
Citation: Ackermann, J.; Hoch, A.;

Snedeker, J.G.; Zingg, P.O.;

Esfandiari, H.; Fürnstahl, P.

Automatic 3D Postoperative

Evaluation of Complex Orthopaedic

Interventions. J. Imaging 2023, 9, 180.

https://doi.org/10.3390/

jimaging9090180

Academic Editor: William E. Higgins

Received: 19 July 2023

Revised: 21 August 2023

Accepted: 27 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Automatic 3D Postoperative Evaluation of Complex
Orthopaedic Interventions
Joëlle Ackermann 1,2,* , Armando Hoch 3, Jess Gerrit Snedeker 2,3, Patrick Oliver Zingg 3, Hooman Esfandiari 1

and Philipp Fürnstahl 1

1 Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich,
8008 Zurich, Switzerland

2 Laboratory for Orthopaedic Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
3 Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
* Correspondence: joelle.ackermann@balgrist.ch

Abstract: In clinical practice, image-based postoperative evaluation is still performed without state-
of-the-art computer methods, as these are not sufficiently automated. In this study we propose a fully
automatic 3D postoperative outcome quantification method for the relevant steps of orthopaedic
interventions on the example of Periacetabular Osteotomy of Ganz (PAO). A typical orthopaedic
intervention involves cutting bone, anatomy manipulation and repositioning as well as implant
placement. Our method includes a segmentation based deep learning approach for detection and
quantification of the cuts. Furthermore, anatomy repositioning was quantified through a multi-step
registration method, which entailed a coarse alignment of the pre- and postoperative CT images
followed by a fine fragment alignment of the repositioned anatomy. Implant (i.e., screw) position was
identified by 3D Hough transform for line detection combined with fast voxel traversal based on ray
tracing. The feasibility of our approach was investigated on 27 interventions and compared against
manually performed 3D outcome evaluations. The results show that our method can accurately
assess the quality and accuracy of the surgery. Our evaluation of the fragment repositioning showed
a cumulative error for the coarse and fine alignment of 2.1 mm. Our evaluation of screw placement
accuracy resulted in a distance error of 1.32 mm for screw head location and an angular deviation of
1.1° for screw axis. As a next step we will explore generalisation capabilities by applying the method
to different interventions.

Keywords: orthopaedic computer science; cut detection; postoperative evaluation; machine learning;
deep learning; segmentation

1. Introduction

The rapid technological advancements in recent years and their increased adoption
in medical fields such as orthopaedic surgery, has led to numerous innovations in areas
such diagnosis [1,2], surgical robotics [3] and intraoperative navigation [4–14]. Since
three-dimensional (3D) preoperative planning is a fundamental requirement for surgical
navigation systems and surgical robotics, significant amount of research has been dedicated
to automating the planning process [15–22]. Analysing whether the preoperative plan was
implemented successfully during the intervention is of equal importance. However, due to
the lack of automated methods, 3D postoperative outcome evaluation is not yet used in
clinical practise to date. State-of-the-art postoperative evaluation is based on 2D-imaging
and patient related outcome measures. Although 3D outcome evaluation is a particularly
powerful tool, it is technically demanding and can take up to 6 h due to the lack of adequate
automatic methods [23].

We propose a fully automatic method for 3D postoperative quantification of the
most common steps of an orthopaedic intervention: A: Cutting Bone (i.e., performing
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an osteotomy), B: Anatomy Manipulation and Repositioning and C: Implant Placement
(e.g., screws, plates, prosthesis). To investigate the feasibility of the proposed approach,
one of the most complex orthopaedic interventions called Periacetabular Osteotomy of
Ganz (PAO) [24] was used as the target intervention in this study, which includes all of the
aforementioned surgical steps (Figure 1).

Figure 1. Overview of the three common surgical steps in orthopaedic interventions on the example
of the Periacetabular Osteotomy (PAO): (A) Cutting Bone: Four osteotomies are performed, namely
the ischial (1), pubic (2), supra- (3) and retroacetabular (4) osteotomy, to mobilise the acetabular
fragment (in blue). (B) Anatomy Manipulation and Repositioning: Repositioning of the acetabular
fragment (in blue) to restore the physiological anatomy. The transformation Fpost TFpre represents the
relative repositioning of the fragment from Fpre to Fpost, where Fpre and Fpost are the respective local
coordinate systems of the cropped pre- and postoperative CT images. (C) Implant Placement: Fixing
the acetabular fragment in its new position using screw implants (red). The bottom row shows slices
of a postoperative CT: In (A) the supraacetabular (in yellow) and pubic (in orange) osteotomies are
highlighted. An overlap of pre- and postoperative CTs is shown in (B), to indicate the acetabular
transformation. Finally, in (C), the cross section of a screw is visible in red.

