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Abstract: Nighttime image dehazing presents unique challenges due to the unevenly distributed haze
caused by the color change of artificial light sources. This results in multiple interferences, including
atmospheric light, glow, and direct light, which make the complex scattering haze interference
difficult to accurately distinguish and remove. Additionally, obtaining pairs of high-definition data
for fog removal at night is a difficult task. These challenges make nighttime image dehazing a
particularly challenging problem to solve. To address these challenges, we introduced the haze
scattering formula to more accurately express the haze in three-dimensional space. We also proposed
a novel data synthesis method using the latest CG textures and lumen lighting technology to build
scenes where various hazes can be seen clearly through ray tracing. We converted the complex 3D
scattering relationship transformation into a 2D image dataset to better learn the mapping from 3D
haze to 2D haze. Additionally, we improved the existing neural network and established a night haze
intensity evaluation label based on the idea of optical PSF. This allowed us to adjust the haze intensity
of the rendered dataset according to the intensity of the real haze image and improve the accuracy of
dehazing. Our experiments showed that our data construction and network improvement achieved
better visual effects, objective indicators, and calculation speed.

Keywords: image dehaze; image restoration; data generation

1. Introduction

Daytime lighting is mainly affected by uniform atmospheric light, while nighttime
lighting is primarily composed of artificial light sources, such as street lights and neon
lights. These light sources are located at different positions and angles, have limited
illumination ranges, and emit multiple colors, which can result in low visibility, uneven
illumination, and color distortion in nighttime hazy images. Furthermore, the factors that
affect fog absorption and scattering are complex, and there is a lack of reliable physical
formulas and prior knowledge for nighttime haze. As a result, defogging nighttime images
can be challenging. In practical nighttime scenarios, the performance of other computer
vision tasks can be severely degraded, and the absence of reliable nighttime defogging
algorithms can lead to failures in nighttime security monitoring and autonomous driving,
and even traffic accidents. Removing non-uniform fog while maintaining color consistency
in nighttime scenes is therefore a challenging and crucial task.

One approach to address the challenges of nighttime image dehazing is to estimate the
extent and intensity of the haze illuminated by light sources through a network. However,
the unstable range and intensity of lighting haze often result in prior conditions that differ
significantly from real-world scenarios. Another approach to nighttime image dehazing
involves constructing the data first and then training the network. This method involves
applying different haze variations to images of objects with varying distances and textures
on a two-dimensional (2D) image. However, this approach does not account for the
illumination of the haze itself by the light source, resulting in suboptimal handling of the
glow problem.
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To address these limitations, we propose a rendering engine-based method for generat-
ing nighttime dehazed image data that incorporates complex lighting and haze calculations
in three-dimensional (3D) space. The 3D illumination and haze features are then remapped
back to two-dimensional (2D) space by a virtual camera. We treat the interference of haze
on light as the infection of point light sources by optical media and propose a point spread
function for haze images that is similar to the light point spread function. Finally, we
enhance the existing network architecture to enable better learning of the mapping from 3D
engines to 2D datasets. In Figure 1, the results demonstrate that our proposed rendering
data, haze point spread function detection, and improved network architecture contribute
to effective improvements in nighttime image dehazing.

Ours GT

Input NDIM NHRG

MRP
Figure 1. Comparison of nighttime dehazing results. Our method outperforms several state-of-the-art
algorithms, including NDIM [1], NHRG [2], MRP [3], and OSFD [4], in effectively addressing fog
caused by directional light sources, while maintaining color consistency. The data generated using
our method ensure reliable scene details and realistic fog effects, thereby providing a more accurate
representation of real-world scenarios.

The contributions of our work are as follows:

• We convert the nighttime haze, which is challenging to accurately handle in two-
dimensional space, to three-dimensional space. We propose a method for accurately
describing nighttime haze using a three-dimensional scattering formula. Through
the derivation of radiation transfer equations and volume rendering formulas, we
demonstrate that our three-dimensional haze rendering approach conforms to the
scattering relationship.

• We use a rendering engine based on a three-dimensional scattering formulation to
create a simulation dataset for nighttime dehazing. We train our existing network on
this dataset and achieve a good nighttime dehazing effect.

