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Abstract: Unimodal biometric systems rely on a single source or unique individual biological trait for
measurement and examination. Fingerprint-based biometric systems are the most common, but they
are vulnerable to presentation attacks or spoofing when a fake fingerprint is presented to the sensor.
To address this issue, we propose an enhanced biometric system based on a multimodal approach
using two types of biological traits. We propose to combine fingerprint and Electrocardiogram (ECG)
signals to mitigate spoofing attacks. Specifically, we design a multimodal deep learning architecture
that accepts fingerprints and ECG as inputs and fuses the feature vectors using stacking and channel-
wise approaches. The feature extraction backbone of the architecture is based on data-efficient
transformers. The experimental results demonstrate the promising capabilities of the proposed
approach in enhancing the robustness of the system to presentation attacks.

Keywords: fingerprint; multimodal fusion; presentation attack detection; heartbeat signal

1. Introduction

Biometrics, or human measurements, are metrics related to unique person characteris-
tics that distinguish one individual from another. These biological characteristics can be
used as biometric identifiers to recognize and verify a person’s identity. Physiological iden-
tifiers include fingerprints, face, palm, iris, and hand geometry, while behavioral identifiers
include characteristics such as gait, hand-written signature, and voice. Biometrics technol-
ogy involves measuring and processing these distinctive biological traits of individuals.
Biometric authentication, on the other hand, is a security process that relies on these unique
features to verify a person’s identity and ensure that they are who they claim to be.

The selection of a specific biometric identifier for a particular application depends
on various factors such as uniqueness, permanence, universality, measurability, and
performance [1]. Fingerprints are a reliable solution that are widely used due to their
convenience, collectability, and high level of security [2,3]. However, the widespread use of
fingerprint-based biometric systems has led to an increase in presentation attacks (PAs),
where an artificial copy of a fingerprint is presented to the sensor to bypass the system’s
security measures. This type of attack is known as a Presentation Attack Instrument (PAI)
and is defined by ISO/IEC 30107 [4]. PAIs can be made from a range of materials and can be
either artificial or synthetic fingerprint samples. To address the security concerns caused by
these attacks, several automated presentation attack detection (PAD) techniques have been
developed in recent years [5-10]. PAD systems are used to determine whether a specimen
is from a genuine subject or an artificial copy (PA or artifact). In general, a combination of
hardware and software technologies are used in PAD systems to detect a non-genuine or
spoof presented biometric [11]. The reliability of the sensor used to measure the biometric
trait and the degrees of freedom of the extracted features greatly affect the performance of
the biometric system.

Recently, the Electrocardiogram (ECG) signal of the heart has been proposed as a
biometric trait. It has been coined the “heartprint” [12], and similar to the fingerprint, itis a
unique human trait and can be used to identify and authenticate subjects [13,14]. Compared
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to many other biometric modalities, the heartprint is shown to be the most promising [15].
The main advantage of the heartprint biometric is the fact that it verifies the liveness of
the subject, making it more robust to spoofing attacks [16,17]. Another advantage is that
the heartprint is a one-dimensional data signal, making it computationally more efficient
than video or image-based biometric systems [18]. Considering that the heart electrical
activity signal is a unique physiological signal existing only in a live person, it can be used
to counter forge and fraud attacks. We will use the heartprint as a second modality to
reinforce the detection of the artifact fingerprint sample.

These features make it suitable to combine heartprints with traditional biometric
modalities like fingerprints, which is the main motivation for the method in this paper.
Compared to unimodal biometric systems, multimodal systems are a combination of
two or more biometric traits for improved recognition rate and protection against spoof
attacks [19-22]. Fingerprints and heartprints could be a natural combination for multimodal
fusion as high-quality heartprints can be captured from the fingers [23-25] simultaneously
with fingerprints. In fact, the liveness property of heartprints makes them a secured biomet-
ric modality, and its fusion with fingerprints may yield a robust and secure authentication
and identification system [26-29]. Several multimodal biometric systems which fuse fin-
gerprints and heartprints have been introduced in the literature. Pouryayevali et al. [11]
developed a sequential score fusion algorithm to fuse these to modalities. In this method,
first, a heartprint matcher was used to authenticate a subject, and if accepted, his/her
fingerprint was authenticated. Then, fusion was performed by employing a user-weighting
score fusion method. Komeli et al. [28] proposed a multimodal system by fusing these two
modalities with automatic template updating of heartprint records. Jomma et al. [30,31]
used a sequential method to boost the robustness of fingerprint authentication against
presentation attacks via fusion with a heartprint.

