
Citation: Ghnemat, R.; Alodibat, S.;

Abu Al-Haija, Q. Explainable

Artificial Intelligence (XAI) for Deep

Learning Based Medical Imaging

Classification. J. Imaging 2023, 9, 177.

https://doi.org/10.3390/

jimaging9090177

Academic Editors: Elena Casiraghi,

António Cunha, Paulo A.C. Salgado

and Teresa Paula Perdicoúlis

Received: 6 May 2023

Revised: 19 August 2023

Accepted: 23 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Explainable Artificial Intelligence (XAI) for Deep Learning
Based Medical Imaging Classification
Rawan Ghnemat 1 , Sawsan Alodibat 1 and Qasem Abu Al-Haija 2,*

1 Department of Computer Science, Princess Sumaya University for Technology, Amman 11941, Jordan
2 Department of Cybersecurity, Princess Sumaya University for Technology, Amman 11941, Jordan
* Correspondence: q.abualhaija@psut.edu.jo

Abstract: Recently, deep learning has gained significant attention as a noteworthy division of artificial
intelligence (AI) due to its high accuracy and versatile applications. However, one of the major
challenges of AI is the need for more interpretability, commonly referred to as the black-box problem.
In this study, we introduce an explainable AI model for medical image classification to enhance the
interpretability of the decision-making process. Our approach is based on segmenting the images
to provide a better understanding of how the AI model arrives at its results. We evaluated our
model on five datasets, including the COVID-19 and Pneumonia Chest X-ray dataset, Chest X-ray
(COVID-19 and Pneumonia), COVID-19 Image Dataset (COVID-19, Viral Pneumonia, Normal),
and COVID-19 Radiography Database. We achieved testing and validation accuracy of 90.6% on a
relatively small dataset of 6432 images. Our proposed model improved accuracy and reduced time
complexity, making it more practical for medical diagnosis. Our approach offers a more interpretable
and transparent AI model that can enhance the accuracy and efficiency of medical diagnosis.

Keywords: artificial intelligence (AI); explainable AI (XAI); deep learning (DL); convolutional neural
network (CNN); medical imaging analysis; classification

1. Introduction

The World Health Organization (WHO) announced in March 2020 that the coronavirus
outbreak, which had reached a life-threatening level, had spread to 58 nations world-
wide [1]. One of the COVID-19 epidemic’s primary symptoms, initially reported by the
WHO near the end of 2019, is a severe cough and difficulty breathing [2].

CT (computed tomography) is a cross-sectional imaging technique that uses a com-
puter to interpret data obtained by quickly spinning an X-ray around the patient’s body [3].
Because it provides more comprehensive information than ordinary X-rays, chest X-ray
(CXR) is frequently combined with CT to identify various diseases [4]. Because of their
extensive use and high accuracy, deep learning models, also known as Artificial Intelligence
(AI), have gained popularity over the last ten years [5]. Despite its numerous advantages,
artificial intelligence (AI) presents obstacles at every medical sector research and deploy-
ment stage [6]. The main reason for these obstacles is that health-related systems require
actual rather than synthetic data. As AI models become more complex, with hundreds of
layers and millions of artificial neurons, the algorithms become less understandable [7].

In some instances, legal approval is contingent on the system’s comprehension. A
great deal is published on black-box algorithms. As a result, there is a pressing demand
for AI that can be explained [7]. The goal of “explainable AI” (XAI) is to be able to explain
why AI systems exist, identify their capabilities and limitations, and predict how they
will evolve in the future (see Figure 1 in the Literature Review section). It depicts the
relationship between explainability and learning performance [8]. This relation brings a
trade-off between explainable AI and high learning performance (typically measured by
the accuracy representing the model’s performance) [9]. Without an auditing approach
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based on explainability [4], such cases of “right choice, wrong rationale” are challenging to
track and discover. The decision emphasizes the necessity of explainability in improving
the reliability of deep neural networks in clinical applications [10–12].

COVID-19 detection, for example, is a clinical use [7,13–15], so it is vital to create deep
neural network architectures with transparency and accountability in mind, such as those
predicted by this work’s conclusions. Furthermore, plotting and charts to clarify predictions
can help explore and find relevant areas of categorization [16]. As a result, creating a
multimodal neural network and integrating technical knowledge with understanding
information to provide decision rules to enhance diagnosis fairness is essential [17]. As
a result, we use an explainability approach to analyze how the model makes predictions.
The goal is to obtain better insights into significant elements connected with COVID-19
cases. It can help clinicians to monitor better and evaluate the model. The evaluation
will be transparent and accountable to maintain that it makes these decisions based on
the related information from the CXR images, such as incorrect information represented
outside the body, engrained markup representations, and image-processing objects. From
the standpoint of explainability, AI applications are a vital and current subject of study for
scientists [11]. The predictions offered by the proposed model become more transparent
and trustworthy for physicians to employ throughout their screening method, allowing
them to make faster but more accurate evaluations by pinpointing the main aspects [17].

Deep neural networks mainly provide findings that are sometimes difficult to compre-
hend [7]. This issue generated clarification calls for openness before using an algorithm
for medical care [18]. The complexity of sophisticated applications grows in lockstep with
their precision, making it more challenging to describe [19,20]. The proposed model’s
critical components may help clinicians acquire unique knowledge of the primary visual
signals correlated with the COVID-19 influenza virus, which they may utilize to improve
screening accuracy. The method suggested to reach this goal is to create new or updated AI
techniques that result in more explicable models. These models are available for users with
cutting-edge human-computer interface approaches for clear and valuable explanation
conversations for the end-user. This research applied CNN to the latest COVID-19 datasets
to overcome the explainability limitation. Furthermore, we explained the type of results
obtained by an AI model based on data sources and how they influenced the outcomes. In
addition, the explainability feature of AI models is raised, especially in the clinician sector,
due to its sensitivity for explaining causes and results. Finally, AI algorithms become more
transparent (opposite to black-box algorithms) to the users.

1.1. Our Contribution

In this study, we provide the ‘XAI’ model, an explainable deep neural network ap-
proach for automatically detecting COVID-19 symptoms from CXR pictures. We intend
to examine CXR images from COVID-19 instances. A series of methods for creating class-
discriminating zones on the subjects’ chests were provided to achieve COVID-19 detection
transparency. The purpose is to explain why the model prioritizes categorization in certain
regions. Furthermore, the model will help explain, via data visualization, the difference
between individuals suffering and those who are not. It will also aid in comprehending
the COVID-19 elements. To describe less complicated models, the radar plot approach,
for example, employs the weights of criteria, partial dependence plots, and individual
conditional expectation plots. Finally, it will describe how a model creates predictions or
relevant feature sets from the data as a decision process. Therefore, contrary to what was
suggested, the ‘XAI’ paradigm will not replace radiologists [21]; it will be another option in
a clinical situation rather than a replacement for a human radiologist. However, human
judgment is necessary when patients’ lives are at stake [22].
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Figure 1. Artificial intelligence performance versus explainability [23].

Medical datasets have limited samples concerned with clinical usage. This arti-
cle presents deep learning approaches to perform binary classification (as normal and
COVID-19 cases) and multiclass classification (as COVID-19, pneumonia, and normal
cases) of CXR images. Accuracy, precision, recall, loss, and area under the curve (AUC)
are utilized to evaluate the performance of the models. This article also added a visual
explanation to illustrate the basis of model classification and perception of COVID-19 in
CXR images.

While our study’s deep learning models and explainer algorithms may have been
established a few years ago, our work builds upon these foundations by introducing a novel
‘XAI’ model specifically designed for COVID-19 detection from chest X-ray (CXR) images.
By adapting and applying existing deep learning architectures, we prioritize transparency
and interpretability, essential for gaining insights into the model’s decision-making process.
The use of the LIME algorithm further enhances the explainability of our approach by
generating class-discriminating regions on CXR images, enabling healthcare professionals
to understand why the model prioritizes certain regions during classification.

Our study used data visualization techniques to aid in the comprehension of COVID-19
elements and differentiate between individuals suffering from the disease and those who
are not. Through radar plots, partial dependence plots, and individual conditional ex-
pectation plots, we comprehensively understand the model’s behavior and the factors
contributing to COVID-19 detection. It is important to note that our ‘XAI’ paradigm does
not aim to replace radiologists but serves as an additional tool in the clinical setting. We
recognize that human judgment and expertise are critical, particularly when patients’ lives
are at stake. The ‘XAI’ model complements the radiologist’s decision-making process by
providing valuable insights and supporting diagnostic capabilities.