• We propose a haze point spread test method based on the optical point spread function
to accurately represent haze intensity levels, thereby ensuring that the haze density
of the training data is similar to that of the real scene. Based on unique texture
relationships of nighttime haze, we propose several network structures and data
enhancement methods. Our ablation experiments demonstrate the effectiveness of
these improvements.
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2. Related Work
2.1. Image Dehazing

Image dehazing is a form of low-level computer vision image restoration. Tang et al. [5]
used a random forest regressor to estimate the degree of haze, randomly sampled from multiple
clean images, extracted various multi-scale features related to fog, and then synthesized fog
maps. The experimental results once again demonstrated the importance of the dark channel
feature DCP [6] and showed that the integration of various features can more accurately estimate
the degree of cloud and fog coverage.

Deep learning-based dehazing methods can be divided into two stages: initial network
training to obtain intermediate parameters and then substitution of the atmospheric degra-
dation model to calculate the final haze-free image. Recent models tend to directly learn
from foggy images to produce haze-free outputs, i.e., end-to-end mapping of the fog image.
This approach eliminates the need to solve intermediate parameters, thereby reducing
the generation of errors. In 2016, Cai et al. [7] introduced an end-to-end CNN network
called DehazeNet. The model takes a contaminated foggy image as input and outputs the
transmittance map t(x) of the entire image. The estimated global atmospheric light is then
substituted into the degradation model to calculate a clean dehazed image. Ren et al. [8]
proposed a multi-scale deep neural network to estimate the transmittance. However, the
limitation of these methods is that only the transmittance is estimated separately through
the CNN framework, leading to error amplification. To address this issue, Chen et al. [9]
proposed a threshold fusion sub-network that utilizes GAN to achieve image dehazing
and solves the common problem of unreal ghosting. The latest development in the field of
general dehazing is the Dehazeformer, which is based on the transformer structure and
has shown promising results. This new approach utilizes the self-attention mechanism of
transformers to capture long-range dependencies in the image and effectively restore the
haze-free image. Dehazeformer [10] has outperformed several state-of-the-art methods on
benchmark datasets, including the RESIDE dataset [11] and the O-HAZE dataset [12].

2.2. Nighttime Dehazing

Compared to ordinary image dehazing, image dehazing at night is more challenging
due to the complex scene conditions, and research in this area started relatively late. Jing et al.
proposed the NDIM algorithm [1], which includes a color correction step after estimating the
color characteristics of the incident light. Li et al. [2] distinguished atmospheric light, haze
light, glow, and light sources of different colors and proposed the NHRG algorithm based on
special processing of glow and recognition of different light sources at night. Ancuti et al. [13]
proposed a multi-scale patched pyramid network for artificial light sources to fit the night
haze environment. They proposed that the local maximum intensity of each color channel of
the night image is mainly contributed by the ambient lighting and introduced the priori of the
maximum reflectance, which led to the development of the MRP algorithm [3].

Recently, the team also proposed a new method for constructing foggy data at night
called OSFD [4], which is based on scene geometry and involves the two-dimensional
simulation of light and object reflectivity. They used the newly generated haze-rendered
images to develop a new algorithm and a benchmark test method.

2.3. Haze Image Dataset and Rending

The RESIDE dataset [11] is the most well-known image dehazing dataset and is
divided into different sets, including the ITS indoor dataset, OTS outdoor dataset, HSTS
mixed subjective test set, and SOTS comprehensive subjective test set. Another synthetic
dehazing dataset was synthesized by NYU2Depth [14]. The CVPR NTIRE workshop from
2018 to 2021 released a dataset for competition every year, such as the O-HAZE [12] and
I-HAZE [15] datasets, which are outdoor and indoor real-shot datasets. Later, outdoor
real-shot non-uniform defogging image pair datasets DenseHaze [16] and NH-HAZE [17]
were released. However, the amount of these datasets is relatively small, and the scenes are
relatively limited, which still leaves a gap in the number of training needs.
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The generation of defogging data can be divided into two types: mask construction
and physical prior rendering. Mask construction is typically based on the haze atmospheric
transmission model, which overlays the haze on the fog-free image, such as the RICE
dataset [18]. The other type, such as OSFD [4], divides the scene in the middle of the
image semantically and then performs lighting and texture re-rendering based on the
physical model.

