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Abstract: Currently, mainly aggregated statistics are used for bicycle crash risk calculations. Thus,
the understanding of spatial patterns at local scale levels remains vague. Using an agent-based
flow model and a bicycle crash database covering 10 continuous years of observation allows us to
calculate and map the crash risk on various spatial scales for the city of Salzburg (Austria). In doing
so, we directly account for the spatial heterogeneity of crash occurrences. Additionally, we provide
a measure for the statistical robustness on the level of single reference units and consider modifiable
areal unit problem (MAUP) effects in our analysis. This study is the first of its kind. The results
facilitate a better understanding of spatial patterns of bicycle crash rates on the local scale. This is
especially important for cities that strive to improve the safety situation for bicyclists in order to
address prevailing safety concerns that keep people from using the bicycle as a utilitarian mode of
(urban) transport.

Keywords: bicycle; crash; risk; geographical information systems (GIS); spatial analysis; scale;
modifiable areal unit problem (MAUP)

1. Introduction

Road safety should be an integral part of any effort to promote the bicycle as a sustainable,
healthy, and cost-efficient mode of transport. There is strong evidence from the literature that safety
concerns are among the most relevant reasons that keep people from using the bicycle for utilitarian
trips [1–5], although positive environmental [6,7] and health effects [8–12] are apparent. The need
for evidence-based planning approaches that aim for the provision of safe infrastructure brings risk
calculations for bicyclists into the focus. Risk (also referred to as incident- or crash-rate [13,14]) in the
context of this study is defined by the ratio of incidents to the underlying population (exposure data)
within the time of investigation (10 years). Risk calculations, based on geolocated crash records, allow
for the identification of dangerous areas and help to allocate resources and interventions efficiently.
Generally, it can be stated that the minimization of the risk of being involved in a bicycle crash is
a pre-requirement for any comprehensive bicycle promotion strategy [2,15,16]; risk awareness is
especially high amongst female bicyclists for children [17–20].

To date, risk calculations and derived maps are mainly based on aggregated statistics, with
different levels of aggregation. On a national level (USA), Beck et al. [21] calculate a non-fatal injury rate
of 1461 incidents per 100 million kilometers travelled. On the level of municipalities Vandenbulcke et al. [22]
calculate an average casualty rate for Belgium of 7 per 10 million minutes cycled, with distinct regional,
spatial patterns. The number of studies sharply decreases with the level of spatial aggregation. To our
current knowledge Yiannakoulias et al. [23] is the only study that provides incident rates on the level
of census districts. They calculated an average of 7.25–8.95 crashes per 100,000 km travelled, with
a high spatial variability among census districts for the city of Hamilton (Canada).
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Although risk calculations based on spatially aggregated statistics are relevant for a number of
purposes (e.g., comparing the safety performance of countries), they are of less value when it comes to
concrete interventions within cities. Consequently, the need for methods that calculate and map bicycle
crash risk patterns on the local scale is obvious. In doing so, implications, such as spatial heterogeneity
and the modifiable areal unit problem (MAUP), must be addressed. With these aspects in mind, we
developed a conceptual workflow for the identification of adequate spatial reference units (shape)
and suitable levels of spatial aggregation (scale, size). This workflow is transferable, given that the
necessary input data are available.

Before we present a method for mapping bicycle risk patterns on the urban scale that is based
on an extensive bicycle crash database and simulated bicycle flows as exposure data, we will set
the stage for this research. We will first argue for why the investigation on the local scale level
would contribute to a better understanding of bicycle safety within cities before we briefly discuss
two essential implications of risk calculations on this scale level, namely the delineation of reference
units and exposure data.