Furthermore, our study tackled the challenge of the limited availability of medical
datasets by conducting binary and multiclass classification of chest X-ray (CXR) images for
COVID-19 detection. This is a crucial contribution, as medical datasets are often constrained
in size and diversity, especially in clinical usage. By designing and implementing deep
learning approaches for binary (normal vs. COVID-19 cases) and multiclass (COVID-19,
pneumonia, and normal cases) classification, we aimed to provide valuable insights into
the detection and differentiation of COVID-19 from CXR images.

We employ rigorous evaluation metrics such as accuracy, precision, recall, loss, and
area under the curve (AUC) to assess the performance of our models accurately. Addition-
ally, our integration of visual explanations provides an intuitive and transparent basis for
model classification and enhances the interpretability of deep learning models in the context
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of COVID-19 detection. By empowering radiologists with actionable insights, our work
advances medical image analysis and paves the way for further research in explainable
deep-learning methods for healthcare applications. The healthcare field can greatly benefit
from developing transparent and interpretable models that can assist medical professionals
in making accurate diagnoses, improving patient care, and saving lives.

1.2. Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the literature
review to revise the previous work. Section 3 presents this work’s methodology to specify
the methods and datasets. It compromises dataset description, division of the datasets,
experiment setup, and visualization. Section 4 projects the results of the experiments with
analysis. Section 5 concludes with remarks, limitations, and future work.

2. Literature Review

From an explainability standpoint, intelligent systems are a significant and active
subject of study for researchers [11]. In some instances, formal compliance is contingent on
the system’s comprehension. Many used black-box algorithms, which indicate a trade-off
between demonstrable AI and more incredible learning performance (accuracy) [23], as
illustrated in Figure 1.

There is often a trade-off between the performance of artificial intelligence (AI) models
and their explainability. High-performing AI models such as deep neural networks may
be very accurate in their predictions or decisions, but their internal workings can be
complex and difficult to understand [24,25]. On the other hand, simpler models that are
easier to explain may need to be more accurate. For example, decision trees are simple
and interpretable AI models that can be used for classification tasks. However, they
may perform less well compared to more complex models such as deep neural networks,
especially when dealing with large and complex datasets [26].

Researchers are developing techniques to provide high performance and explainability
to address this trade-off. One such approach is the development of interpretable deep
learning models, which use neural networks with additional constraints or architectures
that make them more interpretable. Another approach is to use post-hoc explanation tech-
niques, which analyze the decisions made by black-box models and provide explanations
for them. Ultimately, the choice between performance and explainability depends on the
specific application and its requirements. Explainability may be crucial for ensuring trust
and accountability in some cases, such as medical diagnosis or legal decision-making.
Performance may be more important than explainability in other cases, such as image or
speech recognition [27].

In this section, we will briefly review the use of Artificial Intelligence models in
COVID-19 detection as an essential medical case by referring to the literature and making a
comparison summary to show the differentiation of this work.

In response to the need for quicker interpretation of radiography images, a range
of deep learning-based artificial intelligence (AI) systems have been created [28]. Since
the original release of the proposed COVIDx collection and the proposed COVID-Net,
several studies on COVID-19 detection using CXR images have been conducted [29,30].
Many have undertaken comparable studies using COVIDx or COVID-Net versions [31].
As sophisticated applications improve accuracy, their networks have grown, making them
hard to comprehend [7].

In a perfect scenario, we should anticipate the most significant explanations from
a system that produces the best outcomes [32]. It eventually becomes an optimization
problem, and it is vital to walk a fine line between great results and comprehensibility [17].
It is also helpful in detecting biases in datasets. Intelligent systems are crucial and present a
research issue for researchers regarding interpretability [33].

The present research might Involve”appl’Ing natural language processing techniques
to direct the psychiatrist’s patient information, making summaries from radiological pic-
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tures, or responding to visual inquiries in practice [33]. Based on the concentration of the
characters in the layers of the deep convolution network-based model, it illustrates which
sections of the picture information are utilized in classification tasks [34]. The supervised
classification relationship of the first and deeper layers aids in analyzing complex neuro-
logical systems [32,35]. Furthermore, it is intriguing that too many aspects of medication
administration are not considered. This is another scientific side of the debate with societal
implications [36].

Wang et al. [7] used COVID-Net, a deep convolutional neural network, to identify
COVID-19 in chest X-ray (CXR) pictures. A suggested COVIDx as an accessible benchmark
dataset was displayed, consisting of 13,975 CXR images from 13,870 patient cases. Moreover,
they had to use an explainability approach to analyze how COVID-Net concludes. It obtains
valuable insights into significant COVID-19-related elements that can assist physicians
in better oversight. It reviews COVID-Net transparently and credibly to verify that it is
decided based on the information from the mentioned CXR images. The utilization of
many heavy connections, such as in intensively deep neural network architectures, has the
drawback of raising computation costs and storage expenses.

Open AI welcomes neuro-scientific specialists to provide explainability and inter-
pretability [37]. As a result, there has been a study on the explainability of modeling using
a machine-driven creative, experimental investigation. It assesses which portions of the
photos were examined [4]. COVIDNet-CT, a deep convolutional neural network archi-
tecture, was shown to detect COVID-19 occurrences from chest CT images. In addition,
they developed an explainability-driven efficiency verification approach to investigate
COVIDNet-decision-making CT’s behavior, guaranteeing that COVIDNet-CT makes a
prediction based on relevant indications in CT images for consistency and transparency.
Performance verification is based on explainability to verify the claims on relevant im-
age characteristics and to acquire a more profound knowledge of the CT image features.
Nonetheless, developing solutions for the problem is contingent on qualified datasets.

The suggested explainable models keep changing when additional insights are incor-
porated and publicly revealed, as represented by a screenshot of the present state of the
other models, and the accompanying XAI model that was denoted by [14]. It suggested
an explainable deep neural network (DNN)-based approach for automated COVID-19
symptom recognition from CXR pictures. They examined 15,959 CXR images from 15,854
people, including normal, pneumonia, and COVID-19 cases. CXR images are thorough
before being supplemented and classified with a neural ensemble method that employs
gradient-guided class activation maps (Grad-CAM++) and layer-wise relevance propaga-
tion to emphasize category areas (LRP). It cannot, meanwhile, confer with physicians to
validate diagnostics determined by the performance. Furthermore, successful assumptions
are based not only on individual imaging modalities but also on multiple modes like CT
and other critical factors like the patient’s socioeconomic and symptom assessment report.

Bhowal et al. in [17] used Ensemble learning to improve the classifier’s performance
of deep learning techniques. They applied the Choquet method to aggregates using
coalition game theory, information theory, and fuzzy lambda approximation and presented
a novel approach for evaluating fuzzy measurements. They used three alternative scaling
techniques, pattern recognition, and coalition game theory to construct the fuzzy measures.
On the other hand, choosing helpful classifications from a group of categories that might or
might not communicate important information necessitates experimentation. Computing
marginal participation is unrealistic and sometimes unattainable due to the difficulty in
determining the formulae for similarity measures and contingent correlation.

Zhong et al. in [12] developed a deep metric learning-based CXR image retrieval
framework. Their proposed model uses a multi-similarity loss function, which helps
train the model to identify similar images. At the same time, the hard-mining sampling
strategy focuses on difficult examples to improve the model’s performance. The attention
mechanism allows the model to identify disease-related regions within the images and
provide useful visualizations of those areas. It produces similar pictures, representations
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of disease-related focus mappings, and essential clinical knowledge to guide treatment
choices. The trained algorithm retrieves visual characteristics from a new dataset without
further training. Nevertheless, there is a semantic gap between the information gathered
from a photograph by algorithms and human interpretation of the same photograph.

Other approaches provided semi-supervised learning (SSL) strategies for learning
with small amounts of data [19]. Researchers included local phase CXR image character-
istics into a convolutional neural network architecture, training the SSL approach with a
teacher/student paradigm. Statistical evaluation was performed on 8851 normal (healthy)
CXR scan results, 6045 pneumonia images, and 3795 COVID-19 CXR scans. This proposed
model can improve the accuracy of CXR image classification tasks, particularly with limited
labeled data available for training. However, as with any machine learning model, it is
essential to thoroughly validate its accuracy and generalizability before it can be widely
adopted in clinical practice.