3. Proposed Method
3.1. Nighttime Image Haze Model

In nighttime fog and haze scenes, the fog is often not evenly illuminated due to the
presence of various complex artificial light sources. Previous studies identified three distinct
components of nighttime haze: atmospheric light, glow, and direct light. Atmospheric light
is uniformly distributed over the entire image, while glow refers to the halo around a light
source. Direct light is the fog that is directly illuminated by light sources of different colors
and brightness in the image. Due to various factors, these three types of light may appear
differently on nighttime images. Previous studies on dehazing nighttime images processed
these components separately, resulting in less-than-optimal results.

To address this issue, we analyzed the principles behind these differences using
mathematical formulas. By considering the interactions between the different components,
we developed a more effective model for dehazing nighttime images.

The conventional formula for dehazing is given by Equation (1):

I(x) = R(x) ∗ t(x) + L(x) ∗ (1− t(x)) (1)

where x represents the position of the pixel, I(x) represents the signal received by the
camera pixel, R(x) represents the signal emitted by the object itself, L(x) represents the
atmospheric global illumination, and t(x) represents the transmission rate.

The transmission rate formula is given by Equation (2):

t(x) = e−β·d(x), (2)

where d(x) represents the distance between the object and the camera at position x, β
represents the attenuation coefficient, and the exponential term e−βd(x) indicates that the
attenuation of light due to scattering by the haze is exponentially linear.

The transmission rate formula in Equation (2) incorporates depth information by
accounting for the distance between the object and the camera. However, assuming that
the light scattering caused by haze only occurs in the depth direction is incorrect. In
reality, haze can scatter light in all directions, making it a complex three-dimensional
phenomenon. Consequently, the dehazing result obtained from the formula may differ
significantly from reality. To account for the complexity of haze and its interaction with
light, a more comprehensive approach is needed. This should include the consideration of
the concentration of haze in space, the degree of illumination of haze, and its color, among
other factors:

I(x) = R(x) ∗ t(x) + L(x) ∗ (1− t(x)) +
n

∑
k=1

Ŝk(x) ∗
1

∑
j=0

Ĝj(k) (3)

The term ∑n
k=1 Ŝk(x) in the formula represents light sources from different directions,

while ∑1
j=0 Ĝj(k) represents scattering in different directions. While this formula provides a

rough approximation of the causes of complex haze at night, it is too simplistic to be directly
applied to the image processing process. Thus, a more refined and accurate formula is
needed to enable its application in practical image processing workflows.

The most essential medium scattering model identifies four primary factors that
contribute to the influence of haze on light: absorption, external scattering, emission, and
internal scattering. These factors are responsible for image degradation caused by haze.
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Absorption refers to the amount of light that is absorbed by haze particles as repre-
sented by Equation (4):

dL(x, ω)/dx = −σaL(x, ω), (4)

where x represents haze particles, while ω represents the angle at which light emerges from
the haze particles. The absorption coefficient is denoted by σa(x), and L(x, ω) represents the
intensity of light that emerges from the haze particles at angle ω. Specifically, σa represents
the absorption coefficient of the haze particles.

Equations (5) and (6) represent the radiative transfer equation (RTE). In these equa-
tions, −σsL(x, ω) represents out-scattering, where σs(x) is the out-scattering coefficient.
Emission is represented by σaLe(x, ω), while fp(x, ω, ω′) is a phase function. In-scattering
is represented by

∫
s2 fp(x, ω, ω′)L(x, ω′)dω′:

dL(x, ω)/dx = −σtL(x, ω) + σaLe(x, ω)

+σs

∫
s2

fp
(
x, ω, ω′

)
L
(

x, ω′
)
dω′,

(5)

σt(x) = σa(x) + σs(x), (6)

