data was also verified.
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Appendix A

The pseudocodes for the reconstruction algorithms are detailed below (Algorithms A1–A4).
Here, all the necessary proximal mappings have been explicitly written out. The gradient
operator and its transpose are set as∇T = −div, with the subscript denoting the dimension-
ality of the operation. The |x| operator denotes the magnitude of a vector-valued image x.
Operator bSVTα(x) exhibits singular value soft thresholding to the block Casorati matrices
extracted from the image series.

Algorithm A1. Preconditioned primal-dual proximal splitting for the TV model of Equation (4).

Choose θ ∈ [0, 1] and σ, τ such that στ < 1/
∥∥KT PK

∥∥2
2

while not converged do
pk+1
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two flip angles [29]. However, this estimation is accurate only for a very limited range of 
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].  

For a SWIFT-type acquisition, where the T2* effects can be neglected and the signal is 
acquired in a steady state [31], the signal equation is 𝑢 = S (1 − exp(−TR/T )) sin(FA )1 − exp(−TR/T ) cos(FA ) ,  (10)

where S0 is the proton density and 𝑛 = 1, … , 𝑁 . The T1 and S0 values can be solved by 
either linearizing the signal equation [29,32] or by performing non-linear least squares 
fitting. 

3. Methods 
The image reconstruction is performed with the preconditioned PDPS algorithm 

detailed in the previous section and in the Appendix A. Each image reconstruction 
problem, Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-
Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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problem can be written as in Equation (9) by setting the primal variable 𝑥  as the 
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either linearizing the signal equation [29,32] or by performing non-linear least squares 
fitting. 

3. Methods 
The image reconstruction is performed with the preconditioned PDPS algorithm 
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problem, Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-
Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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fitting. 

3. Methods 
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Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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A (Algorithms A1–A4). For further information about the algorithm, the reader is 
instructed, e.g., to the references [18,20]. 
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T1 mapping can be performed by a variable flip angle (VFA) acquisition, where 
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acquired from which the T1 value can be solved. It is possible to estimate the T1 from only 
two flip angles [29]. However, this estimation is accurate only for a very limited range of 
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].  

For a SWIFT-type acquisition, where the T2* effects can be neglected and the signal is 
acquired in a steady state [31], the signal equation is 𝑢 = S (1 − exp(−TR/T )) sin(FA )1 − exp(−TR/T ) cos(FA ) ,  (10)

where S0 is the proton density and 𝑛 = 1, … , 𝑁 . The T1 and S0 values can be solved by 
either linearizing the signal equation [29,32] or by performing non-linear least squares 
fitting. 

3. Methods 
The image reconstruction is performed with the preconditioned PDPS algorithm 
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problem, Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-
Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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direction for the function argument. 

As an example, for Equation (3) and a single-contrast image, the optimization 
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two flip angles [29]. However, this estimation is accurate only for a very limited range of 
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].  
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fitting. 
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Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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where 𝑝𝑟𝑜𝑥  denotes the proximal mapping, which is used to generate the descent 
direction for the function argument. 

As an example, for Equation (3) and a single-contrast image, the optimization 
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conjugate of 𝐹 is 𝑝𝑟𝑜𝑥 [𝐹∗](𝑦) = (𝑦 − 𝜎𝑚)/(1 +  𝜎). Additionally, we let the algorithm 
utilize a diagonal preconditioner 𝑃 for the dual variable following [13]. With these, the 
preconditioned PDPS algorithm reads (Algorithm 2) 
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end while 

The PDPS implementations for Equations (4) and (6)–(8) are detailed in the Appendix 
A (Algorithms A1–A4). For further information about the algorithm, the reader is 
instructed, e.g., to the references [18,20]. 

2.6. Variable Flip Angle Acquisition 
T1 mapping can be performed by a variable flip angle (VFA) acquisition, where 

multiple images with different flip angles (FA) but with the same repetition time (TR) are 
acquired from which the T1 value can be solved. It is possible to estimate the T1 from only 
two flip angles [29]. However, this estimation is accurate only for a very limited range of 
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].  

For a SWIFT-type acquisition, where the T2* effects can be neglected and the signal is 
acquired in a steady state [31], the signal equation is 𝑢 = S (1 − exp(−TR/T )) sin(FA )1 − exp(−TR/T ) cos(FA ) ,  (10)

where S0 is the proton density and 𝑛 = 1, … , 𝑁 . The T1 and S0 values can be solved by 
either linearizing the signal equation [29,32] or by performing non-linear least squares 
fitting. 

3. Methods 
The image reconstruction is performed with the preconditioned PDPS algorithm 

detailed in the previous section and in the Appendix A. Each image reconstruction 
problem, Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-
Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 

uk − τAT pk+1 + τdivsqk+1 + τdivcrk+1

uk+1

J. Imaging 2023, 9, 151 5 of 16 
 

 

Algorithm 1. Primal-dual proximal splitting. 
Choose  𝜃 ∈ [0,1] and 𝜎, 𝜏 such that 𝜎𝜏 < 1/‖𝐾‖  
while not converged do 
    𝑦   ≔ prox [𝐹∗](𝑦  +  𝜎𝐾�̅� ) 
    𝑥   ≔ prox [𝐺](𝑥  +  𝜏𝐾 𝑦   ) 
    �̅�   ≔ 𝑥    +  𝜃(𝑥   − 𝑥 ) 
end while 

where 𝑝𝑟𝑜𝑥  denotes the proximal mapping, which is used to generate the descent 
direction for the function argument. 