Recently, a limited number of attempts have been made to use deep learning for the
fusion of these two modalities. Hammad et al. [27,32] fused heartprints and fingerprints
using a convolutional neural network (CNN) based on different levels of fusion such as
feature-level fusion and decision-level fusion. CNN was used for feature extraction from
the individual modalities, and they were combined using internal fusion to generate the
biometric templates which were used by a classifier for authentication. Jomaa et al. [33]
presented a multimodal biometric method for presentation attack detection. Their method
is based on an end-to-end deep learning model that accepts fingerprint and heartprint
modalities at the same time. EfficientNets were used for generating a fingerprint feature
representation. On the other hand, a 2D convolutional neural network (2D-CNN) was used
to convert the heartprint into a 2D image which was fed to Mobilenet-v2 layers for feature
presentation. The concatenated features from both network branches are then fed into an
additional fully connected layer followed by a Swish activation function and a dropout
regularization layer. Finally, a binary classifier was used to classify the multimodal sample
into artefact or bona-fide classes.

In this paper, we propose a multimodal biometric solution which combines fingerprint
with heartprint modalities. Due to the lack of a multimodal dataset that combines finger-
prints and heartprints, we made our own by combining a mini-LivDet2015 dataset and the
newly released Heartprint dataset [12]. We used fingerprint images sensed using the digital
Persona sensor, which is the most difficult subset of the LivDet2015 dataset, and we call it
the mini-LivDet2015 dataset. It comprises 70 subjects or individuals, and each individual
has 10 bona-fide and 12 artefact fingerprint images. To construct the multimodal dataset,
we randomly associated each person from the mini-livdet2015 dataset to a person from
the Heartprint dataset. Then, we designed a deep learning architecture that is composed
of two branches: one that accepts a fingerprint input, while the other accepts a heartbeat
input. As in previous work, we first convert the heartprint 1D input into an image using a
special CNN model. Then, unlike previous work in the literature, we use a Data Efficient
Image Transformer (DEIT) model as the backbone for feature extraction. In addition, we
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fuse the feature vectors extracted for each input using a channel-wise fusion approach and
compare it to the typical stacking approach.

The feature vectors extracted by each branch are fused using two approaches: stacking
or channel-wise fusion.

Our contributions via this paper can be summarized in the following points:

e  We propose an end-to-end deep learning model for a multimodal biometric method
using image transformers.

e  The proposed method employs a channel-wise fusion approach which improves
performance compared to the typical stacking approach.

The remainder of the paper is organized as follows. Section 2 provides materials and
methods. Then, Section 3 presents the results that show the capabilities of our method on
common RS scene datasets. Finally, we give conclusions and future research directions in
Section 4.

2. Materials and Methods

The purpose of typical fingerprint PAD is to identify whether a fingerprint im-
age is an artefact (PA) or a bona-fide fingerprint sample. Given the fingerprint dataset,
D = {X;y; Il\i :1A+B containing A artefact samples and B bona-fide samples, where
X; represents the fingerprint input image and y; is a binary label denoting if a finger-
print is an artefact or a bona-fide. In this research work, we add a heartprint signal as an

extra input modality. Thus, the obtained dataset is a triplet data D = {(le , Xf),yi}f\i 17

where X7 is the heartprint signal and le is the fingerprint image.

As shown in Figure 1, the proposed multimodal deep learning model includes four
main parts: fingerprint and heartprint preprocessing and conditioning, fusion, feature
extraction, and the task layer. The first module is a data preprocessing block used to
perform data conditioning on each modality using different techniques, as each modality
possesses distinct characteristics. Then, a fusion process is adopted to combine the data
from each modality. As the feature extraction backbone, we used an attention-based deep
learning DEIT model to extract discriminant features from the two modalities. Lastly, a
classification layer identifies the output class.
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Figure 1. Overall architecture of the proposed deep learning model for multimodal biometric analysis:
(a) feature concatenation fusion approach; (b) channel-wise fusion approach.
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2.1. Fingerprint Block

Fingerprints, part of the dermatoglyphics field, are a complex and unique pattern
of curving line structures called friction ridges. The number, shape (loops, whorls, and
arches), and location of each ridge make every person unique, and they do not vary with
growth or age. The fingerprint image consists of dark lines called ridges and white lines
called valleys. In this work, we consider the International Fingerprint Liveness Detection
Competition 2015 (LivDet 2015) dataset.