PAO is a hip surgery, typically performed in young patients who suffer from a condi-
tion called residual hip dysplasia. Residual hip dysplasia is characterised by insufficient
acetabular coverage of the femoral head, causing hip pain and possibly early onset of
osteoarthritis. The PAO involves four pelvic osteotomies namely the supra- (1), retroacetab-
ular (2), ischial (3) and pubic (4) osteotomy, which separate the acetabular fragment from the
remaining pelvic bone (see Figure 1(A1–A4), respectively). The mobile fragment (Figure 1,
in blue) is then rotated to its new position and fixated using 3 to 4 screws. Postoperative
evaluation after PAO therefore entails quantifying all 4 osteotomy planes represented by
a 3D point and 3D normal vector (Figure 1A) in a 4 × 4 transformation matrix encoding
3D orientation and position of the fragment (Figure 1B) and lastly, determining the screw
positions represented as a 3D point and a 3D normal vector (Figure 1C). Although PAO
is a complex intervention, conventional postoperative outcome evaluation are limited to
mainly two radiographic (2D) parameters, being the center-edge (LCEA) angle of Wiberg
and the acetabular index (AI) angle of Tonnis [25]. A LCEA angle of 23°–33° and AI angle
of 2°–14° are typically considered healthy [26,27]. Figure 2 shows a postoperative X-ray
after PAO (left hip), with an LCEA angle of 26.6° and AI angle of 13.4° on the healthy side.
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Figure 2. Example of a postoperative AP pelvic radiograph after PAO, showing the lateral center-
edge angle (LCEA) and acetabular index (AI) measurement. On the left hip joint, the area where the
supraacetabular oteotomy has been performed is shown in yellow. The area of the pubic osteotomy
is marked in orange.

Besides Hoch et al. [23], different 3D approaches for postoperative outcome eval-
uation have been presented but none were sufficiently comprehensive and automated
to a level where they could be used in clinical practice. Manual 3D outcome evaluation
was extensively used in studies on computer-assisted deformity correction to assess bone,
implant and osteotomy parameters in the wrist [28,29], forearm [30–32], shoulder [33,34],
knee [35–39] and foot [40–42]. Beside these manual approaches, automatic methods have
also been developed. Murphy et al. [4] pusblished a clinical evaluation of a biomechanical
guidance system for PAO in 2016, where they report preoperative planning, intraopera-
tive navigation as well as the postoperative evaluation of the 3D acetabular realignment.
To evaluate their system, the authors aligned pre- and postoperative CT scans through
image registration using normalised mutual information (NMI) as metric. Kyo et al. [43]
evaluated implant orientation in postoperative CT images after total hip arthroplasty,
by overlaying a 3D model of the implant on a postoperative CT image of the implant.
In 2022, Gubian et al. [44] evaluated CT-navigated pedicle screw placement, by comparing
the preoperative trajectory plan with the corresponding postoperative screw position, de-
termined by manual segmentation of the postoperative CT. Uozumi et al. [45] proposed an
automatic 3D evaluation of screw placement after anterior cruciate ligament reconstruc-
tion using multidetector CT images. Their method consisted of thresholding the images
to isolate the screw voxels, based on which the center of mass of the screws were found.
The corresponding screw center lines were detected through Principal Component Analysis
(PCA) [46]. In 2018, Esfandiari et al. [47] reported a deep learning based technique for
screw position assessment on intraoperative X-rays of the spine anatomy. First, a con-
volutional neural network was utilised to classify every pixel into three distinct classes,
namely the screw head, screw shaft, and background. Subsequently, a skeletonisation
algorithm was applied to extract the central axis. To date, no studies have been reported in
literature regarding the quantification of osteotomies, but the field of automatic fracture
detection attempts to solve a similar problem. Several studies have investigated fracture
detection using deep learning [48–65]. Studies on fracture detection have mainly been
focusing on the classification task (fracture/no fracture), such as Tomita et al. [62] In 2018,
Tomita et al. [62] published a pre-screening system to improve osteoporotic vertebral frac-
tures (OVFs) diagnosis on chest, abdomen and pelvis CTs, flagging suspicious cases prior to
review by radiologists. Cuts were localised by predicting bounding boxes around the area
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of fracture. Lindsey et al. [59], developed a deep learning approach for fracture detection
and localisation on wrist radiographs. The model had two outputs, a binary classification
for fracture detection and a probability map (heat map) showing the confidence at each
pixel location for it to be part of a given fracture. They found that the detection of wrist
fractures by clinicians improved significantly, when provided with the assistance of the
trained model [59]. The localisation of fractures was not quantified, but served as an
assistance for clinicians to find a potential fracture. In 2022, Joshi et al. [48] presented the
first fracture detection and localisation method on wrist radiographs, which in addition
to detection and localisation, also provided a segmentation mask of the fractures using
instance segmentation with a modified version of mask R-CNN [66] architecture.

As per our knowledge, the approach presented in this study is the first work intro-
ducing a fully automatic method for 3D postoperative outcome evaluation. Our technical
contributions are:

• The first fully automatic 3D measurement method of bone cut accuracy is presented.
• Thanks to our cut detection method, our combined segmentation and registration

approach measures anatomy manipulation and repositioning automatically and accu-
rately, even in the presence of bone in-growth and callus.

• Lastly, an accurate and fully automatic 3D screw placement quantification method
is presented.

Our approach was evaluated on 27 PAO interventions and compared against a manu-
ally performed 3D outcome evaluation method [23].

2. Materials and Methods

In the following, we first provide details on our data collection protocol in Section 2.1
and later describe the proposed automatic outcome evaluation method in Section 2.3.
Section 2.3 is organised in three subsections: Osteotomy detection and quantification is
discussed in Section 2.3.1, quantification of anatomy repositioning in Section 2.3.2 and
implant quantification in Section 2.3.3. The following mathematical notations are used
throughout this article: The global coordinate system of the pre- and postoperative CT
images are denoted as CTpre and CTpost respectively. The local coordinate system of the
cropped pre- and postoperative CT images are denoted as Fpre and Fpost respectively.
A transformation from CTpre to CTpost is denoted as CTpost TCTpre . The relative repositioning
of the fragment is described by the transformation from Fpre to Fpost and denoted as Fpost TFpre .