A new deep network for robust COVI”-19 recognition (MUL) by utilizing Deformable
Mutual Information Maximization (DeIM), Mixture High-order Moment Feature (MHMF),
and Multi-expert Uncertainty-aware Learning [10] to suggest RcoNetk DeIM reliably calcu-
lates and maximizes the similarity matrix (MI) between inputs and implicit interpretations
to acquire concise and completely detached expressive features. Meanwhile, MHMF can
thoroughly study the benefits of high-order analytics in medical imaging and identify dis-
criminant information from complex ranges. Finally, for each CXR picture, MUL builds a
slew of parallel dropout networks to assess uncertainty and, as a result, reduce performance
degradation due to data noise. On the other hand, extremely high-order instances may re-
duce performance, which might be because all these properties are not helpful for COVID.

Qi et al. in [19] is an example where the authors built a one-of-a-kind multi-feature
convolutional neural network (CNN) design for improved multiclass COVID-19 recognition
from CXR images, and a local phase-based image enhancement technique was applied.
The improved images and the original CXR data are fed into their suggested CNN model.
They established the influence of more acceptable images on diagnostic accuracy using
ablation trials.

Motamed et al. in [11] proposed a RANDGAN (randomized generative adversar-
ial network) that distinguishes photographs of an unidentified class (COVID-19) from
recognized and labeled classes (Normal and Viral Pneumonia) without using labeling or
training the model from the unknown class of images (COVID-19). COVIDx, the most sig-
nificant publicly available COVID-19 chest X-ray dataset, was utilized. It comprises images
from several public databases and contains Normal Pneumonia and COVID-19. Transfer
learning can distinguish the lungs in the COVIDx dataset. Moreover, they demonstrated
why sectioning the region (lungs) is crucial for successfully learning the classification job,
especially in datasets that include pictures from multiple resources, such as the COVIDx
dataset. However, the separation model tends to be used in several cases.

Several data augmentation procedures increase the overall model performance of gen-
eralizing and resilience [38,39]. Conversely, research on microdata is just being achieved
through combining AI research with clinical use. Small data is essential to provide impor-
tant information, while vast data only survives with this base. We can translate AI into a
slightly elevated, real-world medical application by merging little and large amounts of
data [40,41]. It is possible to build an intelligent health and clinical services application
by consistently mixing large and small data [42]. Nevertheless, due to the need for more
sufficient and precise data on COVID-19, the deep learning work completed thus far cannot
be deployed in institutions. Therefore, in many studies, the volume of data is a considerable
constraint. The other goal of this study is to attain explainability AI by delving deeper
into these datasets to construct more trustworthy, understandable, and visually appealing
algorithms [43]. To overcome these limitations, we implement the model on different
datasets. Moreover, XAI will outperform the ambiguity of AI algorithms.

The proposed explainable AI provides accurate predictions and clear and interpretable
explanations of how those predictions were made. Table 1 summarizes related work.
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There have been many recent advances in X-CNNs for medical applications, focusing on
developing models that can provide accurate predictions and meaningful explanations.
Some related work in this area includes:

• Attention-based models: Attention-based models use an attention mechanism to
highlight the input image’s regions most relevant to the output prediction. This can
help provide visual explanations for the model’s predictions [7,41].

• Gradient-based methods: Gradient-based methods use the gradient of the model’s
output concerning the input image to generate saliency maps that highlight regions of
the image that are most important for the prediction. These maps can provide insights
into which features the model is using to make its prediction [4,10,14].

• Model visualization: Model visualization techniques use optimization methods to
generate images that maximize the activation of specific neurons or layers within the
model. These images can provide insights into which features the model is sensitive
to and how it is processing information [11,12,19].

• Rule-based models: Rule-based models use logical rules to generate explanations for
the model’s predictions. These models can generate human-readable explanations
that clinicians can easily understand [17].

Table 1. A summary of related work.

Ref. Proposed Model Findings Limitations

[7] Deep CNN
Explainable predictions, deeper insights,
making decisions based on
relevant information

Densely connected deep neural networks
increase computational complexity and
memory cost.

[14] Deep COVID Explainer
Augmented and classed using a neural
ensemble technique with gradient-guided
class activation maps (Grad-CAM++)

Accurate predictions are not solely based on
single imaging modalities.

[4] COVIDNet-CT XAI-driven performance validation technique Dependent on the availability of
high-quality datasets

[10] RcoNetk Numerous parallel dropout networks to
evaluate uncertainty

[11] RANDGAN Segmented region of interest is critical for
correctly learning the classification.

In some circumstances, the segmentation
model fails.

[12] Deep metric learning based CXR
image retrieval model Extract picture features from a new dataset

Semantic gap between information collected
by computer algorithms and human
perception

[19] Unique multi-feature CNN
Demonstrated impact of improved pictures in
enhancing diagnosis accuracy using
ablation trials

AlexNet has roughly quadrupled the number
of parameters with late fusion.

[17] Ensemble learning with deep learning Unique method for the evaluation of
fuzzy measures

In some circumstances, it is impossible to
calculate the marginal contribution

The Proposed Model Deep CNN (VGG-16)

LIME generates a set of visualizations that can
help clinicians better predict and identify
potential sources of bias or error in the
model’s reasoning.

LIME requires generating many perturbed
samples around the original input to estimate
the local feature importance weights. This can
be computationally expensive in
medical images.

The models presented In the related work significantly contribute to the models’ in-
terpretability, reliability, and overall performance in medical imaging classification. The
selection of these models was driven by the need for explainable predictions, allowing for in-
sights into the reasoning behind certain predictions, particularly in critical decision-making
scenarios. Deep Convolutional Neural Networks (CNNs) were chosen due to their ability
to capture complex patterns and features in medical images, leading to enhanced prediction
accuracy. However, it is important to consider the trade-off of increased computational
complexity and memory cost associated with densely connected deep neural networks.

The Deep COVID Explainer model was selected to utilize a neural ensemble technique
augmented and classed using Grad-CAM++ (gradient-guided class activation maps). This
technique enables the model to generate explanations for its predictions by identifying and
highlighting the important regions in the input image contributing to the predicted class.
Such interpretability improves the understanding of the model’s decision-making process.
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It is worth noting that accurate predictions often necessitate a comprehensive approach
beyond single imaging modalities.

Another selected model, COVIDNet-CT [4], incorporates an explainable artificial
intelligence (XAI)-driven performance validation technique, leveraging XAI methods to
validate and interpret the model’s performance. Conversely, RcoNetk [9] utilizes numerous
parallel dropout networks to evaluate uncertainty. Uncertainty estimation plays a vital
role in medical applications, providing insights into the confidence level of the model’s
predictions. Parallel dropout networks in RcoNetk effectively assess uncertainty. However,
it is crucial to ensure the availability of high-quality datasets during model training to
achieve accurate uncertainty estimation.

The significance of segmented regions of interest in medical imaging classification
is emphasized by RANDGAN [10], as accurate classification often relies on specific re-
gions. Proper segmentation enhances feature capture and improves classification accuracy.
Nevertheless, RANDGAN acknowledges that there may be circumstances where the seg-
mentation model fails, warranting caution in utilizing this approach. Additionally, the
Unique multi-feature CNN model showcases the impact of improved images on enhancing
diagnosis accuracy through ablation trials. By systematically removing specific features or
components from the model, the model identifies their contributions to diagnosis accuracy,
improving overall performance.

Lastly, ensemble learning with deep learning was chosen due to its unique method for
evaluating fuzzy measures. By combining the predictions of multiple models, ensemble
learning enhances overall performance and robustness. However, it is essential to consider
the increased computational complexity and memory requirements associated with training
and combining multiple models.

Overall, there is growing research on X-CNNs for medical applications, with a focus
on developing models that are not only accurate but also transparent and interpretable.
The proposed model can change medical decision-making by providing clinicians with
valuable insights into how predictions are made and helping build trust in machine learning
systems using visualization. This study applied the explainable AI model to different
datasets, including the COVID-19-image dataset, the COVID-19 and Pneumonia Chest
X-ray dataset, and the Chest X-ray (COVID-19 and Pneumonia) dataset, in order to increase
the interpretability of the AI model. By integrating LIME into an explainable AI model for
medical image analysis, the model can identify areas for improvement or further decisions.
This helps to improve the accuracy, reliability, and interpretability of AI systems for medical
applications, ultimately leading to better patient outcomes.

In the proposed approach, LIME is used to visualize these interpretations and heat
maps are used as a mask for the classified images. These heat maps highlight the specific
areas of an image that contributed most to the model’s classification decision. This allows
clinicians to understand how the model arrived at its diagnosis, which can be valuable in
medical diagnosis using images.