2.2. Heartprint Block

The Heartprint2022 database contains a different number of heartbeat samples with
a length of 740 each for 199 persons. We propose to extract features from the heartprint
and convert it to an image, which is needed for the fusion process. As shown in Figure 2, a
signal process of three sub-blocks produces a feature image of the size (3,224,224) as an
output of the heartprint branch. The first sub-block concatenates five heartbeats chosen
randomly from the selected person. The second sub-block generates a 2D time-frequency
analysis image from the 1D heartprint input signal by applying the short-time Fourier
transform (STFT). STFT is a sequence of Fourier transforms applied on a signal using a
window for segmented analysis. For situations in which frequency components change
over time, the STFT provides time-localized frequency information. The STFT is given by
the Fourier transform of the windowed signal x[n]w[n — m], where x[n] denotes the signal
and w[n] denotes an N-point window function.

N-1

X[m,k] = Y x[n]wn — m)e /2mk/N (1)
n=0
— S
= | — Fusion %
!@ ] &
— Deit Fbﬂ ' — |
(3,224,224) B SE:>: £ 4 !
— F% & _sS &
i - = E] -
— i §vgeEEnEol
(3.224,224) . = 15 =
Deit }:;g:;}' S = B

Figure 2. Illustration of the fusion approach based on feature concatenation.

The third sub-block in the heartprint branch is 2D CNN architecture converts the STFT
input image of the size (26,37) to a (3,224,224) 3D feature image.

2.3. Feature-Concatenation-Based Fusion Module

The first fusion strategy is based on the concatenation of the extracted features of the
fingerprint image and the heartprint signal. The architecture of the two-branch neural
network is illustrated in Figure 2, which contains the fingerprint branch for the feature
extraction and the heartprint branch for height-relevant feature learning. The feature
fusion module consists of a sequence of deep learning layers. The first layer applies
the concatenation of the feature vector, arriving from the fingerprint feature extraction
module and the feature vector received from the heartprint feature extraction module. The
combined feature passes through a fully connected layer followed by a batch normalization
layer, a Swish activation layer, a dropout layer, and a second fully connected layer. Finally, a
binary classifier decides in which category, artifact or bona-fide, the elaborated fingerprint-
heartprint feature belongs to.
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2.4. Channel-Wise Fusion Module

Multimodal biometric systems seek to increase performance that may not be possible
by using a single biometric indicator by providing multiple shreds of evidence of the
same identity. An optimal fusion of multiple modalities is a fundamental request for
the development of a reliable solution. In attempting to improve the performance of
the detection system, the outputs of the fingerprint and heartprint branches are further
processed using a fusion module. This fusion module is performed by intercalating the
heartprint SIFT image as additional bands to the fingerprint image. We call this a channel-
wise fusion approach and illustrate it in Figure 3.

(3.224,224) |

1
1
(3,224,224) |
1
1
1

Figure 3. Structure of the channel-wise fusion module.

2.5. Feature Extraction Module

A wide variety of deep learning strategies have been used to build biometric identi-
fication systems. Usually, these methods depend on CNN to extract features from input
data. Inspired by the biological systems of humans, the attention mechanism has revolu-
tionized the natural language processing and computer vision systems [1,2]. The attention
mechanism has reasonably become one of the most fundamental concepts in the deep learn-
ing field. The feature extraction module uses a state-of-the-art data-efficient ViT variant
(Deit) to extract discriminative features for image classification tasks. Deit has the same
architecture as ViT.

The input image to the ViT is split into N patches of a fixed size D, X € RN*D the
patches are flattened and fed to a linear projection to create lower-dimensional linear
embeddings, a positional embedding is added with the class of the embedded image, and
the sequence is fed to the transformer encoder. The transformer encoder uses a Multi-Head
Self Attention layer (MSA) as an attention mechanism in between all the input vectors. The
input to the attention block has three linear input layers (receive the queries Q = XWo,
keys K = XWgk, and values V = XWy with W, Wi, Wy € RP*4 are the parameters of the
linear transformations), followed by a scaled dot-product attention function to give the
output matrix:

Attention(Q, K, V) = Softmax (QKT/\/E> 14 )

where the term v/d provides proper normalization. The attention function is repeated
h times to produce a multi-head self-attention (/2 heads), a concatenation operation joins
the h outputs of the different heads, and a final MLP head performs the classification task.