2.1. Patient Selection and Imaging

This study included 27 patients (9 m, 18 f) who underwent PAO in our institution
between March 2018 and May 2020. This study was approved by the responsible ethical
committee (approval number: BASEC-Nr. 2018-01921). The mean age of the subjects was
25 years (14–33 y). 14 patients underwent surgery of the right hip joint, 13 of the left. Three
patients had already undergone PAO on the contralateral side previous to this study. For two
patients both hips were included, since their PAO interventions on both sides were performed
during the mentioned time frame. Exclusion criteria were a previous hip surgery other
than PAO (i.e., total hip replacement), a data set which is incomplete or does not comply
to the CT imaging protocol. For all patients, pre- and postoperative computed tomography
(CT) scans of the pelvis were acquired according to a standard protocol of the radiology
department of Balgrist University Hospital. The radiographic assessment was performed
pre- and 15.2 ± 3.4 weeks postoperatively, using a 64-detector row Somatom Edge CT® device
(Siemens, Erlangen, Germany). The slice thickness was 1.0 mm and the in-plane resolution
(x-y) was 0.4 × 0.4 mm. The images were resampled to shape [128,128,128] for all steps that
involved Deep Learning. After resampling, the full pelvis CT images had a voxel size of
2.86 mm and the cropped images had a voxel size of 1 mm. 3D models of the pelves were
extracted using the global thresholding and region growing functionalities of a commercial
segmentation software (Mimics medical, Materialise NV, Leuven, Belgium) [8,34].
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2.2. Manual 3D Postoperative Evaluation

Manual 3D postoperative evaluation is based on a pipeline that involves numerous
manual steps. On the example of PAO, the overall process can be summarised as follows.
The segmentation of the bone models was performed for both pre- and postoperative CT
images. Segmentation of the post-operative CT images still relies on extensive manual
refinement as the presence of metal artifacts make automatic segmentation methods less
effective [67]. The 3D assessment of the osteotomies is the most challenging and inaccurate
part due to the formation of callus resulting from the bone healing process. Callus is a
visible irregularity on postoperative bone, similar to scarring in soft tissue. For each of
the four osteotomies, a plane object was placed on the postoperative bone model at the
location of the callus. Its position on the bone model was verified by looking at the model
from multiple perspectives. Once the position of each osteotomy plane was determined,
the cuts were simulated on the 3D postoperative bone model to free the mobile fragment
in-silico. To identify the performed intraoperative anatomy repositioning (Figure 1B), the
mobile fragment was aligned with the preoperative bone model using surface registration
(ICP) [68] followed by manual fine-tuning. Finally, to determine the positions of the screws,
manual selection of two points was carried out on the segmented screw models, one at the
head and the other at the tip of each screw.

2.3. Computer-Assisted 3D Postoperative Evaluation

Figure 3 provides a high-level overview of our method, where A describes osteotomy
detection and quantification, B shows the quantification of anatomy repositioning and C
illustrates the three steps towards implant quantification. In A, we trained a network to
specifically identify all voxels belonging to the cut region of each osteotomy (Section 2.3.1).
A 3D plane was then fitted to each segmented cut region to quantify the osteotomy. In B,
anatomy repositioning is quantified by two consecutive registrations, first a coarse alignment
between pre- and postoperative CT, followed by a registration of the fragment from the
post- to the preoperative position. We used two registration masks to specify the region
of interest. The first registration mask for the pre-post alignment was inferred by a bone
segmentation network to segment the full pelvis (A.1). Based on the plane positions predicted
in A, the second registration mask for the fragment alignment was created (A.2), by isolating
the area of the acetabular fragment in the full pelvis segmentation (A.1). The screw locations
were determined in three steps, illustrated in C. First, the post-op CT was thresholded to
obtain point clouds of the screws. Second, the screw center lines were determined by applying
Hough Transform [69]. The last step was finding the screw head locations achieved by fast
voxel traversal for ray tracing [70]. In the following chapters, the details on implementation
are reported.

2.3.1. Osteotomy Detection and Quantification

The basis for calculating the planes was a pixel-wise identification of the osteotomy
areas. For this purpose, a 3D multi-label segmentation network was used. The input of
the network were the postoperative CT images, which were previously pre-processed by
normalisation and cropping them around the hip joint, such that the full fragment was in-
cluded and then resampled to [128,128,128]. The output tensor was of shape [128, 128, 128, 5]
consisting of the background [128, 128, 128, 0] as well as one dimension per osteotomy
[128, 128, 128, i], i ∈ [1, 4], where channel i corresponds to the ith osteotomy plane of
Figure 1A. The network was trained during 40 epochs and had a 3D UNet [71] structure
consisting of five blocks of convolutional layers with 3 × 3 × 3 filters, followed by a
max-pooling layer, where the number of filters were doubled for each convolutional block.
We used 16 filters for the first convolutional block and doubled the number of filters for
each block. Adam’s algorithm was used as the optimizer [72]. The activation function
for all convolutional layers was leaky ReLU, except for the last layer which was softmax.
The training data was manually annotated using pixel-wise segmentation and included
the bony areas identified as part of the cut, using the callus formation. For epoch 0 to 10,
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the learning rate lr = 1 · e−4, after that, it was changed to 1 · e−5. The 27 postoperative
images were augmented offline resulting in 405 input images. Augmentation consisted
of at least one or a combination of vertical flipping, translation or rotation. To train this
network, a weighted categorical cross-entropy loss LWCCE was used:

LWCCE = −
i=N

∑
i=1

ti · log(pi) · wi (1)

where N denotes the number of classes. The weights were empirically determined to be
w = [10, 270, 260, 270, 260].