The block diagram in the statement can be used as a template for implementing LIME
in any medical diagnosis using images. By using LIME to interpret the results of machine
learning models, clinicians can better understand how the model makes its diagnoses and
make more informed decisions about patient care. In this work, we improved the model’s
performance in terms of both time complexity and accuracy. Using the explainable AI
model, we obtained more interpretable results, which can help clinicians better understand
how the model is making its diagnoses. The model achieved an accuracy rate of 90.6% on a
relatively small dataset of 6432 images.

3. Methodology

The main contribution of this work is enhancing the deep learning approaches in
healthcare applications using the visualization capability of explainable AI, which is shown
in the block diagram in Figure 2. We started from having the medical images and then we in-
putted those images into the deep convolutional neural network (VGG-16), which produces
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the binary classification of normal and COVID-19 cases and the multiclass classification of
COVID-19, pneumonia, and normal cases. The explainable AI model that will interpret this
result is Lime Image Explainer (LIME). LIME generates a set of interpretations that define
each feature’s input to a prediction for a specific sample, which is a local understanding.
Finally, we used visualization for the heat maps as a mask for the classified images to mark
boundaries in the classification decision. This block diagram can be used in any medical
diagnosis that uses images.
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3.1. Datasets Description

This paper uses five CXR image datasets that are freely available on Kaggle. We
selected CXR vertical and medical images in our study because radiologists typically use
this radiography component to complete diagnostic imaging assessments.

The first dataset contains 5856 images. There were 1583 normal images and 4273 pneu-
monia images. In total, 10% of the CXR images in the dataset have been used for testing.
The rest of the samples are divided between training and validation sets. Thus, the number
of test images equals 624, while the training and validation image numbers are 5216 and 16,
respectively. The test images have been randomly selected. Table 2 shows the division of
the first dataset.

Figure 3 also shows the numerical data of the first dataset. The dataset can be
accessed at https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
(accessed on 22 March 2023).

Table 2. Division of the first dataset.

Training Testing Validation Total

Normal 1341 234 8 1583

Pneumonia 3875 390 8 4273

Total 5216 624 16 5856

The second dataset contains 4172 images encompassing 2000 normal, 1380 pneumonia,
and 792 COVID-19 images. Moreover, we have 3332 images for training, 840 for testing, and
validation for training. The details are shown in Table 3. Figure 4 also shows the numerical
data of the second dataset. This dataset is publicly available at https://www.kaggle.com/
lelpresidente/covid19-and-pneumonia-chest-xrays dataset (accessed on 22 March 2023).

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/lelpresidente/covid19-and-pneumonia-chest-xrays
https://www.kaggle.com/lelpresidente/covid19-and-pneumonia-chest-xrays
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The third dataset contains 6432 images encompassing 1583 normal, 4273 pneumonia, and
576 COVID-19 images. Moreover, we have 5144 images for training, 1288 images for testing,
and validation taken for training. The details are shown in Table 4. Figure 5 also shows the
numerical data of the third dataset. The dataset is accessible at https://www.kaggle.com/
prashant268/chest-xray-covid19-pneumonia (accessed on 22 March 2023).

https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
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Table 4. Division of the third dataset.

Training Testing Total

Normal 1266 317 1583

Pneumonia 3418 855 4273

COVID-19 460 116 576

Total 5144 1288 6432
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The fourth dataset contains 317 normal images, 4273 pneumonia, and 576 COVID-19
images. Moreover, we have 251 images for training, 66 images for testing, and validation
taken for training. The details are shown in Table 5. Figure 6 also shows the numerical
data of the fourth dataset. The dataset is accessible at https://www.kaggle.com/datasets/
pranavraikokte/covid19-image-dataset (accessed on 22 March 2023).

Table 5. Division of the fourth dataset.

Training Testing Total

Normal 70 20 90

Pneumonia 70 20 90

COVID-19 111 26 137

Total 251 66 317

The fifth dataset contains 94 images encompassing 25 normal and 69 COVID-19 images.
Moreover, we have 70 images for training, 24 images for testing, and validation taken for
training. The details are shown in Table 6. The dataset is accessible at https://www.kaggle.
com/datasets/alifrahman/covid19-chest-xray-image-dataset (accessed on 22 March 2023).
Figure 7 also shows the numerical data of the fifth dataset.

Table 6. Division of the fifth dataset.

Training Testing Total

Normal 20 5 25

COVID-19 50 19 69

Total 70 24 94

https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset
https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset
https://www.kaggle.com/datasets/alifrahman/covid19-chest-xray-image-dataset
https://www.kaggle.com/datasets/alifrahman/covid19-chest-xray-image-dataset


J. Imaging 2023, 9, 177 12 of 31

J. Imaging 2023, 9, x FOR PEER REVIEW 12 of 33 
 

 

The fourth dataset contains 317 normal images, 4273 pneumonia, and 576 COVID-19 
images. Moreover, we have 251 images for training, 66 images for testing, and validation 
taken for training. The details are shown in Table 5. Figure 6 also shows the numerical 
data of the fourth dataset. The dataset is accessible at h ps://www.kaggle.com/da-
tasets/pranavraikokte/covid19-image-dataset (accessed on 22 March 2023). 

Table 5. Division of the fourth dataset. 

 Training Testing Total 
Normal 70 20 90 
Pneumonia 70 20 90 
COVID-19 111 26 137 
Total 251 66 317 

 
Figure 6. Fourth dataset distribution. 

The fifth dataset contains 94 images encompassing 25 normal and 69 COVID-19 im-
ages. Moreover, we have 70 images for training, 24 images for testing, and validation taken 
for training. The details are shown in Table 6. The dataset is accessible at 
h ps://www.kaggle.com/datasets/alifrahman/covid19-chest-xray-image-dataset (ac-
cessed on 22 March 2023). Figure 7 also shows the numerical data of the fifth dataset. 

Table 6. Division of the fifth dataset. 

 Training Testing Total 
Normal 20 5 25 
COVID-19 50 19 69 
Total 70 24 94 

Figure 6. Fourth dataset distribution.
J. Imaging 2023, 9, x FOR PEER REVIEW 13 of 33 
 

 

 
Figure 7. Fifth dataset distribution. 

3.2. Experimental Setup 
We have used the Python programming language with the Keras package with Ten-

sorflow as the deep learning framework to implement the proposed method. We run the 
codes on the Kaggle notebook with the following system specifications: Nvidia Tesla 
(NVIDIA Corporation, London, UK) T4 with 13 GB GPU memory. The software stack con-
sists of scikit-learn and Keras with the TensorFlow backend. The model was trained using 
an Adam optimizer, sparse categorical cross-entropy loss function, a learning rate of 0.001 
for the first epoch, and a learning rate decay of 0.1 every ten epochs with mini-batches of 
size 32. We have used VGG16 with input shape 224 × 224 × 3 with Dropout 0.5 and activa-
tion function Softmax. TensorFlow binary was optimized with one API Deep Neural Net-
work Library (one) to use AVX2 AVX512F FMA CPU instructions in performance-critical 
operations. TensorFlow was rebuilt with the appropriate compiler flags to enable them in 
other operations. The GPU was used with 15,403 MB memory. 

3.3. Visualization 
In this part, we use explainable AI to improve the interpretability of the COVID-19 

analysis to overcome the black-box problem. It makes deep learning model predictions 
logical and intelligible in CAD-based COVID-19 diagnosis. We employed Lime Image Ex-
plainer (LIME). Local Interpretable Model-Agnostic Interpretations are a method for ade-
quately explaining the predictions of any classifier or regressor. It approximates them lo-
cally using an interpretable model to modify a single data sample’s feature values and 
assesses the effect on the outcome. An “explainer” outlines estimates based on each sam-
ple data. LIME generates a set of interpretations that define each feature’s input to a pre-
diction for a specific sample, which is a local understandability, as shown in Figure 8. 

Using LIME, quickly understood models are regression analyses or decision trees 
learned on minor disturbances of the previous design (best areas, noise, removing words, 
and hiding areas of the image) to create a good local approximation. We used heat maps 
to obtain the image and mask function to mark boundaries because the visualization 
makes more sense if a symmetrical color bar is used. Each test X-ray image generates a 
heat map. Because there are several layers and filters, the averages of the weights of the 
filters in the final convolutional layer are computed and shown because they could di-
rectly represent the feature maps. 

Every chest X-ray image has a heat map calculated to highlight high-weight COVID-
19 signals. To create the last heat map, the weights of the filters are taken from the previous 
convolutional layer. Figure 3 displays the sample filter weights of a single chest X-ray 

Figure 7. Fifth dataset distribution.

