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Abstract: Computer-assisted diagnostic systems have been developed to aid doctors in diagnosing
thyroid-related abnormalities. The aim of this research is to improve the diagnosis accuracy of
thyroid abnormality detection models that can be utilized to alleviate undue pressure on healthcare
professionals. In this research, we proposed deep learning, metaheuristics, and a MCDM algorithms-
based framework to detect thyroid-related abnormalities from ultrasound and histopathological
images. The proposed method uses three recently developed deep learning techniques (DeiT, Swin
Transformer, and Mixer-MLP) to extract features from the thyroid image datasets. The feature
extraction techniques are based on the Image Transformer and MLP models. There is a large number
of redundant features that can overfit the classifiers and reduce the generalization capabilities of
the classifiers. In order to avoid the overfitting problem, six feature transformation techniques
(PCA, TSVD, FastICA, ISOMAP, LLE, and UMP) are analyzed to reduce the dimensionality of
the data. There are five different classifiers (LR, NB, SVC, KNN, and RF) evaluated using the
5-fold stratified cross-validation technique on the transformed dataset. Both datasets exhibit
large class imbalances and hence, the stratified cross-validation technique is used to evaluate the
performance. The MEREC-TOPSIS MCDM technique is used for ranking the evaluated models at
different analysis stages. In the first stage, the best feature extraction and classification techniques
are chosen, whereas, in the second stage, the best dimensionality reduction method is evaluated
in wrapper feature selection mode. Two best-ranked models are further selected for the weighted
average ensemble learning and features selection using the recently proposed meta-heuristics FOX-
optimization algorithm. The PCA+FOX optimization-based feature selection + random forest model
achieved the highest TOPSIS score and performed exceptionally well with an accuracy of 99.13%,
F2-score of 98.82%, and AUC-ROC score of 99.13% on the ultrasound dataset. Similarly, the model
achieved an accuracy score of 90.65%, an F2-score of 92.01%, and an AUC-ROC score of 95.48% on
the histopathological dataset. This study exploits the combination novelty of different algorithms in
order to improve the thyroid cancer diagnosis capabilities. This proposed framework outperforms
the current state-of-the-art diagnostic methods for thyroid-related abnormalities in ultrasound and
histopathological datasets and can significantly aid medical professionals by reducing the excessive
burden on the medical fraternity.
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1. Introduction

Thyroid cancer is a type of cancer that affects the thyroid gland, a small butterfly-
shaped gland located in the neck. The thyroid gland produces hormones that regulate
metabolism, heart rate, and body temperature. With early diagnosis and appropriate
treatment, the prognosis for thyroid cancer is generally good. Medical experts, including
doctors, nurses, and other healthcare professionals, are essential for providing healthcare
services to the population. They are responsible for ensuring their patients’ well-being,
including diagnosing and treating illnesses, providing emotional support, and making
difficult decisions. This burden is amplified in times of crisis, such as pandemics or
natural disasters, where the healthcare system may become overwhelmed, and medical
professionals may have to work extended hours or in difficult conditions. Machine learning-
based models have shown promising results in reducing the burden on healthcare experts.
These models can be trained to analyze vast amounts of medical data and make predictions
or provide insights to assist medical professionals in diagnosis, treatment, and care [1].

The accuracy of thyroid computer-aided diagnosis (CAD) systems is of the utmost
significance in healthcare, as it directly impacts the diagnosis and treatment of patients.
Inaccurate CAD models may result in missed or false-positive diagnoses, leading to delays
in treatment or unnecessary interventions [2].

1.1. Background

Various imaging techniques can be used to diagnose thyroid cancer. Some of the most
commonly used imaging techniques include ultrasound, computed tomography (CT) scans,
magnetic resonance imaging (MRI), radioactive iodine scanning, and histopathological
imaging [3,4].

Many researchers have proposed artificial intelligence-based CAD models for thyroid
abnormality detection using ultrasound and histopathological images. In [5], Xu et al. ex-
amined a diagnostic model that utilized contrast-enhanced thyroid ultrasound images. The
model used a convolutional neural network (CNN) as a feature extractor and a long short-
term memory (LSTM) as a classifier. Zhao et al. [6] proposed a method that combines image
texture features with CNN-extracted features for thyroid classification using ultrasound
images. Rehman et al. [7] utilized the U-Net model to segment thyroid ultrasound images.
The authors in [8] used CNN to classify thyroid and breast cancer ultrasound images.
Liu et al. [9] introduced a multi-scale region-based detection network that used Resnet50
as the backbone network and ZFnet as a classifier. The proposed network achieved an
improvement in accuracy of 0.90%. In [10], Chi et al. employed an inception network-based
model for thyroid nodule classification and used transfer learning to mitigate overfitting,
achieving an accuracy of 79.36%. Likewise, in [11], researchers used transfer learning-based
VGG16 and GoogLeNet models, with achieved accuracies of 77.57% and 79.36%, respec-
tively. Nguyen et al. [12,13] utilized the publicly available TDID dataset, incorporating
knowledge of both spatial and frequency domains. The frequency-domain FFT is used to
classify easy samples into three categories: malignant, benign, and ambiguous. A spatial
domain model was used to categorize ambiguous samples. In [13], Nguyen et al. utilized
the same technique as [12] but used a weighted binary cross-entropy loss function to ad-
dress the class imbalance issue. In [12,13], they achieved 90.88% and 92.05% classification
accuracies, respectively. Additionally, the authors employed the voting ensemble method
with base CNN models. Sharma et al. [14] trained deep vision Transformer and Mixer
models in weighted average ensemble learning configuration. They used the hunger games
search algorithm to obtain the ensemble weights and the D-CRITIC TOPSIS method was
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utilized for ranking the models. The best model achieved classification accuracies of 82.17%
and 89.70% for 70:30 and 80:20 split cases. Sun et al. proposed the TC-ViT model, which
consists of a vision transformer with contrast learning for thyroid cancer detection. The
researchers collected a private dataset of 794 thyroid images, where samples below the
TI-RADS score of 4 are marked as benign, whereas the images with a TI-RADS score equal
to and above 4 were treated as benign or cancerous.