Introduced by Facebook Al, the structure of the Deit model, built based on the ViT
model [34], showed enhancement over previous ViT models. ViT does not generalize well
when trained on a small amount of data and needs to be pre-trained with a huge amount
(hundreds of millions) of images. Deit architecture is proposed using a ViT architecture
with a teacher-student strategy and a distillation token. The distillation token, which allows
the deep model to learn from the teacher’s output, interacts with the class token and patch
tokens through the self-attention layers to provide the hard label predicted by the teacher.
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3. Results

To evaluate the proposed method, we first built our own multimodal dataset. Then,
we split the dataset into training and testing sets, by splitting based on the subjects.

3.1. Dataset Description

The International Fingerprint Liveness Detection Competition 2015 (LivDet 2015)
and the real heartprint dataset, called Heartprint2022, are used to evaluate and validate
the performance of the proposed deep learning architecture. The LivDet 2015 dataset is
provided by Orru et al. and can be downloaded from [6], whereas the Heartprint2022
dataset is a new dataset collected in our lab, which is the Advanced Lab for Intelligent
Systems Research (ALISR), and can be downloaded from here [12].

The LivDet 2015 dataset has approximately 19,000 fingerprint images captured us-
ing four different optical fingerprint sensors: GreenBit, Biometrika, Digital Persona, and
CrossMatch [6]. It aims to develop both software-based and hardware-based fingerprint
liveness detection methodologies [6]. LivDet 2015 contains a training set dataset and a
testing dataset [7]. Each set contains bona-fide (live) and artefact (fake) fingerprint images
acquired via different fingerprint scanners, as illustrated in Table 1. To mimic real scenarios,
the image capturing process includes normal mode, with dry and wet fingers, and with
high and low pressure.

Table 1. Device and image characteristics of the LivDet 2015 dataset.

Sersor Model Image Size Training Testing
[pixel] Live Fake Live Fake
Green Bit DactyScan26 500 x 500 1000 1000 1000 1500
Biometrika HiScan-PRO 1000 x 1000 1000 1000 1000 1500
Digital Persona U.are.U 5160 252 x 324 1000 1000 1000 1500
Crossmatch L Scan Guardian 640 x 480 1500 1500 1500 1448

LivDet 2015 datasets contain spoof fingerprint images collected using artificial fingers.
Artificial fingers are fabricated using plasticine-like material to create a negative impression
or a mold of the real finger (cooperative method), the mold is then filled to produce the
artificial finger using gelatin, PlayDoh, or silicone. A latent fingerprint left on a surface is
another way to make artificial fingerprints (non-cooperative method); a transparency sheet
is obtained from a processed latent fingerprint and used to create the mold. Figure 4 shows
samples from the LivDet 2015 dataset.

LivDet 2015 dataset contains spoof images made using diverse materials, such as
Ecoflex, gelatin, latex, wood glue, liquid Ecoflex, and RTV (a two-component silicone
rubber), as shown in Table 2. The testing set includes some spoof images of materials which
were not included in the training set.

Table 2. Materials used for fabricating spoof images in the LivDet 2015 dataset. The unknown
materials that do not exist in the training part are in bold.

Sensor Training Testing

Green Bit

Ecoflex, gelatin, latex, wood glue,

Bl.or'netrlka Ecoflex, gelatin, latex, wood glue Liquid Ecoflex, RTV
Digital Persona
Crossmatch Body Double, Ecoflex, PlayDoh Body Double, Ecoflex, PlayDoh,

OOMOQO, gelatin
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Figure 4. Sample images of LivDet2015 dataset captured using CrossMatch, Digital Persona, GreenBit,
and Biometrica sensors. Live samples are in the green box and fake samples made of different
materials are in the red box.

The heartprint dataset is collected using the ReadMyHeart ECG device, by DailyCare
BioMedical [35]. The ReadMyHeart handheld ECG is simple to use without skin electrodes,
leads, wires, or conductive gels. The measurements are taken by placing the thumbs on
the conductive plates as shown in Figure 5. The heartprint needs only 30 s of measuring
time during which 15 s are digitalized and exported to the computer via a USB port. The
heartbeat activities of 164 persons are captured during two sessions to build an Heart-
print2022 dataset of 656 ECG records. During the preprocessing step, the authors used
a four-order band-pass Butterworth filter with cut-off frequencies of 0.25 and 40 Hz to
remove the different types of noise that can affect the heartprint, such as the power-line
interface, baseline wanders, and patient-electrode motion artifacts.

cs.J 1
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Figure 5. Heartprint sample of 10 heartbeats from three different subjects.