1.1. Spatial Heterogeneity

Aggregated statistics do not allow for further differentiation within the respective reference
units. Hence, these units are implicitly regarded as homogeneous. When it comes to spatial crash
analysis, aggregation inevitably leads to generalization and information loss; variabilities on the
local scale level are not captured. This could lead to severe impacts on models, analysis results and
derived conclusions [24]. Several authors [25–28] propose methods for how to adequately account
for spatial heterogeneity and autocorrelation in spatial risk models. Neglecting these fundamental
spatial characteristics can lead to severely biased models. Lassarre and Thomas [29] point to the
relevance of geographical disparities in epidemiological studies of road mortalities. In their study they
demonstrate how spatial patterns of road mortalities in Europe change with the level of aggregation
(NUTS0, NUTS1, and NUTS2). On the scale of a city, Loidl et al. [30] made the high spatial variability
and temporal dynamic of bicycle crash locations visible. Their study calls for risk calculations on the
local scale that account for the high degree of spatial heterogeneity. Investigating spatial patterns of
road crashes, Anderson [31] found distinct spatial clusters within the city of London. This means
that an even distribution of crash locations on a local scale cannot be assumed. While the cluster
detection algorithm in Anderson [31] is designed for the planar space, Okabe et al. [32] considered
the network-bound character of road crashes. Their kernel density estimation of crash locations is
network-based. However, spatial clusters of crashes in a test area in Tokyo become evident as well.
Xie and Yan [33] extended this approach and introduced a significance test for spatial clusters, based on
completely random and conditional Monte Carlo simulations. For both methods they found significant
spatial clusters of road crashes in Bowling Green, Kentucky.

Depending on the purpose, risk calculations that are used as evidence basis for informed decisions
on infrastructure improvements, road surveillance, and other targeted measures for better road
safety, need to account for the spatial heterogeneity within the area under investigation. Therefore,
disaggregated statistics with small reference units seem to be preferable. However, as it is demonstrated
in Figure 1 for different spatial distribution patters, two aspects arise instead. Firstly, the number of
reference units with 0 observations increases with the decrease of the reference unit size. Consequently
the histogram is strongly skewed [27]. Secondly, the definition of arbitrary spatial reference units
inevitably implies the modifiable areal unit problem (MAUP).
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Independently from the level of aggregation, derived patterns might be biased by the MAUP. The 
MAUP effect can be observed for regular (hex-, square-grid) and irregular (administrative units) 
reference units. It describes the effect of scale or level of spatial aggregation (Figure 2a) and of zoning 
(Figure 2b) [34]. Although the MAUP effect can be quite large, it is hardly ever explicitly addressed 
in risk calculations for bicycle crashes. Frequently spatial reference units are defined by pragmatic 
reasons, such as the availability of statistical data. In the Geographical Information Systems for 
Transport (GIS-T) literatures [35,36], the MAUP is primarily dealt with in the context of transport 
modelling, where the delineation of traffic analysis zones (TAZ) raises the modifiable areal unit 
problem. Thomas [37] and Abdel-Aty et al. [28] are among the few studies that deal with the MAUP 
in the context of crash analysis and modelling. However, to our current knowledge, there is no study 
on bicycle risk calculation and mapping, which explicitly considers the MAUP. 

 
Figure 2. MAUP effect. (a) scale effect; and (b) zoning effect. 

1.3. Exposure Data 

A major reason for why most risk calculations are based on highly aggregated statistics is the 
lack of adequate exposure data on a local scale [13]. A recent Organization for Economic Co-operation 
and Development (OECD) [38] report on this topic states, “The lack of exposure data is a real 
hindrance to understanding the current status of cycling safety and complicates the assessment of 
cycling policies” (p. 61). This statement is confirmed by virtually any study on bicycle risk 
calculations. International comparisons of safety performance tend to be biased by the heterogeneous 
quality of the exposure data. Tracing back the data sources of such studies (e.g., [16,20]) reveals 
extensive variabilities in spatial and temporal coverage. In addition to compiled statistics based on 
multiple statistic agencies, exposure variables are commonly derived from household travel surveys 
[21], census data [23,39], and travel diaries [14]. Data from these sources are samples that require 
model-based extrapolations in order to get full population data. 