Recent studies showed the promising application of AI tools in histo-cytology for
standardization and enhancing the accuracy of indeterminate thyroid nodule classifi-
cation [15,16]. The authors used digital images obtained from the thyroid fine needle
aspiration biopsy technique. The study performed by Hirokawa et al. in [17] demonstrated
the EfficientNetV2-L image classification model for the thyroid fine needle aspiration cy-
tology. Similarly, Kezalarian [18] explored the application of AI to distinguish follicular
carcinoma from follicular adenoma, whereas Alabrak et al. [19] proposed a CNN model
to classify the same kind of problem and achieved an accuracy of 78%, a sensitivity of
88.40%, a specificity of 64% and AUC-score value of 0.87. Girolami et al. [20] presented
a review article on automatic whole slide image analysis for thyroid pathology using AI
tools. The study utilized a modified QUADAS-2 tool for the analysis of whole slide images.
According to Wang et al. [21], they gathered 11,715 unique histopathological images from
806 patients. They trained VGG-19 and Inception-ResNet-v2 models on these images and
attained accuracies of 97.34% and 94.42%, respectively. These models were utilized to
categorize seven different types of thyroid abnormalities. In their study, Chandio et al. [22]
suggested a decision support system for detecting medullary thyroid cancer (MTC) using
a convolutional neural network (CNN). The authors trained the models on cytological
images and obtained an accuracy of 99.00%. Hossiny et al. [23] employed cascaded CNN
and split classification techniques to categorize thyroid tumors into three types: follicular
adenoma, follicular carcinoma, and papillary carcinoma. The achieved accuracy in their
study is 98.74%. Do et al. [24] proposed a deep-learning model called MI Inception-v3 to
detect thyroid cancer. The authors compared the proposed MI Inception-v3 model with the
Inception-v3 model. They observed that the classification accuracy on Tharun and Thomp-
son dataset increased from 85.73% to 89.87% using the MI Inception-v3 model. Similarly,
on Nikiforov’s dataset, the accuracy improved from 72.65% to 74.47%. Bohland et al. [25]
compared feature-based and deep learning-based classification models for thyroid gland
tumor classification. The feature-based method comprises cell nucleus segmentation, fea-
ture extraction, and classification using different classifiers. On the other hand, the deep
learning-based method employs a convolutional neural network that directly classifies
input images without cell nucleus segmentation. The authors observed that on the Tharun
and Thompson datasets, the feature-based classification achieved an accuracy of 89.70%,
while the deep learning-based classification achieved 89.10%.

Recently, Transformer and Mixer models have effectively been utilized for vision
tasks, and they have shown comparable results to CNN models. These deep-learning
models can be trained from scratch, or pre-trained models can be employed for feature
extraction [26–28]. However, there is no evidence to date on the usage of Transformer and
Mixer models for thyroid image feature extraction.

The extracted feature vector obtained from the dataset contains redundant features,
which can result in over-fitting of the classifier model. To address this issue, various
dimensionality reduction techniques can be employed to transform high-dimensional data
into a relevant lower-dimensional space. Espadoto et al. [29] conducted a comprehensive
quantitative survey of such methods. The researchers created a benchmark that consists of
44 techniques, which include different combinations of their parameter values, 18 datasets,
and 7 quality metrics, and the results of their study are fairly impressive.

Meta-heuristic-based feature selection techniques have gained attention in recent
years for handling high-dimensional datasets. A survey conducted by Yab et al. [30] found
that moth flame optimization performs well in filter-based methods, while the cuckoo
optimization algorithm works well in wrapper-based methods. The whale optimization
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algorithm was found to perform well in both scenarios. Regarding classifier preferences,
the filter-based method prefers SVM, DT, and NB, while the wrapper-based method prefers
KNN.