Figure 3. An overview of the proposed pipeline consisting of three main components: (A) Osteotomy
Detection and Quantification, where the four osteotomy planes (1–4) are shown in yellow, green, blue and
red. (A.1,A.2) represent how the two registration masks, used in (B), were created. (B) Quantification of
Anatomy Repositioning and (C) Implant Quantification.
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The segmentation obtained from the network served as the basis for plane fitting,
which was performed for each identified cut region using principal component analysis
(PCA) [46], taking the smallest eigenvector as the plane normal and the center-of-mass as
the plane center.

2.3.2. Quantification of Anatomy Repositioning

To quantify anatomy repositioning, we propose a masked multi-step registration
approach which entailed a coarse alignment of the pre- and postoperative CT images
followed by a fine fragment alignment of the repositioned anatomy.

Coarse alignment: The first registration calculates the transformation CTpost TCTpre used
to superimpose the pre- with the postoperative CT images (Figure 3B, Pre-Post Alignment).
To this end, the pelvis bone was utilised as a common reference between pre- and postop-
erative CT images and used as registration mask for the coarse alignment (Figure 3(A.1)).
The mask Mcoarse was obtained by applying deep learning segmentation using the same
network architecture as for the osteotomy detection described in Section 2.3.1, whereas
learning rates, input/output images, activation function as well as loss function, differed.
For epoch 1 to 20, the learning rate was set to 1 · e−4, for epoch 20 to 30 it was 1 · e−5

and between 30 and 40 it was 1 · e−6. Input and output size were both [128,128,128] and
sigmoid was used as activation function for the final layer. The network was trained for
40 epochs. To make the network robust against the presence of implants and metal artefacts,
the dataset consisted of not only 25 preoeprative CTs but also 27 postoperative CTs with
implants. We augmented them offline to a total of 520 images and randomly applying either
one or a combination of vertical flipping, rotation or translation to the images. Dice-CE
Loss [73] LDCE was used as the loss function and was defined as:

LDCE = (1− α) · LCE + α · LDice (2)

where α = 0.5, LCE is Cross-Entropy Loss [74] and LDice is Dice Loss [73]. We used the
ITK toolbox [75,76] for implementing the coarse and fine registration algorithms to obtain
CTpost TCTpre and Fpost TFpre respectively. We used normalised correlation [77] as the image
similarity metric and Regular Step Gradient Descent [78] as the optimizer and assumed
a rigid-body transformation with 6 degrees of freedom as our underlying transforma-
tion. The hyperparameters for the coarse registration were the following: number of
iterations = 200, translation scale = 1/2000, rotation scale = 1, maximum step length = 1
and minimum step length = 0.001.

Fine alignment: The goal of the fine registration was to obtain the transformation
Fpost TFpre of the isolated bone fragment between pre- and postoperative position. A second
registration mask was used to isolate the fragment and constrain the registration process
(Figure 3(A.2)). This was achieved by first finding an approximation of the joint center
C by computing the mean of all 4 plane centers Pj, j ∈ [1 . . . 4] to then ensure the plane

normals
−→
Nj were pointing towards the approximated joint center C. We defined a voxel Vi

in Mcoarse as part of the fragment, if for all planes the dot product
−−→
PjVi ·

−→
Nj > 0, where

−−→
PjVi

is the vector pointing from the plane center Pj to voxel Vi. The final fragment alignment is
expressed by the 3 degrees of freedom (DOF) rotation and 3 DOF translation encoded in
the transformation Fpost TFpre obtained from the fragment alignment registration (Figure 3B,
Fragment Alignment). The hyperparameters for the fine registration were the following:
number of iterations = 200, translation scale = 1/500, rotation scale = 1, maximum step
length = 0.7 and minimum step length = 0.0001.