When the derivation of the radiative transfer equation is approximated to the volume,
the resulting equation is expressed as Equation (7), which is known as the volume rendering
equation (VRE) [19]. The VRE is the integral form of the RTE, where M represents an opaque
surface, and Li(x, ω) represents in-scattering in Equation (6):

L(P, ω) =T(M)L(M, ω)

+
∫ d

x=0
T(x)[σa · Le(x, ω) + σs · Li(x, ω)]dx,

(7)

here, the transmittance T(x) is the net reduction factor from absorption to out-scattering,
which is formulated as follows:

T(x) = e−
∫ p

x σt(s)ds. (8)

The RTE and VRE equations described above are accurate formulas for modeling light
scattering in both the real world and computer graphics (CG) renderings. If the goal is to
achieve precise image dehazing, it is necessary to abandon the simple dehazing formulas
shown in Equations (1) and (2) and instead use the RTE or VRE equations. However, dealing
with 3D scattering medium illumination using existing 2D image processing techniques
can be challenging, making the problem of fog removal at night quite difficult. Nonetheless,
computer graphics rendering can be used to eliminate or generate haze in 3D scattering,
providing a potential solution to this problem.

The RTE and VRE equations described above are quite complex and require significant
parameter acquisition and calculation overhead. It is difficult to calculate each scattering
event based solely on image information. However, we do not actually need to calculate
every step of scattering and radiation in detail. Instead, we need to calculate the integral
result of scattering or radiation. The intensity of the integral is determined by the light,
while the number of levels of integration is determined by the haze particles in the air. The
three-dimensional space we ultimately perceive is the result of the final integration. To
reconstruct and dehaze the space, we need to approximate multi-level scattering and reach
a steady state.

Let us assume that the n-level scattered light is represented by Gn, while the scattering
change function for each level of multi-level scattered light is denoted by fms. The formula
is as follows:

Gn+1 = Gn · f ms. (9)

At each level of scattering, the scattered light becomes the light source for the next
level of scattering. From a macroscopic perspective, the mutual scattering between light
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rays is entirely independent. Since the scattering change function fms is determined by the
haze particles and is independent of light intensity, we can perform a multi-level scattering
approximation using the following formula:

Fms = 1 + fms + f 2
ms + f 3

ms + . . . =
1

1− fms
. (10)

As a result, the scattering steady state Fms will eventually converge to a degree that is
linearly related to each level of scattering change function fms [20].

The above formula indicates that the final result of light scattering must converge to a
steady state. In real-world scenes, light is constantly emitted from light sources, while haze
particles continuously scatter light. When a camera captures the scene, it integrates the rays
over time. As long as the haze and the scene remain unchanged, the resulting image we
see remains the same. Intuitively, what we see with the naked eye in the real world is also
the light scattered by haze reaching a stable state. Therefore, when we begin to collect haze
data pairs in the rendering engine, we do not need to concern ourselves with the complex
calculation of light scattering using the VRE process within the engine. Instead, we can use
the virtual camera to capture the steady state after calculating the scattering approximation.
The resulting data pair automatically conforms to the 3D haze scattering formula.

3.2. Construct Nighttime Dehazing Data

Several indicators in computer vision are relevant to the field of image dehazing, such
as atmospheric fog and volumetric fog, which correspond to atmospheric haze and glow
haze, respectively. Fog density, fog falloff, fog scattering color, scattering distribution, and
albedo correspond to the optical thickness, attenuation factor, light source color, atmo-
spheric point spread function (PSF), and glow haze gradient, respectively. Compared to 2D
image dehazing, the three-dimensional parameters of computer vision fog effects are more
complex, with many parameters that do not have straightforward correspondences, such as
cast volumetric shadow and volumetric scattering intensity. A simplified correspondence
between these parameters is shown in the lower-left corner of Figure 2.