In the medical domain, datasets are generally tiny, and it can be difficult to increase the
size of the dataset due to limited patient participation, privacy, and costly testing modalities.
One way to enhance the accuracy of classification models is by using an ensemble of multi-
ple weak learners [31]. The weighted average ensemble approach produced encouraging
results, but finding the optimal weights is a challenging optimization task [32]. Recently, a
new optimization algorithm called FOX optimization was developed, outperforming other
meta-heuristic algorithms in traditional benchmarks. This algorithm utilizes techniques
for measuring the distance between a fox and its prey to make efficient jumps. However,
this algorithm has yet to be applied to feature selection or weighted average ensemble
learning [33].

It is essential to evaluate and compare the proposed models using benchmarking
techniques. However, it is difficult to select the best model due to conflicting performance
results. To address this issue, multi-criteria decision-making (MCDM) methods have
successfully been used to rank the models based on various performance metrics. In a study
by Mohammed et al. [34], a TOPSIS benchmark was proposed for ranking machine learning
models for COVID-19 diagnosis. The weights assigned to each criterion significantly impact
the ranking process. Nguyen et al. [35] analyzed and compared the recently proposed
MEREC weighting technique with other studies, but there is no evidence of MEREC-TOPSIS
being used for ranking and selecting the best models in the literature.

1.2. Research Gap

From the literature survey, the following is evident:

• Transformer and Mixer models have not yet explored for thyroid image feature
extraction. Most studies took place using CNN models.

• The dimensionality reduction techniques have not been analyzed on extracted features
from Transformer and Mixer models.

• The FOX optimization algorithm has neither been applied for feature selection nor for
weighted average ensemble learning.

• MEREC weighting with the TOPSIS method has not been evaluated for thyroid cancer
application.

• The performance of the CAD model for thyroid cancer diagnosis needs to be improved
for much better results.

• The proposed model needs to be evaluated on imbalanced thyroid datasets using a
stratified sampling technique for efficient class representation.

1.3. Our Contribution

• This work uses three deep learning-based feature extraction techniques (Deit, Swin
Transformer, and Mixer-MLP) to extract feature vectors from histopathological and
ultrasound images.

• Six feature reductions (PCA, TSVD, FastICA, ISOMAP, LLE, and UMAP) techniques
are used to reduce the dimensionality of the extracted feature space.

• The MEREC-TOPSIS technique ranks and selects the best-evaluated models at different
stages.

• The recently invented FOX optimization algorithm is used for feature selection and
weighted average ensemble learning.

• The ensemble and feature selection-based models are ranked at the last stage, and the
best model is compared with the state-of-the-art techniques.
The proposed framework demonstrates the analysis as well as the applicability of the
Transformer, Mixer, dimensionality reduction, feature selection, FOX optimization, and
MEREC-TOPSIS techniques in thyroid cancer detection. The proposed framework also
explores the weighted average ensemble using the FOX optimization algorithm, and a
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comparative study is also shown in this study. The framework showed combinational
novelty in the process and outperformed the existing techniques. According to the
review of the existing literature, this technique is novel and has not been employed by
any researchers previously for detecting thyroid cancer.

2. Materials, Methods and Theoretical Overview
2.1. Materials

The proposed framework is evaluated on two different image datasets: ultrasound
and histopathological datasets.

• Ultrasound dataset: While several studies have investigated ultrasound imaging for
thyroid cancer diagnosis, most data sources used in these studies are not publicly
available. Gathering a significant amount of data is challenging due to time constraints,
the precise nature of medical modalities, the need for patient involvement, and the
cost of image collection equipment. The Thyroid Digital Image Database (TDID)
was used in this study to address these difficulties. The TDID dataset, collected by
Pedraza et al. [36] and published by the Universidad Nacional de Colombia in 2015, is
publicly available. The dataset consists of 298 patients involved in the data collection
process. The dataset has previously been used in research to address thyroid nodule
classification challenges, and it contains TIRAD scores and nodule localization details
for each patient, with one or more samples taken from each patient. Each ultrasound
image in the dataset is 560 × 360 pixels in size. The TI-RADS score indicates the
health of the thyroid nodule and can range from 1 to 5. Scores 1, 2, and 3 indicate
benign thyroid nodules, while scores 4a, 4b, 4c, and 5 show malignant thyroid nodules.
The images which contain benign thyroid nodules are treated as cancerous images,
whereas the images with malignant nodules are treated as non-cancerous thyroid
samples. The dataset is used for binary class classification problems. There are a
total of 347 thyroid nodule sample images retrieved from 298 patients. Out of 347
images, 286 images contain thyroid nodules with TI-RADS scores less than 4 and
are considered non-cancerous (benign) thyroid cases. The remaining 61 images have
TI-RADS scores greater than or equal to 4 and are treated as cancerous (malignant)
samples. The dataset is highly imbalanced, and hence stratified oversampling is
proposed to evaluate the performance.