J. Imaging 2023, 9, 168

8of 12

The non-existence of public multimodal datasets encompassing heartprint and finger-
print signals incited us to build a multimodal dataset from the LivDet 2015 dataset and
Heartprint dataset. To this end, we first detect the heartbeats from each heartprint record in
Heartprint using an effective curvature-based technique [36]. Then, to create the heartprint
modality for our experiments, we randomly select a few heartbeats from the heartprint
records of each subject.

We used a subset of 70 subjects from the LivDet 2015 dataset, each of which has
10 bona-fide images from the Digital Persona sensor and 12 artefact images to construct a
mini-LivDet 2015 dataset. Then, we associated a random subject from the Heartprint2022
dataset to each subject from the mini-LivDet 2015 dataset. If the fingerprint image is fake,
the subject must have different heartprints. To substantiate this fact, we assign a random set
of heartbeats from the same subject to the bona-fide images of one person, and we assign
the random set of another randomly selected person to the artefact fingerprint of the same
person. The new multimodal dataset containing fingerprint images and heartbeat signals
of 70 subjects is described in Table 3.

Table 3. Materials used for fabricating spoof images in the LivDet 2015 dataset. The unknown
materials that do not exist in the training part are in bold.

Fingerprint Images

Heartbeats
Bona-Fide Artefact
# samples per subject 10 12 10
Total number of samples 700 840 700

During the training phase, the model receives data batches consisting of both classes,
the bona-fide fingerprint samples with bona-fide heartbeat samples and fake fingerprint
samples with bona-fide heartbeat samples of another person. In this way, the deep
model learns to discriminate between the fake fingerprint sample and the bona-fide
fingerprint sample.

3.2. Experimental Setup and Performance Metrics

We conducted different experiments to evaluate the performance of the proposed
methodology and compare our results with previous state-of-the-art methods. In the first
experiment, we trained the deep model using only the fingerprint branch to assess its
performance regarding the detection of PAs. The model is trained using the training subset
of the LivDet 2015 dataset. Then, we trained and evaluated the model on the multimodal
dataset, using the proposed fusion strategies to detect and prevent PAs.

To check the reproducibility of the proposed deep learning model, all experiments are
repeated several times and the average classification accuracy is reported. All experiments
are implemented in Python and the PyTorch machine learning library using a workstation
that has a Core i9 processor with a speed of 3.6 GHz, 64 GB of memory, and GPU with 11
GB GDDR5X memory.

3.3. Results and Discussions

In the first experiment, we trained different deep models on the multimodal dataset.
The average detection accuracy of the different models using a single modality (no fusion)
and multimodality (with fusion) biometric traits is reported in Table 4. In this experi-
ment, we achieved the fusion process between the contribution of the fingerprint and the
heartprint information part via concatenation at the feature level. We employed different
pre-trained models as the backbone networks to extract the feature of each modality. We
trained the different models on the fingerprint images and heartprint signals using the
Adam optimizer with a scalable learning rate, a batch size of 32, and 30 training epochs.
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Table 4. Average accuracy of the proposed fusion by concatenation architecture.

Average Accuracy %

Biometric Modality CNN Architecture Concatenation Channel-Wise
Fingerprint Deit_tiny_patch16_224_fe 97.4 97.4
(No fusion) Resnet18 98.0 98.0
Deit_tiny_patch16_224_fe 95.0 98.8
Resnet18 98.3 99
Fusion by Resnet18d 97.6 97.6
ConcatenationFingerprint + ECG ResnetSO 98.6 98.3
mobilenetv2_100 97.2 98.3
mobilenetv2_110d 98.3 98.6
vit_tiny_patchl6_224 97.1 98.1%

We note from the reported results in Table 4 that the Resnet50 architecture outper-
forms the other CNN models and achieves the highest accuracy of 98.7%. Resnet18 and
mobilenetv2_110d architectures perform with a high accuracy of 98.3%, which is not far off
the highest performance. Deit_tiny_patch16_224_fe and vit_tiny_patch16_224 architectures
achieve the lowest accuracies of 95% and 97.1%, respectively.