2.3.3. Implant Quantification

In PAO, multiple screws are implanted in close proximity to each other. The segmented
screw mask resulting from the CT images requires isolation of each screw, which is particu-
larly challenging. Our method of implant quantification is based on the identification of
simple geometric shape features of the implants, which allow us to subsequently determine
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their position. In our case, the shape features are lines corresponding to the screw threads.
For other implants such as osteosynthesis plates or prostheses, the shape features would
be circles or spheres corresponding to the plate holes or prosthesis heads, respectively.
Breaking down implant quantification to simple shape features makes Hough transform
the algorithm of choice. To quantify screw location, the center line and entry point for each
screw were determined in three steps (Figure 4). For center line detection, we followed the
Hough transform implementation for 3D line detection based on 3D point clouds published
by Dalitz et al. [69] (Figure 4(2a)). Our input were the point clouds of the screws, which we
obtained by thresholding the postoperative CTs at Hounsfield unit (HU) > 2500 to find the
region corresponding to metal implants (Figure 4(1)). The method was applied for each
patient individually. Each point cloud included 4 to 6 screws depending on the patient case
(Figure 4(2b)). In the following, we briefly summarise their method: 3D Hough transform
is applied to transform each point cloud into a voting array in the parameter space [79].
A common approach to find the object in this voting array, in our case a 3D line, is to
search for local maxima, also known as a “non maximum suppression” [80] which can
lead to the prediction of many nearby lines. To avoid that, the Hough transform is applied
iteratively, while points of detected lines are removed after each iteration. The algorithm
can be adjusted for best predictions by setting the following three parameters. (1) nlines:
the maximum number of lines to be detected, (2) minvotes: the minimum vote count to
be detected as lines and (3) dx: the xy step width. Optimal results for our data set were
found using the following parameters, which were determined experimentally: nlines = 6,
minvotes = 50 and dx = 3. With these settings, we achieved an accurate line prediction
per screw (Figure 4(2a) directions and center points in pink). The algorithm returns the
detected lines in a list including the following information: the number of points that have
been assigned to the line, their center of mass and the line direction. In step three, screw
entry points were identified using a fast voxel traversal method based on ray tracing [70]
(Figure 4(3)). The center of mass per screw and the corresponding line direction, found
through Hough transform, served as starting point and direction for the ray tracing algo-
rithm within the thresholded segmentation masks. The anatomical coordinate system of
the CT was used to ensure that the line direction was consistently pointing towards the
screw head for all screws and patients. The ray travels through all foreground voxels along
the predefined direction vector until it reaches the end of the segmentation mask, where
the switch from foreground voxels to background happens, which in our case corresponds
to the screw entry point.

Figure 4. An overview of the three steps towards implant quantification. (1) thresholding the
postoperative CT to find the screw point clouds. (2a) The point clouds from (1) are the input for the
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Hough transform algorithm, which finds the screw axis and center point. In (2b) the vector directions
are verified to point towards the screw entry points using the CT coordinate system. (3) Entry points
are determined by fast voxel traversal based on ray tracing. The center point found through Hough
transform (shown in pink) is the starting point for ray tracing along the screw axis (green) until
reaching the end of the screw (blue).

3. Results

In the following sections, we report our results and compare them to the manual gold
standard approach reported in Hoch et al. [23].

3.1. Osteotomy Location

To quantify the segmentation results for osteotomy detection, we conducted a compar-
ison against manually defined planes. Please note, that clinical gold standard for manual
definition of the osteotomy planes cannot be seen as a ground truth, as it involves many
manual processes that can potentially dilute the accuracy of the assessment. The follow-
ing metrics were introduced for this comparison (see Figure 5A) shows the pelvic 3D
model with the starting points of the osteotomies PM1 . . . PM5 (manual) and PA1 . . . PA5
(automatic), which were defined as follows:

• PM1, PA1: most superior point on intersection between supraacetabular osteotomy
plane and the pelvic 3D model

• PM2, PA2: most medial point on intersecting line between supraacetabular and retroac-
etabular osteotomy planes

• PM3, PA3: most medial point on intersecting line between retroacetabular and ischial
osteotomy planes

• PM4, PA4: most anterior point on intersection between ischial osteotomy plane and
the pelvic 3D model

• PM5, PA5: most posterior point on intersection between pubic osteotomy plane and
the pelvic 3D model

These points were projected to a plane PL defined by the best least-squares fit of
PM1 . . . PM4.

Figure 5. Illustration of the measures to evaluate the location of each osteotomy plane. (A) shows
the starting point of the osteotomies PM1 . . . PM5 (manual) and PA1 . . . PA5 (automatic). (B) shows
the projected plane PL and the connecting vectors

−−→
VM1 . . .

−−→
VM3 and

−→
VA1 . . .

−→
VA3 between projected

points. (C) represents the most posterior points on plane 4, PM5 and PM4, as well as the normal
vectors of plane 4,

−−→
NM and

−→
NA.



J. Imaging 2023, 9, 180 10 of 19

Afterwards, the connecting vectors
−−→
VM1 . . .

−−→
VM3 and

−→
VA1 . . .

−→
VA3 between the projected

starting points were calculated as well as the angles between them (Figure 5B). SRM (manual)
and SRA (automatic) were formed by

−−→
VM1,

−−→
VM2 and

−→
VA1,

−→
VA2, respectively. RIM and RIA

were formed by
−−→
VM2,

−−→
VM3 and

−→
VA2,

−→
VA3, respectively. In addition, we report the angle

between the manual and automatic normal vectors
−−→
NM and

−→
NA for the pubic osteotomy

plane (Figure 5C). Table 1 reports the mean results over all patients, whereas individual results
per patient can be found in Table A1. In Figure 6, a visualisation of the best (case 16) and
worst (case 14) cut detection outcome is presented. The best and worst case were determined
based on the deviation from the manual planning across all measures reported in Table A1.

Table 1. Mean difference between the manual and automatic cut detection across all patients.
The measurements were calculated according to Section 2.3.1.