• Histopathological Dataset: For histopathological thyroid images, the dataset is pro-
vided by Thompson et al. on request. The dataset developed by Tharun and Thomp-
son [37] includes a group of 156 thyroid gland tumors obtained from the pathology
archives at the University Clinic Schleswig-Holstein, Campus Luebeck (138 tumors)
and the Woodland Hills Medical Center, Woodland Hills, California (18 tumors). A sin-
gle hematoxylin and eosin-stained section was selected from each tumor and scanned
using the Ventana iScan HT (Roche Diagnostics, Basel, Switzerland). The whole slide
images were captured at 40× magnification with a resolution of 0.23 µm/px and
processed as 8-bit color depth RGB images. Two pathologists independently classified
each whole slide image, and any confusion was resolved through discussion to reach
a consensus for each case. The dataset comprised five distinct entities: follicular
thyroid carcinoma (FTC) with 32 patients, follicular thyroid adenoma (FA) with 53
patients, noninvasive follicular thyroid neoplasm with papillary-like nuclear features
(NIFTP) with 9 patients, follicular variant papillary thyroid carcinoma (FVPTC) with 9
patients, and classical papillary thyroid carcinoma (PTC) with 53 patients. Oncocytic
neoplasms, which can be easily classified based on cytoplasmic and architectural
features, were excluded from the dataset. To facilitate the experiments and make the
problem a binary classification task, the five different entities were combined into two
groups: non-PTC-like (FTC, FA, 85 patients) and PTC-like (NIFTP, FVPTC, and PTC, 71
patients). From each whole slide image, a pathologist extracted representative images
from the neoplastic areas. In 147 out of 156 entities, ten non-overlapping images of
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size 1916 × 1053 px were extracted from the neoplastic areas. However, only one to six
images were available for the remaining nine cases with small neoplasm areas.

2.2. Methodology

The thyroid abnormality detection framework is depicted in Figure 1, which provides
an overview of the different blocks used in the proposed framework. These blocks are
discussed in subsequent subsections to provide a comprehensive understanding of the
proposed approach.

Figure 1. Deep learning, meta-heuristics and MCDM algorithms-based framework for thyroid
abnormality detection.

2.2.1. Dataset Cleaning

The ultrasound dataset is 560 × 360 pixels in size and contains black regions and
markers. This black background region and markers have no significant information, which
can add redundancy and bias to the classification models. These regions and markers are
removed using the thresholding technique proposed by Nguyen et al. [12,13]. The images
are resized into 224 × 224 pixels. For the Tharun Thompson dataset, the size of the image is
large. Each image is divided into 45 patches with a horizontal and vertical shifting window
of size 224 × 224. The data augmentation technique is used to enlarge the image to obtain
an integer multiple of window size.



J. Imaging 2023, 9, 173 7 of 16

2.2.2. Feature Extraction

Pre-trained models of three deep learning-based feature extraction techniques (DeiT,
Swin Transformer and Mixer-MLP) are used for the feature selection. For ultrasound
images, the extracted feature vector is directly used for further machine learning pipeline,
whereas for the histopathological dataset, 45 patch images provide the same number of
feature vectors. These feature vectors are fused together for further pre-processing.

2.2.3. Feature Reduction

Six dimensionality reduction techniques (PCA, SVD, FASTICA, ISOMAP, LLE and
UMAP) are used to transform the higher-dimension features into lower-dimension space.

2.2.4. Feature Selection

The lower-dimension features are further given to the feature selection block to reduce
redundant features. The FOX optimization algorithm selects the best features, using
accuracy as the cost function. The task is treated as a minimization problem.

2.2.5. Weighted Average Ensemble

The two best models are selected after the feature reduction stage, and the weighted
ensemble is performed, where weights are optimized using the FOX optimization technique
with accuracy as the cost function.

2.2.6. Optimal Model Selection

Different combinations of feature selection, feature reduction and ensemble learning
are tried. The MEREC-TOPSIS method is used to benchmark the models based on three
criteria (Accuracy, F2-score, and AUC-ROC score) for every possible combination. The
models are ranked after every stage, and the best strategies are forwarded to the next stage.

2.3. Theoretical Overview
2.3.1. Feature Extraction Techniques

• Data-efficient image Transformer: The data-efficient Image Transformer (DeiT) was
proposed by Touvron et al. [28] and comprises three main components, namely
knowledge distillation, regularization, and augmentation. The model involves two
models used for training, the teacher model (pre-trained RegNetY-16GF) and the
student model (Vision Transformer). Initially, the student network is trained on
the dataset, and the cross-entropy loss is calculated. The knowledge distillation
component is critical in the DeiT model, wherein a pre-trained model calculates the
output probabilities for different classes with the soft-max of a specific temperature
parameter. These probabilities are compared with the ground truth, and the distillation
loss is calculated. The cross-entropy and distillation losses are added together, and the
overall estimated loss function is used to train the student model. Many versions of
DeiT models are available, and this study employed the DeiT-Small model with 22
million parameters.

• Swin Transformer: According to Liu et al. [27], the Swin Transformer is an architecture
that builds upon the Vision Image Transformer (ViT), but instead of a uniform patch
size, it uses a hierarchical patch structure. The Swin Transformer comprises four key
components: patch partitioning, linear embedding, Swin Transformer block, and patch
merging layer. For feature extraction in our work, a pre-trained Swin Transformer
(Swin-S version) is utilized, which has 50 million parameters and a linear projection
dimension of 96. In the Swin Transformer, the Transformer layer uses limited attention
and replaces the standard multi-head attention with shifted-window multi-head
attention (Shifted-MSA). The patch merger layer is utilized to merge neighboring
patches. Compared to ViT, the Swin Transformer is better at capturing detailed image
descriptions.
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• Mixer-MLP: Tolstikhin and colleagues [26] introduced Mixer-MLP for vision tasks.
This straightforward design is founded on a multi-layer perceptron. The picture is
partitioned into patches and projected into linear embeddings, also known as tokens.
Two types of MLP layers are present. The channel mixing layer operates on each
token independently, while the token mixing layer enables communication among all
the channels. Before classification, the global pooling layer and skip connections are
utilized at the output. In this research, the pre-trained B-16 version of mixer-MLP is
employed.