 Real Haze Image Take  Unreal Engine Data Generation 

 Atmospheric light

Direct transmission
  Unreal object

 Unreal object

 Nohaze Image Data

Haze Image Data
Direct transmission

 Airlight

 Multiple scattering

 Light source
 Glow

 Atmospheric light

 Atmospheric light

 Real object
Direct transmission

 Airlight
 Light source

 Multiple scattering
 Glow

 Atmosphere haze 

Image dehaze

Glow haze

Glow haze gradient 

Light source color 

 Atmosphere PSF 

Optical thickness 

Attenuation factor 

CG fog effects 

Atmospheric fog 

Volumetric fog 

Fog density

Fog falloff

Fog scattering color

Albedo

Scattering distribution

Figure 2. Overview of the experiment framework. Obtain the haze intensity index from the foggy
image, select the parameters in the engine, and create a three-dimensional scene to make a paired
dataset. Use the network trained on the new dataset to process the foggy image finally. The picture
without a dashed box shows the correspondence between image defogging and computer rendering.

Creating outdoor real-shot datasets for image dehazing requires the consideration
of various factors, such as object movement, changes in lighting conditions, floating fog
and haze, and the power of fog machines. Additionally, the distribution of artificial
haze and real outdoor haze differs significantly. Therefore, obtaining real nighttime haze
and corresponding ground-truth image pairs while maintaining all other conditions is
challenging. To address this issue, we propose a method for constructing simulation
datasets based on Unreal Engine 5.
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Unreal Engine 5 (UE5) [21] is a fifth-generation game engine announced by Epic
Games in 2020. To construct our simulation dataset, we used UE5 to generate various
night lighting environments. We loaded the project in UE5 and imported environment files
containing night haze. Some project and environment files can be downloaded for free
from the Epic Store.

To ensure that our simulated dataset closely resembles real-world nighttime light-
ing environments, we utilized two features of Unreal Engine 5: “Nanite” virtual micro-
polygonal geometry and “Lumen” fully dynamic global illumination. Nanite enables us to
generate data with full detail and complex textures, while Lumen reacts to scene and light-
ing changes in real time without requiring specialized ray-tracing hardware. With Lumen,
we can render indirect specular and diffuse reflections that bounce infinitely around the
scene. These two features ensure that the resulting dataset is highly accurate and closely
reflects real-world nighttime lighting environments, with greater rendering accuracy than
virtual camera sampling images.

There are two primary types of fog in the engine: exponential height fog and atmo-
spheric fog [22]. They respectively represent the glow and airlight terms in the image
dehazing model. The primary difference between night defogging and ordinary defogging
is the presence of volumetric fog.

To generate our simulation dataset, we placed a virtual camera in the rendering engine
and moved it through three-dimensional space while fixing it at certain positions. We
captured separate images of foggy and non-fog scenes to obtain the paired images, which
were saved directly in the project folder. Because the camera was virtual, the resulting
images were already in consistent positions, so there was no need for subsequent operations,
such as registration. However, it should be noted that some scenes had moving parts and
special effects that needed to be removed to maintain consistency across the dataset. We
selected various scenes and viewpoints, as shown in Figure 3. In total, we produced
180 pairs of 3000 × 1600 pixel nighttime fog and non-fog image pairs across various scenes.

Upon closer inspection of the collected images, we observed that they exhibit the
characteristics of directional haze Ŝk(x) ∗ Ĝj(k), atmospheric light L(x), and attenuation of
the original image signal R(x) (see Figure 4 for details). Furthermore, we observed that
the rendered scenes also exhibit a reduction in shadow contrast due to the presence of
haze. These characteristic changes are often overlooked in conventional image dehazing.
However, with the guidance of the three-dimensional scattering formula, achieving these
characteristic changes becomes much easier.

Figure 3. Preview of our simulation dataset. Our dataset is designed to accurately represent the
various scattering effects of nighttime haze under artificial light sources. As you move from top to
bottom, the smog gradually increases in intensity. In fact, our dataset can be adjusted to include
multiple levels of haze intensity, making it an effective tool for modeling a wide range of real-
world scenarios.
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Figure 4. Our generated image haze characteristics comparison. We compare the display of different
features in the same picture and highlight the position of each patch on the left.