Measure Manual Automatic Mean σ Min Max

3D distance [mm]

PM1 PA1 17.0 13.0 2.9 54.9
PM2 PA2 12.8 7.4 1.8 27.8
PM3 PA3 15.0 12.1 4.3 71.4
PM4 PA4 7.3 6.3 1.0 25.5
PM5 PA5 8.7 6.7 1.3 23.5

2D angle [°]

−−→
VM1

−→
VA1 7.0 5.4 0.3 22.2

−−→
VM2

−→
VA2 6.9 5.4 1.6 23.4

−−→
VM3

−→
VA3 21.9 17.7 0.6 73.3

Abs. 2D angle deviation [°] SRM SRA 9.9 8.5 0.0 36.5
RIM RIA 20.0 15.2 0.3 49.9

3D angle [°]
−−→
NM

−→
NA 29.2 11.2 9.6 54.4

Figure 6. Visualisation of the best (case 16) and worst (case 14) cut detection outcome. The manual
plane placement is shown in red and the automatic solution in blue.
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3.2. Fragment Reorientation

We evaluated both registration processes the pre-post alignment CTpost TCTpre and frag-
ment alignment Fpost TFpre for the manual and automatic solution by calculating the mean
absolute error (MAE) between corresponding mesh points in the end position. For the
first stage of registration, the coarse alignment, we found an error errT1 of 1.01 ± 0.46 mm.
In the final stage of measuring the bone fragment repositioning, we found an error errT2 of
2.10 ± 0.97 mm. In addition, we report the dice coefficient of the postoperative CT (cropped
around the acetabulum) with the preoperative CT in its final position, after applying both
transformations CTpost TCTpre and Fpost TFpre . The mean dice coefficient across all patients for
the automatic registration was DCa,mean 0.62 ± 0.07 and DCm,mean 0.60 ± 0.07 for the manual
registration. In Table A2 we report the registration results for all patients, as well as the dif-
ference of dice coefficients for the automatic and manual solution DCdi f f = |DCa − DCm|.
As an ablation study, we performed 5-fold cross validation to evaluate the performance
of the pelvic segmentation network. The mean dice coefficient (DC) across all folds was
0.93 ± 0.02. In Figure 7 we present the complete registration results for an example case
(i.e., case 19). Figure 8 shows the 3D overlay visualisation of the registration results for four
examples. Case 6 was found to be the best case (DCa of 0.74) and case 17 the worst case
(DCa of 0.47). In addition case 22 and 15 are presented, which were determined to have the
most and least similar dice scores for the automatic compared with the manual solution.

Figure 7. Results of quantifying anatomy repositioning for a typical case (i.e., case 19). In (1a–2b),
the preoperative CT (pelvis highlighted in green) and postoperative CT images are superimposed
before and after the either registration step (i.e., (1a): before pre-post alignment and (1b): after
pre-post alignment). (1): Pre-Post Alignment. (1a) shows the overlay of the pre- and postoperative
CTs after initialisation, which is the starting position for the pre-post alignment. (1b) shows the
end position of the pre-post alignment, where the pre- and postoperative CTs are aligned. (2): For
Fragment Alignment, the CT images are cropped around the fragment. (2a) shows the starting
position for the second registration, which is found in 1. (2b) shows the final position, where the pre
and post fragment are aligned. (3) shows the end position for the manual and automatic fragment
alignment. The 3D postoperative bone model is shown in violet, the automatic solution is shown in
blue and the manual result in red.
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Figure 8. Registration results for four example cases, the postoperative bone is shown in violet,
the automatically transformed fragment is shown in blue and the manually registered fragment is
displayed in red. Case 6 with the highest overall dice score of 0.74, case 17 with the lowest dice score
for the automatic solution of 0.47, case 22 with the most similar dice of 0.57 for both solutions and case
15 with the least similar dice scores for the automatic and manual solution, 0.65 and 0.58 respectively.

3.3. Implant Placement

We found that the mean error between manually and automatically detected screw
head centers was 1.32 ± 0.49 mm. Similarly, the mean 3D angle between the screw center
lines derived based on the automatic vs. the manual process was 1.10 ± 0.87°. Figure 9
shows an example of the screw head and center line prediction.

Figure 9. Example of a manual (red) and automatic (blue) prediction of the screw head location and
center line.
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4. Discussion

In this study we proposed a fully automatic method for postoperative quantification
of CT images after PAO interventions and compared it to manual state-of-the-art methods.

As per our knowledge, the presented method is the first to quantify osteotomy location
in CT images. For cut detection, we found a mean error of projected plane starting points
(|PMi − PAi|, i = 1 . . . 4) for planes 1–3 of 13 ± 3.6 mm and a mean difference between
2D angle of 11.9 ± 7°. For the pubic osteotomy (plane 4), we report a 8.7 mm mean error
and a 29.3° angular deviation. Kulyk et al. [15] and Tschannen et al. [22] presented
methods to detect the articular marginal plane (AMP) of the proximal humerus in CT
images. Tschannen et al. [22] found a 2.40 mm error in estimating the AMP center and
a 6.51° mean angular error for estimating the normal vector compared to the manually
annotated ground truth. Kulyk et al. [15] reported a 1.30 ± 0.65 mm mean localisation
error and a 4.68 ± 2.84° angular error. Our results are inferior to those found in both,
Kulyk et al. [15] and Tschannen et al. [22]. However, our results were in line with the ones
found in Ackermann et al. [8], who investigated the postoperative outcome compared
to the planned osteotomies for PAO. During a typical PAO intervention, only plane 1 is
cut with a surgical saw whereas plane 2 to 4 are performed with a chisel. Furthermore,
the crossing between plane 2 and plane 3 (angle RIM and RIA) is achieved by a controlled
fracture, which makes a true plane fit, specifically the distinguishing between plane 2 and
3, more complex since it often presents as a curvature rather than two individual planes
intersecting. Generally larger errors in cut prediction were found for planes with small
surface areas (i.e., the pubic osteotomy, plane 3 and the iscial osteotomy, plane 4). One
example is case 14, where the cut surfaces of plane 1 and 3 are forming a gap and only small
areas of the bone fragments touch and form a callus, as can be seen in Figure 6. Moreover,
the training data for the segmentation network was not annotated based on the manual
plane detection but rather based on callus formation.