2.3.2. Dimensionality Reduction Techniques

There are different feature transformation techniques employed in this study [29].

• Principal component analysis: PCA is a mathematical method that converts multiple
correlated variables into a smaller group of uncorrelated variables known as principal
components. This technique identifies linear combinations of variables that capture
the most variation in the data. The derived principal components can be further
analyzed or visualized.

• Truncated singular value decomposition: TSVD, or truncated singular value decompo-
sition, is a method used to decompose a matrix into its singular values and correspond-
ing vectors. Unlike the full SVD, TSVD only keeps the top singular values and vectors,
allowing for more efficient computation and reduced noise and dimensionality. TSVD
can also help with ill-conditioned matrices, where the full SVD may fail to converge.

• Fast independent component analysis: Fast independent component analysis (Fas-
tICA) is a popular independent component analysis (ICA) method. It is a computa-
tional technique that separates a multivariate signal into independent, non-Gaussian
components. FastICA identifies the underlying sources of variability in the data by
maximizing the independence between the extracted components. FastICA has the
advantage of being fast, computationally efficient, and flexible.

• Isometric feature mapping: Isometric feature mapping (ISOMAP) is a nonlinear
dimensionality reduction technique preserving the geodesic distances between the
data points. It works by constructing a neighborhood graph based on the Euclidean
distances between the data points and then approximating the geodesic distances on
the manifold by finding the shortest path through this graph. The final embedding is
obtained through classical multidimensional scaling (MDS) of the geodesic distances.
ISOMAP has been shown to be effective in preserving the global structure of the
data, especially in cases where the data lie on a low-dimensional nonlinear manifold
embedded in a high-dimensional space.

• Locally linear embedding: Locally linear embedding (LLE) is a nonlinear technique
that aims to reduce the dimensionality of data. The method calculates the local
relationships between points and their neighbors and uses these relationships to
construct a lower-dimensional representation of the data. It is useful for nonlinear
manifolds, where linear techniques like PCA may not work well.

• Uniform manifold approximation and projection: Uniform manifold approxima-
tion and projection (UMAP) is a non-linear dimensionality reduction technique that
constructs a high-dimensional graph of the data points and then optimizes a low-
dimensional graph that preserves the topology and geometry of the high-dimensional
graph. UMAP can handle complex and non-linear relationships between data points
and is often faster and more scalable than other non-linear techniques, like t-SNE.

2.3.3. Meta-Heuristic Algorithm for Feature Selection

• FOX optimization algorithm: This algorithm, proposed in 2022, imitates the behavior
of a red fox when it is hunting its prey in the snow [33]. The algorithm consists of
five main steps. First, the fox searches for prey randomly as the snow covers the
ground. Then, it uses ultrasound to locate the prey and moves closer to it. Next, it
determines the distance between itself and the prey by analyzing the sound and time
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difference. After that, it calculates the necessary jump to catch the prey. Finally, the
algorithm performs random walking based on the minimum time and the best position
to continue searching for prey. The optimization algorithm considers exploration and
exploitation to reach the best global solution.

2.3.4. MCDM Method for Ranking the Models

The MEREC-TOPSIS method is used for rank evaluation of the models proposed and
analyzed in this study [35].

• Method based on the removal effects of criteria: The method based on the removal
effects of criteria (MEREC) method is a new objective weighting method that uses the
removal effects of criteria in the decision matrix to determine their importance. Unlike
the other methods, MEREC focuses on an exclusion perspective and removal effects
to determine the objective criteria weights instead of the inclusion perspective.

• Technique for order of preference by similarity to ideal solution: The technique for or-
der of preference by similarity to ideal solution (TOPSIS) is a decision-making method
that evaluates alternatives based on their proximity to an ideal solution and distance
to a negative ideal solution. To use TOPSIS, one constructs a normalized decision
matrix, weights it, calculates the ideal and negative ideal solutions, and computes the
separation measures for each alternative. The technique ranks alternatives by their
proximity to the ideal solution and the importance of each criterion. This method is
frequently used in fields such as finance, engineering, and management to assist with
decision making.