In the second experiment, we applied the fusion between the fingerprint and the
heartprint signal at the data level. We combined the two modalities by inserting the
heartprint image as a new channel in the fingerprint image. We trained different pre-
trained models on the combined fingerprint-heartprint to extract significant features from
the combined images.

As shown in Table 4, combining fingerprints with heartprint data provides better
performance in detecting fake fingerprints than single modality biometric traits. The
different deep models, namely, Deit_tiny, Resnet18, Resnet18d, Resnet50, MobileNetv2_100,
and MobileNetv2_110d, vit_tiny_patch16_224, perform with accuracies of 98.8%, 99%,
97.6%, 98.3%, 98.3%, 98.6%, and 98.1%, respectively. We can clearly see that the multimodal
biometric system outperforms a biometric system with a single biometric indicator (i.e.,
without using a fusion). This performance is achieved thanks to converting the heartprint to
a 2D image and the benefit of the 2D convolution’s power in the deep learning models. The
Resnet50 deep model achieves the highest performance (an accuracy of 99%), surpassing
the other models.

A.  Sensitivity Analysis of the Number of Training Subjects

Generally, it is common knowledge that a small training dataset produces weak
approximation [37]. To assess the impact of the training set size on the system performance,
we trained and evaluated the different models on a dataset with different sizes (between
20% and 80%) and reported the achieved performance of each model in Table 5.

Table 5. Average accuracy in terms of percentage of subjects used in the training set. Channel-wise
concatenation approach is used.

CNN Architecture Percentage of Subjects Used for Training
(Channel Fusion) 20% 30% 50% 70% 80%
Deit_tiny_patch16_224 fe 95.05 95.36 97.4 97.84 98.8
Resnet18 96.5 98 97.4 98.4 99.3
Resnet50 97 96.6 98.8 99.1 97.2
Mobilenetv2_100 90.5 93.5 95.6 96.4 96.5

The reported results in Table 5 reveal that increasing the size of the training dataset
in the learning process improves the classification performance during the testing phase.
We can observe this behavior from the models’ performances. Deit-tiny performs well
when trained on a dataset with a size more than 50%. With a small size of training samples
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(20%), the Resnet18 and Resnet50 models achieve good accuracies and maintain their
performances for all the training sample sizes. As shown in Table 5, Resnet18 reaches an
accuracy of 99.3% and outperforms all the other deep learning models when trained on 80%
of the dataset. It is well known that training a deep learning model involves large amounts
of labeled training samples. Training a model with insufficient amounts of labeled data
degrades the testing accuracy. Despite training with small amounts of training samples,
the deep models perform well with good accuracies (95.05%, 96.5%, 97%, and 90.5%) for
Deit_tiny, Resnet18, Resnet50, and Mobilenetv2_100, respectively, when trained using only
20% of the dataset.

B.  Sensitivity of the heartprint feature

During this experiment, we assess the effect of the number of heartbeats used in the
STFT heartprint image on the model performance accuracy. We repeated the experiment
with STFT heartprint images built using a different number of heartbeats (heartprint of
length ranged between 5 heartbeats and 20 heartbeats), the model performance is reported
in Table 6.

Table 6. Average accuracy of the proposed fusion via concatenation architecture with respect to the
number of heartbeats.

Number of Heartbeats Accuracy

5 98.70

7 98.05
10 96.83
13 97.40
15 98.05
18 98.38
20 96.75

Table 6 shows that increasing the number of heartbeats in the STFT transformation of
the heartprint to an image does not significantly affect the accuracy. The highest accuracy
(98.7%) is obtained when adopting five heartbeats of the heartprint signal to construct the
STFT image.

4. Conclusions

In this research, we have presented an end-to-end deep learning multimodal fusion
technique for a fingerprint presentation attack detection system. We introduced a variety
of pre-trained deep learning models as feature learning backbone networks. The selection
of an appropriate modality and the choice of an optimal fusion strategy are crucial factors
in the performance of a biometric system. To enhance the performance of the PAD system,
the heartprint is added as an additional modality, and two fusion strategies, i.e., heartprint-
fingerprint feature concatenation and heartprint-fingerprint channel insertion, are adopted
and tested. The obtained experimental results show that the fingerprint-heartprint multi-
modal PAD system achieved high accuracy, confirming the effectiveness of the proposed
approach. For future developments, we propose to investigate other fusion strategies based
on feature selection, feature weighting, and decision fusion to increase the robustness of
the system.
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