3.3. Haze Concentration and Haze Parameters

Existing image dehazing datasets usually only include two classes: hazy and non-
hazy. However, in reality, there are various levels of fog, including thin, medium, and
dense fog, and different images may have different levels of fog density. The intensity of
real-world haze is a continuous value rather than a discrete one. Determining the exact
haze concentration in an image can be challenging, which limits the generalizability of
single-density fog datasets. An existing dehazing dataset is only suitable for images with
similar concentrations of haze, and it may result in insufficient or excessive dehazing for
other density haze data.

In an optical system, the distribution of the light field in the output image when
the input is a point light source is referred to as the point spread function (PSF). Inter-
estingly, real-world haze also follows this optical principle. When a point light source
encounters haze, it forms a large diffuse light field distribution due to scattering. How-
ever, when capturing images of haze, various image signal processing operations, such
as overexposure correction, dark cutoff, and nonlinear mapping, are often applied, which
may introduce nonlinearity [23]. Our method detects HPSFs based on the final image
that requires dehazing, without considering any preprocessing operations that may have
been performed.

Drawing inspiration from the optical PSF, we propose a new indicator called HPSF
(haze point spread function) to analyze the intensity of the haze.

Point light through a lens without aberration should be an impulse function signal.
Like the optical PSF, we assume that objects in the scene without haze should maintain
consistently smooth or step signals, as shown in the first and second rows in Figure 5.

The acquisition and calibration of our different HPSFs are entirely consistent with the
optical acquisition and calibration of the PSF. We verify the point spread function of the
image and the changes at the edges of the image. For specific operational steps, please refer
to our previous work [24] on calibration testing methods.

By analyzing the HPSF of a specific area in the image, we can determine the corre-
sponding haze density through a predefined relationship as illustrated by the numbers in
Figure 5. This analysis method can measure the density of fog effects, such as exponential
height fog or volume fog density in render engines. The haze density obtained from this
metric corresponds to different haze concentration datasets and dehazing networks trained
on various concentration datasets.

Therefore, we can generate customized data pairs suitable for the intensity of haze
present in the image. To simplify usage, we can create haze data pairs with different
discrete intensities in advance, which can save the time required to generate images in the
engine. When processing images with varying haze intensities, we only need to load the
corresponding trained network checkpoint.
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0.020.01 0.03 0.04 0.05 0.06Scene 0HPSF

Figure 5. Degradation kernel estimation of haze rendering. The small picture in the upper-left corner
illustrates the relationship between haze intensities and the actual haze point spread function (HPSF).
The haze intensity increases gradually from left to right (0–0.06). The upper images show the haze
degradation of a point light source, while the lower images show the haze change of a directional
light source in a simulated scene. The lower images were taken from the red box in the left scene.

3.4. Improved Night Image Dehazing

We selected SADNet [25], which represents a small network based on the UNet
improvement, and Restormer, with a more complex network and better fitting abilities, as
the night defogging network.

For the network, we propose two improvements, preprocessing improvement and
loss improvement, both of which are specially designed based on the unique characteristics
of night haze scenes.

We made improvements to the data preprocessing step. Most neural networks prepro-
cess images when inputting them to the network by applying data augmentation operations,
such as cropping, horizontal flipping, and vertical flipping. However, after observing both
the simulated dataset in Figure 3 and the real-time non-reference dataset in Figure 6, we
noticed that there is a certain distribution relationship between directional irradiation. For
instance, nighttime fog tends to have a distribution from top to bottom, with the smaller
part at the top and larger part at the bottom. We also observed a statistical law in the
distribution of different light source directions.

Therefore, we modified the existing data augmentation method by only allowing hori-
zontal enhancements and random cropping, while not allowing vertical data augmentation.
It is worth noting that this does not imply that the network and data are unable to handle
non-uniform haze in other directions. Instead, it is to keep the dataset in line with the
distribution law of the real scene and achieve better training results.

Next, we improved the structure of the loss used in both the SADNet and Restormer
structures. Previously, these networks used a simple L1 loss, which is well suited for global
image processing tasks and allows the network to uniformly learn overall feature changes
in the image. However, for nighttime fog removal, the network needs to learn more local
features. In Figures 4 and 5, it can be seen that there is often a large amount of haze around
the brightest light source area in the image, which is the most challenging part of nighttime
haze removal.