3.2. Experimental Setup

We have used the Python programming language with the Keras package with Tensor-
flow as the deep learning framework to implement the proposed method. We run the codes
on the Kaggle notebook with the following system specifications: Nvidia Tesla (NVIDIA
Corporation, London, UK) T4 with 13 GB GPU memory. The software stack consists of
scikit-learn and Keras with the TensorFlow backend. The model was trained using an
Adam optimizer, sparse categorical cross-entropy loss function, a learning rate of 0.001
for the first epoch, and a learning rate decay of 0.1 every ten epochs with mini-batches
of size 32. We have used VGG16 with input shape 224 × 224 × 3 with Dropout 0.5 and
activation function Softmax. TensorFlow binary was optimized with one API Deep Neural
Network Library (one) to use AVX2 AVX512F FMA CPU instructions in performance-
critical operations. TensorFlow was rebuilt with the appropriate compiler flags to enable
them in other operations. The GPU was used with 15,403 MB memory.
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3.3. Visualization

In this part, we use explainable AI to improve the interpretability of the COVID-19
analysis to overcome the black-box problem. It makes deep learning model predictions
logical and intelligible in CAD-based COVID-19 diagnosis. We employed Lime Image
Explainer (LIME). Local Interpretable Model-Agnostic Interpretations are a method for
adequately explaining the predictions of any classifier or regressor. It approximates them
locally using an interpretable model to modify a single data sample’s feature values and
assesses the effect on the outcome. An “explainer” outlines estimates based on each sample
data. LIME generates a set of interpretations that define each feature’s input to a prediction
for a specific sample, which is a local understandability, as shown in Figure 8.

Using LIME, quickly understood models are regression analyses or decision trees
learned on minor disturbances of the previous design (best areas, noise, removing words,
and hiding areas of the image) to create a good local approximation. We used heat maps to
obtain the image and mask function to mark boundaries because the visualization makes
more sense if a symmetrical color bar is used. Each test X-ray image generates a heat map.
Because there are several layers and filters, the averages of the weights of the filters in the
final convolutional layer are computed and shown because they could directly represent
the feature maps.

Every chest X-ray image has a heat map calculated to highlight high-weight COVID-19
signals. To create the last heat map, the weights of the filters are taken from the previous
convolutional layer. Figure 3 displays the sample filter weights of a single chest X-ray
image. In this illustration, the lungs’ areas are surrounded by high weights (yellow hue)
since COVID-19 may harm the lungs. The weights of these filters are then averaged to
obtain the final heat map. It is calculated for each test subject’s chest X-ray image. In
Figure 3, examples of heat maps are displayed. The first three heat maps were generated
using COVID-19 from chest X-ray scans. As can be observed, the trained model identified
areas with significant weights of yellow spots as COVID-19 signal locations. Whereas the
last heat map is generated from a chest X-ray image with the standard classification, the
medical specialists would be focused on these areas to check the ailment finally. As a result,
no yellow spots signify any COVID-19 harm.
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Deep learning uses numerous hidden layers piled on top of one another. In addition
to computer vision, deep learning has ushered in a new era of machine learning. CNNs
have been used for object identification, segmentation, and classification of images [44].
Despite recent developments, we are still extremely early in the process. We have yet to
decide on the optimal practices for network architecture in terms of deep design, compact
size, and quick training [45].

Machine learning (ML) applications are becoming more prevalent and are being
used to make a pathological diagnosis of various illnesses in the field of medical imag-
ing. Computer-aided diagnostic systems have emerged due to several investigations [5].
Although there are numerous domains where image recognition has been used, medical
images are one of them. Recent deep-learning advances in image recognition have sparked
strong research interest in medical image segmentation [46].

The performance of classical image processing methods for image segmentation is no
longer comparable to that of neural network (NN)-based approaches due to recent advances
in deep learning and machine learning. As a result, several researchers have suggested
enhanced deep learning algorithms to boost image segmentation precision in various
recognition settings. The most popular method for recognizing images is CNN, which
increases hidden layer depth and successfully acquires additional identifying features
to increase segmentation accuracy [15]. Face object and license plate identification are
successful image recognition applications. Medical image recognition is still less prevalent
due to challenges in obtaining medical photos and a need for knowledge about how
illnesses manifest in diverse images. Therefore, before moving on to model training,
medical image recognition typically requires the help of a doctor to identify and classify
focus regions or lesions [35].

The layered structure, set up in a tiered system, is the primary characteristic of deep
learning approaches. Low-level details like textures and edges are extracted from the layers
closest to the input [37]. Each layer’s feature extraction becomes more complex, and the
acquired low-level characteristics are combined to create a more complex representation.
CNNs are the most popular among the different deep-learning techniques since they can
extract meaningful information from an image [41].

The input is typically loaded as a multidimensional vector and distributed to the
hidden layers by the input layer. The learning process begins when the hidden layers
consider the judgments made by the preceding layer and determine if a stochastic change
inside itself worsens or enhances the output [42]. The weights of just one neuron of the first
layer significantly rise when considering a more extensive colored picture input. Consider
that the network must also be much larger than the one used to categorize color-normalized
areas to handle this input scale. You will see the disadvantages of such models [44].

First, we implemented the VGG16 model to achieve prediction results. VGG is a con-
volutional neural network model that Simoyan and Zisserman proposed. They presented
it in [45] as “extremely deep convolutional networks for large-scale image recognition”.
Because the multilayer nonlinear layer may enhance the network depth to ensure learn-
ing more complicated patterns at a relatively low cost, the small convolution kernel is
preferable to the big convolution kernel (fewer parameters). However, VGG employs more
parameters and demands more processing resources, which increases memory use [46].
The first wholly linked layer, one of the three in the VGG-16, provides the most parameters.
VGG16 can be used to identify illness via radiography, such as X-rays. VGG16’s potential
has yet to be thoroughly investigated, although it performs incredibly well during image
segmentation scenarios [47].

In this section, a description of the proposed method shows the architecture of the
model and the methods used to achieve XAI. Although there is no specific aim for deep
learning that involves simulation, there are various ways inspired by or based on neuro-
science. Convolutional Neural Networks (CNNs) are the deep neural network method that
has restored faith in ANN methods and found various applications, even though some
have failed. The images in the experimental dataset are X-ray images; hence, multiple
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feature extraction and additional parameters are not required. To ensure that the model’s
feature extraction is accurate, as well as to realize the model’s lightweight design and accel-
erate the model’s training, we will combine the original VGG-16 with the full convolution
model and reduce the model’s parameters as well as the number of layers in the entire
connection layer.

The convolution one layer receives a 224 by 224 RGB picture with a constant size as
input. The image is processed using a stacking of convolutional (Conv.) layers with a tiny
input patch: three-by-three (the lowest amount representing the concepts of moved near
and middle). Inside one of the settings, it employs eleven convolutional filterings, regarded
as a linear change of the input streams (followed by nonlinearity). The convolutional
duration is set to one pixel, and the spatial pad to Conv. For a three-by-three VGG, the layer
input is adjusted to one pixel layer to preserve the number of pixels upon convolution. The
architecture depicted in Figure 9 is VGG16 [5].
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Spatial pools perform five max-pooling layers that follow a portion of the Conv. Layers
(not all Conv) are followed by max-pooling, and stride two is used to max-pool over a
two-by-two pixel frame. With a stacking of convolution layers (ranging in an architecture),
three fully connected (FC) layers are introduced: the first two have 4096 windows per,
whereas the third provides 1000-way ILSVRC classification, and so has 1000 channels (one
for each class). The top level is the soft-max layer. The entirely linked layers are constructed
in the same manner in all connections.

In this work, we have accomplished implementing the VGG16 CXR image dataset
to predict the presence of COVID-19 and to explain the results by showing the segments
and colors in the images that aid in correct classification. We will implement the model on
different datasets to ensure the model’s reliability according to investigating these datasets.
We hope this will lead to new emerging techniques in adopting XAI models in COVID-19
prediction and diagnosis.

4. Experimental Results and Analysis

This section presents a discussion about the implemented XAI model’s results. We
can apply the code to any dataset of COVID-19 X-ray images regardless of whether its
method involves only training and testing or training, testing, and validation. Furthermore,
it can run on datasets with any number of classes, either binary classes (COVID-19 and
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non-COVID-19) or multiple classes (COVID-19, normal, and pneumonia). The suggested
technique allows for the initial classification classifier to categorize a chest X-ray image into
COVID-19 and non-COVID-19. The non-COVID-19 class’s training and validation samples
are normal chest X-ray images. It is primarily due to the training procedure revealing
COVID-19 and regular case patterns. Its performance drastically reduces when it evaluates
chest X-ray images with additional illnesses.