The evaluation of our fragment repositioning showed a 1.01 mm mean point-to-
point distance error for the pre- to postoperative CT registration and 2.10 mm in the final
position of the acetabular fragment. In 2011, Murphy et al. [81] compared 20 individual
registration algorithms on a set of 30 intra-patient thoracic CT image pairs and found a
mean error for landmark alignment of 0.83 mm for the best 6 algorithms. Their mean voxel
size was 0.7 mm and a registration mask was used. Although the set of images used in
Murphy et al. [81] had larger variety of information deviation between image pairs (due
to respiratiory changes), we argue that our results are in a similar range and therefore
acceptable. Moreover, errT12[mm] reports the combined error of both registration processes.
It compares the starting position of the preoperative bone model to the end position of
the acetabular fragment. Interestingly, although the largest deviation between meshes in
the end position errT12[mm] lwas found for case 6, the best dice score DCa was achieved
for that case, which suggest best overlap with the preoperative bone mesh. This can also
be confirmed visually, shown in Figure 8. As reported in Table A2, the mean dice score
for the automatic approach DCa was found to be slightly superior to the manual method
DCm. Furthermore, no correlation was found between the performance of the segmentation
network for the registration mask and the registration result.

For quantification of the screw positions, we found a 1.32 mm MAE for the screw
head prediction and a 1.10° screw axis error. In 2013, Uozumi et al. [45] published an
automatic 3D approach for screw placement evaluation where they first isolated the screw
point clouds through thresholding the images and reported the center of mass. Then they
applied PCA to find the screw axis. They found a 0.14 mm mean distance error and a
0.02° average angular error, which is superior to our results. Uozumi et al. [45] achieved
higher accuracy with their method because their screw point clouds were isolated for
each screw, therefore identifying the center of mass and direction was a straight forward
process. In our case however, the screws are very close to each other, which results in point
clouds combining multiple screws which is a more complex task, hence the lower accuracy.
Moreover, our results are superior to the pedicle screw placement accuracy reported in
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Jiang et al. [82] and Gubian et al. [44], which were both considered clinically acceptable.
Jiang et al. [82] evaluated robot-assisted pedicle screw placement and found a mean screw
tip accuracy of 3.6 ± 2.3 mm and an angular deviation of 3.6 ± 2.8°. Gubian et al. [44]
evaluated CT navigated pedicle screw placement by comparing the preoperative trajectory
with the corresponding postoperative screw position and found a mean displacement of
5.2 ± 2.4 mm for the screw head points and a mean axis deviation of 6.3 ± 3.6°.

Our work has several limitations. A drawback of our method is the radiation exposure
during CT acquisition. Moreover, the manual data labelling required for training is very
time consuming. However, with the introduction of low-dose CTs less harmful imaging
will replace conventional methods in the future [83]. Furthermore, recent AI based recon-
struction algorithms can be leveraged, which are capable of generating accurate 3D models
from X-ray or fluoroscopy data [13,84]. Confounders which are difficult to measure can
be introduced at different steps of our pipeline. First of all, we compare our results to
a manual approach, which may not correspond the ground truth measurements. Other
potential sources might be the manual segmentation and the resampling of the images at
several points throughout the pipeline. In addition, no inter-observer bias for the manual
approach was investigated. Nevertheless, the large deviation of the automatic cut detection
and the manual gold standard show the need for further validation studies that will be
conducted in future work. An automated method would also not replace the radiology
expert, but would instead represent a computer-assisted radiology approach that provides
more information while saving time. The postoperative imaging for our data set was taken
approximately 15 weeks post intervention, when bone healing has already occurred. We
plan to investigate whether a higher standardised postoperative follow up, which takes
place sooner after surgery, will result in a higher accuracy of our method. Future work will
also include the generalisation of the proposed method to other orthopaedic interventions
as well as being expanded to fracture detection.

5. Conclusions

Our method offers several advantages: Firstly, no manual input is required, which
reduces the evaluation process by multiple hours per patient when compared to manual
3D analysis. Moreover, our method ensures objectivity in the assessment, providing
reliable and consistent results and therefore contributes to enhancing the overall quality
of treatment.
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Appendix A

Table A1. Results for the comparison of manual and automatic cut detection for all patients.