To address this issue, we propose a modified loss function that places more emphasis
on the local features in the image. The simple L1 and L2 loss formulas are as follows:

Ll1 = Iout − Igt (11)

Ll2 = (Iout − Igt)
2 (12)

We improved the loss formula to assign greater weight to the brighter parts of the
image, which is essential for effective nighttime fog removal. During the training process,
the loss of each small image in every batch is calculated separately, and the total loss is then
recalculated. The formula for our newly proposed loss function is called ’light loss’ and is
as follows:

LLight = Iout ∗ (Iout − Igt) (13)
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 Input                    NDIM                     NHRG                     MRP                  OSFD            SADNet(ours)     Restormer(ours)

Figure 6. Image dehazing result comparison. Comparison with other nighttime dehazing methods,
the compared dataset is based on flicker dataset [3].

4. Experimental Results

To evaluate our technique, we conducted a series of comprehensive experiments.
Specifically, we conducted detailed comparative experiments to investigate the effects of
different HPSFs, losses, and data preprocessing methods, and demonstrated their effective-
ness. Additionally, we compared our technique with other methods on both simulation
and real datasets.

4.1. Ablation Study with Different HPSF Concentrations

We conducted comparative experiments to demonstrate the advantages of using a
network that corresponds to the HPSF concentration data. Our results indicate that a
network trained on a similar density dataset produces better haze removal results. As
shown in Table 1, the best results for fog removal from 0.1 to 0.4 (test) were achieved using
the network trained on the same haze concentration dataset. The networks trained on other
concentrations produced comparatively poorer results.
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Table 1. Objective results on different concentration test sets after training on different concentration
datasets.

Train Concentration 0.1 0.2 0.3 0.4

test 0.1 (PSNR↑/SSIM↑) 30.94/0.956 29.58/0.955 28.31/0.950 28.23/0.933
test 0.2 (PSNR↑/SSIM↑) 27.64/0.932 28.59/0.937 28.03/0.928 26.84/0.920
test 0.3 (PSNR↑/SSIM↑) 23.97/0.895 25.65/0.903 27.16/0.915 26.48/0.912
test 0.4 (PSNR↑/SSIM↑) 20.10/0.845 20.23/0.852 21.69/0.861 26.02/0.905

4.2. Ablation Study with Data Preprocessing

In order to demonstrate the effectiveness of our improved data preprocessing methods,
we conducted ablation experiments on our haze dataset. We aggregated all concentration
datasets for testing purposes. The results are shown in Table 2. Our experiments demon-
strated that horizontal flipping can effectively increase diversity and improve the dehazing
performance. However, flipping the images up and down resulted in incorrect diversity
and decreased the final outcome of the dehazing process.

Table 2. Quantitative comparison of different data preprocessing methods on simulation datasets.

Horizontal Flip X X
Vertical Flip X X

PSNR↑ 29.17 (2%) 29.37 (0%) 29.02 (4%) 28.91 (5%)
SSIM↑ 0.860 (6%) 0.869 (0%) 0.862 (5%) 0.864 (4%)

4.3. Ablation Study with Loss

We propose a novel loss function based on the distribution of nighttime haze. Our
ablation experiments demonstrate the effectiveness of our proposed approach. As presented
in Table 3, we compared our loss function with the traditional loss function at varying
levels of haze concentration (0.1–0.6). Our results indicate that our loss function is more
effective at higher levels of haze, and shows a stronger ability to suppress the presence of
haze in the vicinity of light sources.

Table 3. Quantitative comparison of different losses on different concentrations simulation datasets.

Haze Concentration 0.1 0.2 0.3 0.4 0.5 0.6

L1 Loss (PSNR/SSIM) 30.59/0.956 27.54/0.933 23.68/0.890 21.43/0.851 19.04/0.796 17.80/0.757
LightLoss (PSNR/SSIM) 30.94/0.956 28.59/0.937 27.16/0.915 26.02/0.905 25.23/0.861 24.89/0.852

4.4. Testing on Synthetic Images

To demonstrate the superiority of our proposed method, we compared it with several
existing nighttime dehazing methods, including NDIM [1], NHRG [2], MRP [3], and
OSFD [4].