The importance of training and accuracy should pay attention to the focus on explain-
ability in research papers. While improving model explainability is valuable, it should be
achieved after establishing a robust and accurate model. The level of explainability depends
on the domain-specific requirements, and there may be a trade-off between accuracy and
explainability. Achieving the right balance is essential, considering the context and problem
being addressed. For comprehensive results from all datasets, we provide all datasets’
validation loss and accuracy that reached ten epochs as given in Appendix A.

The decision to limit training epochs was intentional in our study on XAI for medical
imaging classification. Our focus was on model interpretability rather than achieving
complete convergence. We balanced model performance and practical considerations,
ensuring meaningful representations and reasonable accuracy within a reasonable training
timeframe. Extending training epochs would not significantly contribute to our primary
objective of exploring model explainability.

Figure 10 shows the ROC curve of the results of the first dataset (in Figure 10a,b
loss and accuracy). Training and validation loss decreases to zero, while the training and
validation accuracy increases to 82.6%. The confusion matrix is presented in Figure 10c,d
as the heatmap scale. We might see a gap between training and testing accuracy in this
dataset. This might refer to the small size of the validation dataset. As shown in Figure 10c,
the cases of TP and TN explainability are presented (TP and TN samples utilizing LIME
to locate COVID-19, pneumonia, and expected areas with CXR images). The heat map
(Figure 10d) indicates the critical locations in the CXR images that our deep learning
algorithm discovered.

Figure 11 shows the explainability of one of the images in the first dataset, explaining
the image segments that aid classification. Figure 11 also depicts the heatmap localizing
indications in the lungs. Figure 11 shows an example of genuine positive instances from
the COVID-19 dataset. The yellow color in the lungs implies that the model recognized
something odd, thus classifying them as COVID-19. The model recognized the dense
homogeneous opacity patches as the most significant COVID-19 signal, which fits well
with radiology findings in COVID-19 medical research investigations [4,7,10–12,17,19].

Figure 12 shows the ROC curve of the results of the second dataset (loss in Figure 12a
and accuracy in Figure 12b).

Training and validation loss decreases to zero, while the training and validation
accuracy increases to 67.5%. The confusion matrix is presented in Figure 12c,d as the heat
map scale. According to the results, we must balance the testing dataset (especially COVID-
19 cases) to obtain more accurate results. Additional TP instances of pneumonia samples
are shown in Figure 12c for the second dataset. Similar to Figure 11, we can examine the
positive pneumonia cases in the second dataset, with the heatmap focusing on the lung
opacity area. Figure 12d displays the TN cases for the second dataset. The heatmap often
concentrates on anything beyond the lungs (or close to the heart) to discriminate between
the typical and other situations.

Figure 13 shows the explainability of one of the images in the second dataset, explain-
ing the image segments that aid classification. We can observe in the CXR images that the
heatmap identifies the density in the lungs. Despite the low quality and inaccurate projec-
tion of the lungs, the model accurately identified the images. The yellow color in the lungs
implies that the model recognized something odd, thus classifying them as COVID-19.
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We are shedding light on the specific image segments contributing to the classification
process. The generated heatmap in the chest X-ray (CXR) images effectively identifies
density areas within the lungs. Despite potential challenges such as low image quality and
inaccurate lung projections, the model accurately identifies COVID-19 cases. The yellow
in the lung regions indicates that the model has detected abnormal patterns, leading to
the classification of these images as COVID-19. These findings demonstrate the model’s
capability to discern subtle features and patterns in CXR images, even in challenging
factors. As identified by the model, these regions hold valuable information that can
provide a deeper understanding of the underlying pathological processes and aid in
accurate disease classification.

For instance, in the context of chest X-ray (CXR) images, the model-generated heatmap
highlights density areas within the lungs, indicating various pulmonary conditions. Un-
derstanding the significance of these high-weight regions can help healthcare profession-
als identify specific radiographic patterns associated with different diseases, including
COVID-19. Furthermore, exploring the clinical implications of these regions can shed
light on the anatomical and pathological characteristics relevant to disease diagnosis and
treatment. Many medical insights can be derived from these regions; for example, clinicians
can refine their diagnostic approach, develop targeted treatment strategies, and potentially
uncover novel biomarkers or imaging markers for improved patient management. Incorpo-
rating these discussions into the evaluation and interpretation of model outputs enhances
the clinical applicability and value of the model.

Figure 14 shows the ROC curve of the results of the third dataset (in Figure 14a,b
sections). The confusion matrix is presented in Figure 14c,d as the heat map scale. Figure 14c
shows the confusion matrix of the third dataset for the multiclass classification. Similar
to the second dataset, the model provides a superior classification of the three types, as
shown by the fact that only 30 patients out of 855 in the pneumonia class had incorrect
classifications (see Figure 14c). According to the confusion matrix, the COVID-19 cases are
accurately identified. It demonstrates how well our model performed in classifying the
three classes. Both training and validation loss decrease to zero, while the training and
validation accuracy increase to 90.6%.
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Figure 15 shows the explainability of one of the images in the third dataset, explaining
the image segments that aid classification. As shown in the figure, Figure 15a represents
the original image. In Figure 15b, the main segments that lead to classifying the image are
outlined to show the importance of these features. Net, while Figure 15c represents only
the important segments or features, the rest of the features were ignored in the last image.
Figure 15 also displays the heat map localized to the points in the lungs. It is an example
of genuine positive instances from the COVID-19 dataset. The yellow color in the lungs
implies that the model recognized something odd, thus classifying them as COVID-19.

According to the expert, the produced heat maps of the COVID-19 instances success-
fully identified the locations of COVID-19. The use of heat maps of an image applied by our
model appears when there are multiple foreign objects to be detected outwards. The lungs
have yet to be annotated with a bounding box in the third dataset (best viewed, zoomed in
color) from left to right.
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In Figure 16, the ROC curve for the fourth dataset is displayed in Figure 16a,b, show-
casing the loss and accuracy. Both training and validation loss decrease to zero, while the
training and validation accuracy increase to 95.7%. The confusion matrix is presented in
Figure 16c and the heatmap scale is presented in Figure 16d. Figure 16c demonstrates the
explainability of TP and TN cases, utilizing LIME to identify COVID-19, pneumonia, and
expected areas in CXR images. The heatmap in Figure 16d highlights the crucial locations
in the CXR images that our deep learning algorithm has detected.

Figure 17 presents the explainability of an image in the fourth dataset, highlighting the
image segments that contribute to the classification. Similarly, Figure 17 displays a heatmap
that localizes indications in the lungs. Figure 17 showcases an example of genuine positive
instances from the COVID-19 dataset, where the yellow color in the lungs suggests that the
model has identified anomalous features, classifying them as COVID-19. Together, these
figures demonstrate how our deep learning algorithm can identify critical features and
patterns in CXR images, providing a potentially valuable tool for diagnosing COVID-19
and other respiratory diseases.



J. Imaging 2023, 9, 177 21 of 31

J. Imaging 2023, 9, x FOR PEER REVIEW 22 of 33 
 

 

 
Figure 15. Explainability of X-ray images in the third dataset. 

In Figure 16, the ROC curve for the fourth dataset is displayed in Figure 16a and b, 
showcasing the loss and accuracy. Both training and validation loss decrease to zero, 
while the training and validation accuracy increase to 95.7%. The confusion matrix is pre-
sented in Figure 16c and the heatmap scale is presented in Figure 16d. Figure 16c demon-
strates the explainability of TP and TN cases, utilizing LIME to identify COVID-19, pneu-
monia, and expected areas in CXR images. The heatmap in Figure 16d highlights the cru-
cial locations in the CXR images that our deep learning algorithm has detected. 

 

Figure 16. The results of the fourth dataset (loss in (a) accuracy in (b), confusion matrix in (c), and
Attention map in (d)).

J. Imaging 2023, 9, x FOR PEER REVIEW 23 of 33 
 

 

Figure 16. The results of the fourth dataset (loss in (a) accuracy in (b), confusion matrix in (c), and 
A ention map in (d)). 

Figure 17 presents the explainability of an image in the fourth dataset, highlighting 
the image segments that contribute to the classification. Similarly, Figure 17 displays a 
heatmap that localizes indications in the lungs. Figure 17 showcases an example of genu-
ine positive instances from the COVID-19 dataset, where the yellow color in the lungs 
suggests that the model has identified anomalous features, classifying them as COVID-
19. Together, these figures demonstrate how our deep learning algorithm can identify crit-
ical features and pa erns in CXR images, providing a potentially valuable tool for diag-
nosing COVID-19 and other respiratory diseases. 

 
Figure 17. Explainability of X-ray images in the fourth dataset. 