Patient 3D Distance [mm] 2D Angle [°] abs. 2D Angle 3D Angle [°]
Deviation [°]

Manual PM1 PM2 PM3 PM4 PM5
−−→
VM1

−−→
VM2

−−→
VM3 SRM RIM

−−→
NM

Automatic PA1 PA2 PA3 PA4 PA5
−→
VA1

−→
VA2

−→
VA3 SRA RIA

−→
NA

Mean 17.0 12.8 15.0 7.3 8.7 7.0 6.9 21.9 9.9 20.0 29.2
σ 13.0 7.4 12.1 6.3 6.7 5.4 5.4 17.7 8.5 15.2 11.2

0 32.4 25.8 9.9 6.4 2.0 11.6 10.5 0.6 1.1 11.1 29.5
1 3.3 5.7 10.9 8.3 5.1 2.2 8.9 1.0 11.1 9.9 21.6
2 11.2 7.3 9.4 2.1 6.2 8.8 3.5 3.2 5.2 0.3 31.2
3 20.6 10.2 6.7 1.2 8.2 12.1 2.3 8.5 9.8 6.2 20.0
4 12.4 8.2 14.2 8.7 17.7 0.4 2.0 14.0 1.6 16.0 48.5
5 6.6 10.5 15.0 5.9 21.2 2.9 2.9 14.7 0.0 11.8 49.1
6 26.7 7.8 17.3 7.4 1.3 2.4 2.8 39.7 0.4 36.9 19.2
7 14.5 27.8 13.1 5.6 3.4 3.0 18.9 19.1 15.9 0.3 25.3
8 3.3 18.8 7.0 2.6 16.9 7.8 1.9 17.6 5.9 15.7 54.4
9 10.9 16.5 11.8 25.5 21.1 1.2 7.0 43.1 8.2 36.0 49.3

10 14.6 2.6 11.4 5.3 3.6 5.1 3.9 26.3 9.0 22.4 28.5
11 16.8 26.1 16.5 6.7 10.1 7.6 17.1 15.9 9.5 1.2 36.9
12 28.2 3.2 20.0 4.2 4.3 7.6 8.6 39.5 1.1 30.9 18.4
13 14.0 10.8 6.0 1.2 15.4 9.4 5.1 12.0 14.5 17.1 28.3

14: worst 54.9 10.9 71.4 17.3 23.5 13.1 23.4 73.3 36.5 49.9 32.9
15 2.9 1.8 15.7 6.5 14.5 1.6 5.7 45.8 7.3 40.1 38.2

16: best 6.1 5.9 4.3 2.4 1.5 10.3 1.6 5.1 11.9 6.8 9.6
17 4.8 12.2 12.1 10.6 4.0 10.5 7.1 6.7 3.4 0.4 21.0
18 14.9 11.1 13.1 2.9 2.3 0.3 7.9 8.9 8.2 16.8 27.9
19 5.8 10.8 13.3 24.0 11.4 1.7 1.7 20.4 3.4 18.7 35.5
20 29.6 16.1 14.8 1.0 5.9 1.8 9.4 11.5 11.2 20.9 17.6
21 5.5 6.8 20.6 6.5 6.8 10.9 3.7 43.8 7.3 47.5 20.6
22 30.9 11.9 7.8 5.2 3.1 11.2 4.4 6.6 15.6 11.0 22.0
23 42.9 18.3 10.3 13.1 8.6 22.2 8.5 14.3 30.7 5.8 33.2
24 23.4 22.2 16.9 9.0 5.7 0.8 8.2 20.8 7.4 29.0 21.4
25 15.6 12.8 19.4 3.7 7.3 13.0 3.6 39.8 16.6 43.4 22.1
26 6.0 23.3 16.9 4.2 2.4 10.1 4.7 38.2 14.8 33.6 25.8

Table A2. Registration results for all patients.

Case errT1 [mm] errT12 [mm] DCm DCa DCdi f f

meanall 1.01 2.10 0.60 0.62 0.02
σ 0.46 0.97 0.07 0.07 0.02

0 0.38 1.4 0.48 0.48 0.003
1 0.42 2.48 0.67 0.7 0.036
2 1.47 1.61 0.71 0.71 0.002
3 1.43 2.07 0.71 0.74 0.027
4 0.79 1.86 0.62 0.66 0.039
5 0.51 2.46 0.58 0.59 0.016
6: DCa,max 0.71 5.84 0.68 0.74 0.059
7 1.83 2.25 0.61 0.64 0.028
8 1.25 1.76 0.62 0.67 0.048
9 0.86 1.64 0.62 0.64 0.017
10 1.57 1.92 0.63 0.64 0.003
11 0.66 1.24 0.49 0.51 0.011
12 0.41 0.55 0.62 0.64 0.025
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Table A2. Cont.

Case errT1 [mm] errT12 [mm] DCm DCa DCdi f f

13 1.2 2.27 0.56 0.62 0.052
14 0.54 1.72 0.57 0.6 0.034
15:
DCdi f f ,max

1.72 2.73 0.58 0.65 0.068

16 1.69 3.27 0.71 0.7 0.004
17: DCa,min 0.27 0.33 0.44 0.47 0.023
18 1.31 2.45 0.69 0.69 0.004
19: example 0.88 1.6 0.53 0.55 0.017
20 0.74 2.25 0.53 0.54 0.008
21 0.96 2 0.64 0.65 0.015
22:
DCdi f f ,min

1.19 2.04 0.57 0.57 0.001

23 1.61 3 0.53 0.54 0.007
24 1.3 2.44 0.6 0.61 0.003
25 1.2 1.41 0.68 0.69 0.01
26 0.48 2.02 0.6 0.6 0.002
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