3. Simulation-Based Experimental Results

There are two types of thyroid disease images: ultrasound and histopathological
images. The proposed framework is applied to both types of images. The pre-trained
models DeiT-Small, Swin Transformer, and Mixer-MLP type B-16 are used for feature
extraction, and the sizes of the feature vectors for ultrasound images are 384, 1025, and
768, respectively. For histopathological images, there are 45 patch images, and hence, the
size of the feature vectors after feature fusion are 17,280, 46,125, and 34,560 for the DeiT,
Swin Transformer, and Mixer-MLP models, respectively. All the models are pre-trained on
the ImageNet-1K dataset. The extracted features are reduced to 200 and 1000 using PCA
for ultrasound and histopathological datasets. These reduced features are given to five
classifiers (LR, NB, SVC, KNN, and RF). The classifiers are trained using a 5-fold stratified
cross-validation technique. A total of 15 models are trained for both datasets based on
feature extraction, PCA, and classifiers.

The results are displayed in Tables 1 and 2. The model selection, which incorporates
the optimal feature extraction and classifier, is performed using MEREC-TOPSIS. The
assigned MEREC weights are provided in Table 3. From the results presented in the tables,
it is evident that Model10 achieves the highest ranking for both datasets. Model10 utilizes
the Swin Transformer as the feature extractor, PCA as the feature reducer, and random
forest as the classifier.
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Table 1. Performance metrics, TOPSIS scores, and models ranking based on feature extractors and
classifiers for ultrasound dataset (5-fold cross validation).

Model Feature Extraction Classifier Accuracy F2-Score AUC-ROC TOPSIS Score Rank

Model1
Model2
Model3
Model4
Model5

DeiT

LR 0.8427 0.8023 0.8929 0.5016 9
NB 0.7138 0.7036 0.8460 0.2536 13
SVC 0.9091 0.9069 0.9590 0.8067 6
KNN 0.7797 0.7302 0.8613 0.3233 12
RF 0.9685 0.9707 0.9884 0.9716 3

Model6
Model7
Model8
Model9
Model10

Swin
Transformer

LR 0.8899 0.8565 0.9283 0.6622 7
NB 0.7028 0.6901 0.7684 0.0807 15
SVC 0.9231 0.9318 0.9640 0.8621 4
KNN 0.8444 0.8432 0.9014 0.5878 8
RF 0.9790 0.9833 0.9885 1.0000 1

Model11
Model12
Model13
Model14
Model15

Mixer-MLP

LR 0.8252 0.7844 0.9019 0.4898 10
NB 0.7028 0.6537 0.7993 0.0903 14
SVC 0.9126 0.9170 0.9628 0.8319 5
KNN 0.7885 0.7555 0.8728 0.3853 11
RF 0.9455 0.9819 0.9884 0.9968 2

Table 2. Performance metrics, TOPSIS scores, and models ranking based on feature extractors and
classifiers for histopathological dataset (5-fold cross validation).

Model Feature Extraction Classifier Accuracy F2-Score AUC-ROC TOPSIS Score Rank

Model1 LR 0.6541 0.6142 0.7075 0.0485 15
Model2 NB 0.6271 0.6083 0.7292 0.0754 12
Model3 DeiT SVC 0.7876 0.6874 0.8878 0.4792 7
Model4 KNN 0.8076 0.7219 0.908 0.5891 6
Model5 RF 0.8712 0.8095 0.9414 0.8764 2

Model6 LR 0.6376 0.6217 0.6955 0.0656 13
Model7 NB 0.6188 0.6023 0.7252 0.0633 14
Model8 Swin SVC 0.8135 0.7402 0.9084 0.6413 5
Model9 Transformer KNN 0.8624 0.7983 0.937 0.8384 3
Model10 RF 0.8835 0.8461 0.9463 1 1

Model11 LR 0.66 0.6513 0.7249 0.1788 11
Model12 NB 0.6594 0.6232 0.8443 0.2964 10
Model13 Mixer-MLP SVC 0.7889 0.649 0.8961 0.407 9
Model14 KNN 0.7859 0.6641 0.901 0.4417 8
Model15 RF 0.8541 0.7745 0.9296 0.7595 4

Table 3. Weights calculation using MEREC method for the models based on feature extraction and
classification techniques.

Criteria Accuracy F2-Score AUC-ROC

Weights1 (Ultrasound Dataset) 0.31123 0.4062 0.2826
Weights2 (Histopathological Dataset) 0.3694 0.2601 0.3704

In the next stage, the Swin Transformer and random forest are utilized to evaluate
the performance of the dimensionality reduction techniques. The results are shown in
Tables 4 and 5, whereas the MEREC weights are displayed in Table 6, used for the calcula-
tion of the TOPSIS scores for both datasets.

Table 4. Performance metrics, TOPSIS scores, and models ranking based on different dimentionality
reduction techniques for ultrasound dataset (5-fold cross validation).

Model Feature Reduction Accuracy F2-Score AUC-ROC TOPSIS Scores Rank

Model10 PCA 0.9790 0.9832 0.9885 0.9679 1
Model16 SVD 0.9720 0.9720 0.9910 0.9465 3
Model17 FAST ICA 0.9825 0.9930 0.9815 0.9270 4
Model18 ISOMAP 0.9825 0.9930 0.9841 0.9466 2
Model19 LLE 0.9335 0.9292 0.9656 0.7418 5
Model20 UMAP 0.8147 0.7015 0.9075 0.0000 6
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Table 5. Performance metrics, TOPSIS scores, and models ranking based on different dimensionality
reduction techniques for histopathological dataset (5-fold cross validation).