In Figure 18, the ROC curve for the fifth dataset is displayed in Figure 18a and b, 
showcasing the loss and accuracy. Both training and validation loss decrease to zero, 
while the training and validation accuracy increase to 93.7%. The confusion matrix is pre-
sented in Figure 18c and the heatmap scale is presented in Figure 18d. However, there 
appears to be a disparity between training and testing accuracy in this dataset, which may 
be a ributed to the small size of the validation dataset. Figure 18c demonstrates the ex-
plainability of TP and TN cases, utilizing LIME to identify COVID-19, pneumonia, and 
expected areas in CXR images. The heatmap in Figure 18d highlights the crucial locations 
in the CXR images that our deep learning algorithm has detected. 

Figure 17. Explainability of X-ray images in the fourth dataset.

In Figure 18, the ROC curve for the fifth dataset is displayed in Figure 18a,b, show-
casing the loss and accuracy. Both training and validation loss decrease to zero, while the
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training and validation accuracy increase to 93.7%. The confusion matrix is presented in
Figure 18c and the heatmap scale is presented in Figure 18d. However, there appears to be
a disparity between training and testing accuracy in this dataset, which may be attributed
to the small size of the validation dataset. Figure 18c demonstrates the explainability of
TP and TN cases, utilizing LIME to identify COVID-19, pneumonia, and expected areas in
CXR images. The heatmap in Figure 18d highlights the crucial locations in the CXR images
that our deep learning algorithm has detected.

J. Imaging 2023, 9, x FOR PEER REVIEW 24 of 33 
 

 

 
Figure 18. The results of the fifth dataset (loss in (a) accuracy in (b), confusion matrix in (c), and 
A ention map in (d)). 

One of the images from the fifth dataset is displayed in Figure 19, which illustrates 
the image segments that assist in its classification, explaining its explainability. Addition-
ally, Figure 19 demonstrates a heatmap that identifies indications in the lungs. Figure 19 
showcases authentic positive instances from the COVID-19 dataset, with the yellow col-
oring in the lungs indicating that the model has recognized abnormalities, classifying 
them as COVID-19. 

Figure 18. The results of the fifth dataset (loss in (a) accuracy in (b), confusion matrix in (c), and
Attention map in (d)).

One of the images from the fifth dataset is displayed in Figure 19, which illustrates the
image segments that assist in its classification, explaining its explainability. Additionally,
Figure 19 demonstrates a heatmap that identifies indications in the lungs. Figure 19 showcases
authentic positive instances from the COVID-19 dataset, with the yellow coloring in the lungs
indicating that the model has recognized abnormalities, classifying them as COVID-19.

It is realized that patterns of other statements or ailments are not seen and learned
throughout the training procedure. They also appear in the same areas of the lungs as
COVID-19. Using this created model, they may readily be fooled by COVID-19. It may
result in many false positive instances, which might not be desirable for real situations. As
a result, the model is improved by using example chest X-ray pictures with more notes
and illnesses in the training and verifying procedures. It allows the model to learn to
distinguish between COVID-19 patterns and patterns from other disorders. Consequently,
the specificity score of COVID-19 is increased while the false detection rate is reduced.

The generated model is then trained to categorize a chest X-ray image into three
COVID-19 normal and other illness groups. It might keep the sensitivity score stable
while increasing the specificity score because separating the non-COVID-19 class from
the class of different diseases might prevent misunderstandings between COVID-19 and
other conditions and uncertainty between normal and other illnesses. It is experimentally
observed that the individual deep learning model cannot perform equally for all scenarios
in terms of accuracy, precession, recall, specificity AUC, and F1-score; therefore, adding
visual interpretation of the results will help humans make better diagnosis decisions from
indicated features and patterns on the output images.
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Figure 20 shows the LIME technique applied to three samples belonging to three distinct
classes of COVID-19. The red and green areas in the LIME-generated explanation correspond
to the regions that contributed against and toward the predicted class, respectively.

Architecture Comparison

In this section, we compare the performance of the proposed deep neural network
architecture for detecting COVID-19 from chest CT images with existing architectures in
terms of test data. Specifically, we compare it with Xception, Inception V4, ResNet-50, XNet,
and AlexNet (deep learning architectures). Table 7 shows that VGG16 with LIME achieves
a 0.2% higher test accuracy than Xception, using 90.6% fewer parameters. Additionally,
Table 7 demonstrates that VGG16 has higher precision and recall than Inception V4 across
all types of infections. Moreover, using VGG 16 also increases the performance of ResNet50,
XNet, and AlexNet with accuracy improvement of 0.50%, 0.16, and 0.48, respectively. These
findings emphasize the advantages of using VGG 16 design with LIME exploration to
develop deep neural network architectures that are explainable to the task, data, and
operational requirements. This is especially important in clinical settings, where quickly
creating and assessing new architectures is crucial for adapting to changing data patterns
and operational needs.

As shown by Table 7, accuracy represents the overall correctness of the model’s
predictions, while precision measures the proportion of true positive predictions among all
positive predictions. Recall measures the proportion of true positive predictions among all
actual positive instances in the dataset. The AUC metric represents the model’s ability to
distinguish between positive and negative instances. Computation cost of each model is
also presented by the table to show the difference in cost over models on different datasets.
The metrics show that VGG16 with LIME has the highest overall performance, with 90.6%
accuracy, precision, recall, and AUC. However, the performance difference between VGG16
with LIME and the other models is relatively small, with most models achieving an accuracy
above 86%, as shown by Figure 21. The accuracy of datasets four and five is high because
the dataset size is very small with 317 images and 97 images, respectively.
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Table 7. A comparison of different deep learning algorithms with the proposed model in testing data.

Architecture Dataset Accuracy (%) Precision (%) Recall (%) AUC (%) Computation Cost (s)

Xception

1 80.8 70.5 80.9 80.8 85,364

2 65.9 56.7 66 66.1 65,972

3 88.9 79.7 89.5 88.6 38,756

4 94.8 85.6 95.9 94.5 49,856

5 92.7 82.9 81.8 81.9 59,278

Inception V4

1 81.1 81.2 80.8 80.0 18,200

2 67.2 68.1 68.1 68.0 26,781

3 89.1 88.3 87.3 89.0 13,897

4 94.1 92.2 91.9 91.1 49,129

5 92.2 89.8 89.8 89.7 59,287

ResNet50

1 77.1 77.2 77.1 77.1 17,121

2 63.4 64.2 63.6 63.2 26,342

3 86.4 85.2 88.0 88.7 13,864

4 89.5 90.1 89.7 89.3 48,645

5 92.6 93.3 92.9 92.5 59,263

XNet

1 80.6 76.7 87.5 86.6 18,675

2 65.5 87.3 87.3 87.0 26,587

3 89.0 88.9 88.8 89.6 13,896

4 94.1 91.1 91.2 91.1 49,121

5 92.2 89.1 89.1 89.1 59,281

AlexNet

1 78.2 78.9 78.4 78.0 17,829

2 63.2 63.9 63.4 63.0 26,324

3 86.2 86.9 86.4 86.0 13,862

4 89.2 89.9 89.4 89.0 48,928

5 92.4 93.1 92.6 92.2 59,243

VGG16 with LIME

1 82.6 79.7 89.5 88.6 18,267

2 67.5 88.3 87.3 89.0 26,758

3 90.6 85.2 88.0 88.7 10,936

4 95.7 88.9 88.8 89.6 49,578

5 93.6 86.9 86.4 86.0 59,364

For testing performance measurement, we rely on dataset three because it is the largest
dataset, and the testing accuracy shows that the model performs very well compared to
other models. The reliance on dataset three for testing performance measurement was
driven by its size and significance. Our model’s exceptional testing accuracy further
reinforces its robustness compared to other models. By subjecting the model to diverse
datasets during testing, we provided substantial evidence supporting its generalization
capabilities and its resilience against overfitting. Moreover, Figure 22 shows that our model
with LIME presented the smallest computational cost which is 10,936 s on the third dataset.



J. Imaging 2023, 9, 177 25 of 31
J. Imaging 2023, 9, x FOR PEER REVIEW 26 of 33 
 

 

 
Figure 20. LIME explanation of three class samples along with the prediction probabilities of each 
sample. 