We observed that dehazing night images is a challenging task, and some methods
fail to surpass the input hazy images in terms of peak signal-to-noise ratio (PSNR) [26]
and structure similarity index measure (SSIM) [27]. However, our proposed method
significantly outperforms the other methods in terms of PSNR, SSIM and CIE2000 [28]. The
computation time is also comparable to the fastest method. The PSNR and SSIM are metrics
where a larger value indicates better performance, while CIE2000 and computation time
are metrics where a smaller value indicates better performance. In some of the charts, we
use the symbol ↑ to represent that a larger value is better, and ↓ to represent that a smaller
value is better. All evaluation methods are based on functions that come with Python. All
objective evaluation indicators are compared as shown in Table 4.

Qualitatively, NDIM suffers from severe global color casts and cannot distinguish
between the brightening of light and the brightening caused by haze scattering. NHRG
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and MRP address these issues to some extent, but they still exhibit significant local color
cast defects. OSFD produces good color and performs well on uniform haze removal due
to its large training dataset, but it is not effective enough in removing non-uniform haze. In
contrast, our proposed method performs better on simulated datasets but cannot completely
remove glare caused by fog. Please refer to the first row of Figure 6 for detailed comparisons.

Table 4. Qualitative results of various nighttime dehazing methods on simulated datasets.

Method Input NDIM NHRG MRP OSFD SADNet (Ours) Restormer (Ours)

PSNR↑ 26.17 (44%) 20.56 (176%) 23.95 (87%) 26.43 (40%) 27.72 (21%) 28.44 (11%) 29.37 (0%)
SSIM↑ 0.737 (101%) 0.680 (144%) 0.754 (88%) 0.792 (59%) 0.837 (24%) 0.854 (11%) 0.869 (0%)
CIE2000↓ 146.3 (42%) 130.1 (26%) 118.7 (15%) 132.6 (28%) 128.9 (25%) 103.3 (0%) 102.8 (0%)
Time/s↓ 20.58 25.03 1.56 0.772 1.692 1.988

4.5. Evaluation on Real Photographs

We utilized the Flicker dataset [3], which is commonly used for subjective comparisons
in the field of nighttime dehazing, as our real-shot dataset. Our approach of obtaining haze
scattering based on 3D rendering was found to be highly effective. Our results effectively
suppress the surrounding haze observed from artificial light sources, preserving the shape
and brightness of the light source while removing the surrounding haze as shown in the
second and third rows of Figure 6. Our method also produces very few color casts. For
scenes with blue and yellow haze light sources, we maintain the lighting color of the
environment and remove the colored haze as demonstrated in the fourth and seventh row
of Figure 6.

Additionally, our method performs well on uniformly hazy night scenes, maintaining
the details of the bright and dark parts while removing the haze feeling in the space. As
shown in the comparison between the fifth and sixth rows of Figure 6, our buildings
are clearer.

Overall, our method has a better understanding of the various scattering laws of haze
due to the dataset learned from the three-dimensional scattering formula. Our approach
is more capable of handling complex haze and light relationships and is better suited for
processing subjective real-shot datasets, producing better colors and texture details that are
more in line with real-world haze scenes.

5. Conclusions

Real night dehazing mechanisms are complex, and datasets are difficult to capture. In
this regard, we proposed several innovations:

• We propose a new compositing method that leverages rendering techniques to recreate
complex real-world lighting and haze. Compared to other data construction methods,
our results are more consistent with real scenes and optical scattering models.

• To match haze images of different concentrations and render datasets at different
concentrations, we propose a haze point spread function (HPSF) using the light point
spread function (PSF) method.

• We improved the data preprocessing method and loss function of the neural network
based on the image characteristics of nighttime haze images.

We conducted various experiments to demonstrate the effectiveness of these improve-
ments. Our dehazing results achieved good performance on both simulated and real-world
data. Overall, our proposed method provides a more realistic way to generate nighttime
dehazing datasets, and the improvements we made to the network structure and training
process led to better performance. These findings have important implications for the
future development of more efficient dehazing technologies.
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