Model Feature Reduction Accuracy F2-Score AUC-ROC TOPSIS Scores Rank

Model10 PCA 0.8835 0.8461 0.9463 0.8871 1
Model16 SVD 0.8771 0.8279 0.9443 0.7124 3
Model17 FAST ICA 0.8412 0.7871 0.9030 0.3368 6
Model18 ISOMAP 0.8188 0.8283 0.8971 0.5819 4
Model19 LLE 0.8600 0.8460 0.9245 0.8291 2
Model20 UMAP 0.7988 0.8568 0.8320 0.5377 5

Table 6. Weights calculation using MEREC method for the models based on feature reduction
techniques.

Criteria Accuracy F2-Score AUC-ROC

Weights3 (Ultrasound Dataset) 0.2963 0.5711 0.1326
Weights4 (Histopathological Dataset) 0.2868 0.2786 0.4346

After evaluating the TOPSIS scores, the two most favorable models were chosen. In
the case of the ultrasound dataset, Model10 (which employs Swin Transformer, PCA, and
random forest) is positioned at the top rank, while Model18 (which uses Swin Transformer,
ISOMAP, and random forest) is in second place. Regarding the histopathological dataset,
Model10, which utilizes Swin Transformer, PCA, and random forest, achieved the highest
ranking, while Model19, employing Swin Transformer, LLE, and random forest, secured
the second position.

These two best-selected models are then given to feature selection based on the FOX
optimization algorithm. Also, these two models are used for weighted average ensemble,
where weights are optimized using the FOX optimization algorithm. The results are shown
in Tables 7 and 8 for both datasets.

Table 7. Optimal model selection and performance parameters evaluation based on weighted average
ensemble and feature selection using FOX-optimization algorithm for ultrasound dataset.

Model Strategy Used Accuracy F2-Score AUC-ROC TOPSIS Score Rank

Model21 PCA + FOX optimization based 0.9913 0.9882 0.9913 1.0000 1
Feature selection + Random Forest

Model22 PCA + ISOMAP Weighted Average 0.9825 0.9728 0.9880 0.0000 3
using FOX-optimization + Random Forest

Model23 ISOMAP + FOX-optimization based 0.9843 0.9818 0.9888 0.4736 2
Feature selection + Random Forest

Table 8. Optimal model selection and performance parameters evaluation based on weighted average
ensemble and feature selection using FOX optimization algorithm for histopathological dataset.

Model Strategy Used Accuracy F2-Score AUC-ROC TOPSIS Score Rank

Model21 PCA + FOX optimization based 0.9065 0.9201 0.9548 1.0000 1
Feature selection + Random Forest

Model22 PCA + LLE Weighted Average 0.8924 0.9092 0.9464 0.5508 2
using FOX-optimization + Random Forest

Model23 LLE + FOX optimization based 0.8812 0.8965 0.9259 0.0000 3
Feature selection + Random Forest

The MEREC weights for TOPSIS scores calculation for the performance metrics in
Tables 8 and 9 are calculated and given in Table 9.

Table 9. Weights calculation using MEREC method for the models based on FOX optimization feature
selection and weighted ensemble techniques.

Criteria Accuracy F2-Score AUC-ROC

Weights5 (Ultrasound Dataset) 0.2732 0.6216 0.1052
Weights6 (Histopathological Dataset) 0.2000 0.3356 0.4644
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The AUC-ROC curves are plotted in Figure 2, whereas the confusion matrix is plotted
in Figure 3 for both datasets.

The accuracy compared with the state-of-the-art techniques is shown in Figure 4 with
the help of bar charts. Tables 10 and 11 show the comparison of different performance
metrics with the current research.

Table 10. Comparison with state-of-the-art techniques (ultrasound dataset).

Method Accuracy Recall Specificity

Naguyen et al. [12] 0.9088 0.9493 0.6374
Naguyen et al. [13] 0.9205 0.9607 0.6569
Proposed Model 0.9913 0.9861 0.9965

Table 11. Comparison with state-of-the-art techniques (histopathological dataset).

Method Accuracy AUC-ROC

Bohland et al. [25] Deep Learning 0.891 0.921
Bohland et al. [25] Feature Extraction Based 0.897 0.93
Proposed Model 0.9065 0.9548

(a) (b)
Figure 2. AUC-ROC curve plots for thyroid datasets. (a) Ultrasound dataset AUC-ROC plot;
(b) histopathological dataset AUC-ROC plot.

(a)

Figure 3. Cont.



J. Imaging 2023, 9, 173 13 of 16

(b)

Figure 3. Confusion matrix plots. (a) Ultrasound dataset confusion matrix plot; (b) Histopathological
dataset confusion matrix plot.

(a) (b)
Figure 4. Accuracy comparison with the state-of-the art research. (a) Accuracy comparison for
ultrasound dataset [10–14]; (b) accuracy comparison for histopathological dataset [24,25].