Architecture Comparison 
In this section, we compare the performance of the proposed deep neural network 

architecture for detecting COVID-19 from chest CT images with existing architectures in 
terms of test data. Specifically, we compare it with Xception, Inception V4, ResNet-50, 
XNet, and AlexNet (deep learning architectures). Table 7 shows that VGG16 with LIME 
achieves a 0.2% higher test accuracy than Xception, using 90.6% fewer parameters. Addi-
tionally, Table 7 demonstrates that VGG16 has higher precision and recall than Inception 
V4 across all types of infections. Moreover, using VGG 16 also increases the performance 
of ResNet50, XNet, and AlexNet with accuracy improvement of 0.50%, 0.16, and 0.48, re-
spectively. These findings emphasize the advantages of using VGG 16 design with LIME 
exploration to develop deep neural network architectures that are explainable to the task, 
data, and operational requirements. This is especially important in clinical se ings, where 

Figure 20. LIME explanation of three class samples along with the prediction probabilities of each sample.

J. Imaging 2023, 9, x FOR PEER REVIEW 28 of 33 
 

 

 
Figure 21. A comparison of different models on the third dataset. 

For testing performance measurement, we rely on dataset three because it is the larg-
est dataset, and the testing accuracy shows that the model performs very well compared 
to other models. The reliance on dataset three for testing performance measurement was 
driven by its size and significance. Our model’s exceptional testing accuracy further rein-
forces its robustness compared to other models. By subjecting the model to diverse da-
tasets during testing, we provided substantial evidence supporting its generalization ca-
pabilities and its resilience against overfi ing. Moreover, Figure 22 shows that our model 
with LIME presented the smallest computational cost which is 10,936 s on the third da-
taset. 

 
Figure 22. Computation costs of different models in seconds. 

5. Conclusions and Remarks 
This article proposes using deep learning models to aid in diagnosing the COVID-19 

virus by using chest X-ray images with visual representation based on a local interpretable 
model. Prediction explanations of the model improve the final human decision. The 
model’s performance (regarding time, complexity, and accuracy) improved, obtaining 

Figure 21. A comparison of different models on the third dataset.



J. Imaging 2023, 9, 177 26 of 31

J. Imaging 2023, 9, x FOR PEER REVIEW 28 of 33 
 

 

 
Figure 21. A comparison of different models on the third dataset. 

For testing performance measurement, we rely on dataset three because it is the larg-
est dataset, and the testing accuracy shows that the model performs very well compared 
to other models. The reliance on dataset three for testing performance measurement was 
driven by its size and significance. Our model’s exceptional testing accuracy further rein-
forces its robustness compared to other models. By subjecting the model to diverse da-
tasets during testing, we provided substantial evidence supporting its generalization ca-
pabilities and its resilience against overfi ing. Moreover, Figure 22 shows that our model 
with LIME presented the smallest computational cost which is 10,936 s on the third da-
taset. 

 
Figure 22. Computation costs of different models in seconds. 

5. Conclusions and Remarks 
This article proposes using deep learning models to aid in diagnosing the COVID-19 

virus by using chest X-ray images with visual representation based on a local interpretable 
model. Prediction explanations of the model improve the final human decision. The 
model’s performance (regarding time, complexity, and accuracy) improved, obtaining 

Figure 22. Computation costs of different models in seconds.

5. Conclusions and Remarks

This article proposes using deep learning models to aid in diagnosing the COVID-19
virus by using chest X-ray images with visual representation based on a local interpretable
model. Prediction explanations of the model improve the final human decision. The
model’s performance (regarding time, complexity, and accuracy) improved, obtaining more
explainable results. The accuracy achieved was 90.6% on a relatively small size dataset.
First, this model’s main advantages are the XAI model, which improves the interpretability
and explainability of AI models. The experiment has been conducted using five COVID-
19 datasets from Kaggle.com. The second advantage is the improvement of the model’s
accuracy and explainability. The highest levels of precision we achieved were 90%, 93%, and
95%. The results show that VGG16 with LIME has the highest overall performance, with
90.6% accuracy, precision, recall, and AUC. However, the performance difference between
VGG16 with LIME and the other models is relatively small, with most models achieving an
accuracy above 86%. Furthermore, using our approach for comparable COVID-19 datasets
to obtain further insights into crucial characteristics connected to COVID-19 instances will
be beneficial.

Regarding the achieved accuracy on a relatively small dataset of 6432 images, it
is important to note that several factors, including the complexity of the task, dataset
size, and diversity, influence accuracy. However, our proposed model demonstrated
a commendable accuracy of 90.6% on this dataset, which is a significant improvement
compared to previous approaches. Moreover, our model improved accuracy and reduced
time complexity, making it more practical and efficient for medical diagnosis in real-world
scenarios. This reduction in time complexity allows for quicker decision-making, enabling
prompt and accurate diagnoses.

Furthermore, our approach emphasizes interpretability and transparency in AI models,
which are crucial aspects of the medical domain. By providing clear and understandable
explanations for the model’s decisions, clinicians and healthcare professionals can better
comprehend the underlying reasoning and build trust in the system. This interpretability
enhances accuracy and facilitates collaboration between AI and human experts, improving
overall diagnostic outcomes.

This research, however, is subject to several limitations. The first is the method com-
patible with the image dataset, which is challenging to use with the numerical dataset.
Moreover, the empirical results reported here should be considered in light of some limita-
tions like low quality or imbalanced data. In addition, working with medical data from the
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early stages of illness, such as COVID-19, has several drawbacks, including the dataset size.
As new data becomes available, further models of COVID-19 infection may be developed.
It is important to acknowledge the challenges that XAI as a field still faces in meeting the
expectations of end-users, regulators, and the general public.

It is also difficult to objectively measure the accuracy of LIME explanations and deter-
mine whether they are right or wrong, as XAI explanations are subjective and dependent
on human interpretation. While LIME is a widely accepted method, we acknowledged its
limitations and focused on the availability and usefulness of the explanations. We validated
the interpretability of LIME explanations with human experts, ensuring alignment with do-
main knowledge. Thus, while LIME contributed to our model’s explainability, evaluating
the correctness of its explanations remains challenging, underscoring the need for further
research in evaluating XAI model performance.

Our study focused on developing an accurate and interpretable XAI model for medical
imaging classification. The training was conducted offline, but the real-time application or
inference time was not directly impacted. Our emphasis was on evaluating the model’s
performance and interpretability.

In the future, it is probable to find essential patterns in CT scans and utilize plots and
charts to communicate predictions to patients. To this end, explaining these predictions
in everyday language would be beneficial using a more human-interpretable evaluation
method. The visual representation based on a classified interpretable model helps to reduce
the diagnosis error using explanations of the model’s prediction. In addition, it can be used
to give justifications behind decisions and evaluate all results. This model is important in
Hybrid Deep Neural Networks (HDNNs), Computed Tomography, and Chest X-rays for
detecting COVID-19.
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Appendix A. Datasets’ Validation Loss and Accuracy

Table A1. The five data-sets’ validation loss and accuracy reached ten epochs.

Results of the first dataset:

Epoch Validation loss Validation accuracy

1 0.5377 0.6378

2 0.4627 0.7340

3 0.4332 0.7708

4 0.4231 0.7901

5 0.4122 0.8077

6 0.4048 0.8109

7 0.4026 0.8109

8 0.4019 0.8109

9 0.3980 0.8141

10 0.3904 0.8269

Results of the second dataset:

Epoch Validation loss Validation accuracy

1 0.9360 0.5464

2 0.8680 0.6464

3 0.8290 0.6655

4 0.8051 0.6667

5 0.7860 0.6690

6 0.7751 0.6738

7 0.7644 0.6762

8 0.7561 0.6750

9 0.7491 0.6714

10 0.7412 0.6750

Results of the third dataset:

Epoch Validation loss Validation accuracy

1 0.6315 0.6918

2 0.5001 0.8005

3 0.4270 0.8416

4 0.3801 0.8595

5 0.3476 0.8766

6 0.3238 0.8859

7 0.3052 0.8936

8 0.2907 0.8960

9 0.2781 0.9022

10 0.2678 0.9061

Results of the fourth dataset:

Epoch Validation loss Validation accuracy

1 0.9912 0.6000

2 0.9695 0.6939

3 0.9412 0.7439

4 0.9169 0.7839

5 0.9002 0.8606

6 0.8906 0.8967

7 0.8040 0.9018

8 0.7790 0.9121
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Table A1. Cont.

9 0.7546 0.9424

10 0.7322 0.9579

Results of the fifth dataset:

Epoch Validation loss Validation accuracy

1 0.4355 0.6470

2 0.3617 0.7642

3 0.2322 0.7928

4 0.2231 0.8456

5 0.2182 0.8571

6 0.2047 0.8609

7 0.2026 0.8874

8 0.1961 0.8938

9 0.1880 0.9064

10 0.1746 0.9369
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