As an example, for Equation (3) and a single-contrast image, the optimization 
problem can be written as in Equation (9) by setting the primal variable 𝑥  as the 
vectorized complex image 𝑢 , 𝐾  as the corresponding NUFFT operator 𝐴 , 𝐹(𝑝) =0.5‖𝑝 − 𝑚‖  , where 𝑝 = 𝐴𝑢 , and 𝐺(𝑥) = 0 . The proximal mapping of the convex 
conjugate of 𝐹 is 𝑝𝑟𝑜𝑥 [𝐹∗](𝑦) = (𝑦 − 𝜎𝑚)/(1 +  𝜎). Additionally, we let the algorithm 
utilize a diagonal preconditioner 𝑃 for the dual variable following [13]. With these, the 
preconditioned PDPS algorithm reads (Algorithm 2) 

Algorithm 2. Preconditioned primal-dual proximal splitting for least squares. 
Choose 𝜃 ∈ [0,1] and 𝜎, 𝜏 such that 𝜎𝜏 < 1/‖𝐴 𝑃𝐴‖  
while not converged do 
    𝑝 ≔ (𝑝  +  𝑃𝜎(𝐴𝑢 − 𝑚))/(1 +  𝑃𝜎) 
    𝑢 ≔ 𝑢 − 𝜏𝐴 𝑝  
    𝑢 ≔ 𝑢  +  𝜃(𝑢 − 𝑢 ) 
end while 

The PDPS implementations for Equations (4) and (6)–(8) are detailed in the Appendix 
A (Algorithms A1–A4). For further information about the algorithm, the reader is 
instructed, e.g., to the references [18,20]. 

2.6. Variable Flip Angle Acquisition 
T1 mapping can be performed by a variable flip angle (VFA) acquisition, where 

multiple images with different flip angles (FA) but with the same repetition time (TR) are 
acquired from which the T1 value can be solved. It is possible to estimate the T1 from only 
two flip angles [29]. However, this estimation is accurate only for a very limited range of 
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].  

For a SWIFT-type acquisition, where the T2* effects can be neglected and the signal is 
acquired in a steady state [31], the signal equation is 𝑢 = S (1 − exp(−TR/T )) sin(FA )1 − exp(−TR/T ) cos(FA ) ,  (10)
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mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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As an example, for Equation (3) and a single-contrast image, the optimization 
problem can be written as in Equation (9) by setting the primal variable 𝑥  as the 
vectorized complex image 𝑢 , 𝐾  as the corresponding NUFFT operator 𝐴 , 𝐹(𝑝) =0.5‖𝑝 − 𝑚‖  , where 𝑝 = 𝐴𝑢 , and 𝐺(𝑥) = 0 . The proximal mapping of the convex 
conjugate of 𝐹 is 𝑝𝑟𝑜𝑥 [𝐹∗](𝑦) = (𝑦 − 𝜎𝑚)/(1 +  𝜎). Additionally, we let the algorithm 
utilize a diagonal preconditioner 𝑃 for the dual variable following [13]. With these, the 
preconditioned PDPS algorithm reads (Algorithm 2) 
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end while 

The PDPS implementations for Equations (4) and (6)–(8) are detailed in the Appendix 
A (Algorithms A1–A4). For further information about the algorithm, the reader is 
instructed, e.g., to the references [18,20]. 

2.6. Variable Flip Angle Acquisition 
T1 mapping can be performed by a variable flip angle (VFA) acquisition, where 

multiple images with different flip angles (FA) but with the same repetition time (TR) are 
acquired from which the T1 value can be solved. It is possible to estimate the T1 from only 
two flip angles [29]. However, this estimation is accurate only for a very limited range of 
T1s and, thus, the use of multiple flip angles allows for a more robust estimation [30].  

For a SWIFT-type acquisition, where the T2* effects can be neglected and the signal is 
acquired in a steady state [31], the signal equation is 𝑢 = S (1 − exp(−TR/T )) sin(FA )1 − exp(−TR/T ) cos(FA ) ,  (10)

where S0 is the proton density and 𝑛 = 1, … , 𝑁 . The T1 and S0 values can be solved by 
either linearizing the signal equation [29,32] or by performing non-linear least squares 
fitting. 

3. Methods 
The image reconstruction is performed with the preconditioned PDPS algorithm 

detailed in the previous section and in the Appendix A. Each image reconstruction 
problem, Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-
Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 
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acquired in a steady state [31], the signal equation is 𝑢 = S (1 − exp(−TR/T )) sin(FA )1 − exp(−TR/T ) cos(FA ) ,  (10)

where S0 is the proton density and 𝑛 = 1, … , 𝑁 . The T1 and S0 values can be solved by 
either linearizing the signal equation [29,32] or by performing non-linear least squares 
fitting. 

3. Methods 
The image reconstruction is performed with the preconditioned PDPS algorithm 

detailed in the previous section and in the Appendix A. Each image reconstruction 
problem, Equations (3), (4), and (6)–(8), is evaluated on two radial datasets: a VFA Multi-
Band-Sweep Imaging with Fourier Transform (MB-SWIFT) [33] ex vivo acquisition of a 
mouse spine and a simulated phantom. The ex vivo specimen allows us to measure real-
world performance of the models, and the phantom gives a proper ground truth reference. 
We detail the two datasets and the image reconstruction specifics below. 

uk+1 + θ
(

uk+1 − uk
)

end while
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