4. Discussion

Based on the simulated experimental results, it is evident that model21, a combination
model that utilizes Swin Transformer, PCA, and FOX optimization for feature selection,
is the most effective model. This model was able to achieve the highest levels of accuracy
on both the ultrasound and histopathological datasets, with accuracy rates of 99.13% and
90.65%, respectively. In comparison to other models, Model21 was able to achieve an
improved accuracy of 6.08% on the ultrasound dataset [13] and 0.95% on the histopatho-
logical dataset [25]. The proposed model was successful in achieving improved recall and
specificity values. In addition, the ensembled model (Model22) also demonstrated better
performance compared to existing state-of-the-art techniques. However, it was not able to
surpass the performance of Model21. The AUC score of 0.9545 obtained for the histopatho-
logical dataset represents a significant improvement, as it is higher than the score obtained
by the feature extraction-based model proposed in the study by Bohland et al. [25]. In
the confusion matrix plot, 0 corresponds to benign thyroid nodules, and 1 corresponds to
malignant thyroid nodules for ultrasound-based thyroid cancer detection. On the other
hand, for the Tharun Thomson dataset, the value of 0 represents non-papillary thyroid
carcinoma, and the value of 1 represents papillary thyroid carcinoma.

5. Conclusions

Within this segment, we summarize the findings, limitations and future possibilities
of the proposed research.

5.1. Findings

Based on the simulation results in this study, we discover the following:
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• For both datasets, the RF classifier achieved the best performance results when com-
bined with any of the three feature extraction techniques. The LR has the worst
performance parameters with DeiT as a feature extraction model for histopathological
datasets, whereas the NB classifier with Swin Transformer provides the worst TOPSIS
score value for the ultrasound dataset.

• Swin Transformer has the best feature extraction capabilities and is ranked as the best
feature extractor among the three techniques employed in our study.

• The study showed that the PCA outperformed all other five dimensionality reduction
techniques for both datasets, whereas UMAP obtained the poorest results.

• The research study also demonstrated the feature selection capabilities of the FOX
optimization algorithm. The best model is based on Swin Transformer, PCA, and
RF with FOX optimization for feature selection purposes for both datasets. For the
histopathological dataset, the LLE dimensionality reduction technique also showed
promising results closer to the best PCA-based model, whereas the ISOMAP has a
close contest with the PCA for the ultrasound dataset.

• The proposed framework outperforms all the existing state-of-the-art performance
results obtained on both datasets. The F-score comparison showed that the proposed
framework can also deal with the class imbalance issue as compared to the available
methods proposed in the literature. By achieving higher values of specificity, the
proposed model effectively reduced the false positive rate, which can lead to a decrease
in the cost of medical procedures and a reduction in mental pressure on patients.

5.2. Limitations

• Although the proposed framework used a generalized process and can be utilized on
any image dataset, this article only focused on two thyroid image datasets. This is due
to the unavailability of the publicly standard thyroid datasets. Most of the existing
studies demonstrated the performance of their proposed models on private datasets.

• The thyroid datasets are heterogeneous in nature and obtained from external sources.
However, they are generalized frameworks and can be utilized in disease detection
from any medical image dataset.

5.3. Real Life Applicability

The proposed model outperformed the ensemble model and only consists of a small
model version of Swin Transformer for transfer learning, PCA for feature transformation,
and random forest for classification. The proposed model has good performance results.
This small model can be deployed on edge devices because they have limited computation
power and energy resources. This model can be utilized for remote healthcare, where
remote health centers provide patient samples. The extracted feature can then be transferred
to a cloud-based random forest classifier to diagnose thyroid cancer. The thyroid diagnosis
process can be integrated with emergency services, financial institutions, and electronic
health record systems so that detecting thyroid cancer automatically triggers this integrated
system. Medical data are generally susceptible, and transferring these data over the internet
may sometimes pose privacy concerns. In such a case, the classifier can be trained in a
federated learning mode, where the weights of the classifier can be used to train the global
model deployed on the cloud. The transfer learning and single classifier make this model
very easily deployable on edge devices. Reduced features using PCA can reduce the
channel bandwidth required for data transfer over the wireless channel.

5.4. Future Scope

The proposed framework has demonstrated superiority over existing techniques,
making it a valuable tool for assisting doctors and reducing the burden on healthcare
systems. Overall, the proposed framework has the potential to be a valuable asset in
the field of medical diagnosis and could help to improve patient outcomes. Indeed, it is
essential to acknowledge that the current evaluation of the models has primarily prioritized
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accuracy improvement without explicitly considering time and space complexity. This area
could be addressed in future research by treating the problem as a multi-objective task
that considers the accuracy, F2-score, inference time, and AUC-ROC score as different cost
functions during optimization. Different explainable AI tools can be utilized to demonstrate
the percentage of nodules correctly classified, which is beyond the scope of this paper.
It will be interesting to check the performance of the AI model on two different image
modality datasets for the same disease. The proposed framework could also be extended to
include quantum machine learning techniques, which have shown promise in other fields.
Furthermore, it may be worthwhile to explore the potential of neuromorphic spiking neural
networks as an alternative to classical machine learning classifiers in this context, as they
have shown promise in achieving high levels of accuracy while consuming relatively low
amounts of power and computational resources.
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