Alternative sources for exposure data are not exploited yet. To our current knowledge there are 
no bicycle risk analyses that rely on mobile phone, tracking or VGI data as exposure variables. 
However, studies reveal the potential of these data sources as proxies for collective mobility [40–42]. 

Figure 1. Depending on the spatial distribution, the level of spatial aggregation implies spatial
heterogeneity and MAUP: (a) Aggregated statistics: Spatial heterogeneity; and (b) Dissaggregated
statistics: Skewed histogram and MAUP.

1.2. Definition of Spatial Reference Units

Generally, the definition of fixed spatial reference units is a trade-off between spatial details
(heterogeneity) and statistical robustness of analyses that build upon these aggregates. Independently
from the level of aggregation, derived patterns might be biased by the MAUP. The MAUP effect can be
observed for regular (hex-, square-grid) and irregular (administrative units) reference units. It describes
the effect of scale or level of spatial aggregation (Figure 2a) and of zoning (Figure 2b) [34]. Although the
MAUP effect can be quite large, it is hardly ever explicitly addressed in risk calculations for bicycle
crashes. Frequently spatial reference units are defined by pragmatic reasons, such as the availability of
statistical data. In the Geographical Information Systems for Transport (GIS-T) literatures [35,36], the
MAUP is primarily dealt with in the context of transport modelling, where the delineation of traffic
analysis zones (TAZ) raises the modifiable areal unit problem. Thomas [37] and Abdel-Aty et al. [28]
are among the few studies that deal with the MAUP in the context of crash analysis and modelling.
However, to our current knowledge, there is no study on bicycle risk calculation and mapping, which
explicitly considers the MAUP.
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1.3. Exposure Data

A major reason for why most risk calculations are based on highly aggregated statistics is the lack
of adequate exposure data on a local scale [13]. A recent Organization for Economic Co-operation and
Development (OECD) [38] report on this topic states, “The lack of exposure data is a real hindrance to
understanding the current status of cycling safety and complicates the assessment of cycling policies”
(p. 61). This statement is confirmed by virtually any study on bicycle risk calculations. International
comparisons of safety performance tend to be biased by the heterogeneous quality of the exposure data.
Tracing back the data sources of such studies (e.g., [16,20]) reveals extensive variabilities in spatial and
temporal coverage. In addition to compiled statistics based on multiple statistic agencies, exposure
variables are commonly derived from household travel surveys [21], census data [23,39], and travel
diaries [14]. Data from these sources are samples that require model-based extrapolations in order to
get full population data.

Alternative sources for exposure data are not exploited yet. To our current knowledge there are no
bicycle risk analyses that rely on mobile phone, tracking or VGI data as exposure variables. However,
studies reveal the potential of these data sources as proxies for collective mobility [40–42].
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Together with the severe underreporting of bicycle crashes in general [43–45], the lack of adequate
exposure data has, of course, far-reaching implications for the reliability and robustness of risk
models. This holds especially true for models and analyses on the local scale, where hardly any of the
existing approaches on the regional and national scale meet the demands in terms of accuracy and
spatial resolution.

2. Method

In order to provide reliable bicycle crash risk analyses on the local scale level, while considering
the issues discussed in the previous section, we followed an iterative workflow which helps to identify
adequate reference units and tests the robustness of crash rates for various unit sizes. We demonstrate
the applicability of the workflow in a case study from Salzburg (Austria).

2.1. Study Site

Located in the northern Alps of Austria, the city of Salzburg, capital of the homonymous
province, has roughly 150,000 inhabitants. Another 150,000 people live in the larger agglomeration,
within a radius of 15 km from the city center. Thus, the city has a catchment of approximately
300,000 inhabitants within cycling-distance.

The road network of the study area (city of Salzburg), which is legally relevant for bicycle traffic
has a total length of 1045 km. Within the city a total of 320 road km are equipped with some kind of
bicycle infrastructure, ranging from separated bicycle ways to opened one-way roads with painted
on-road cycle lanes. According to the latest available figures, Salzburg has a 20% share of the bicycle in
the total modal split [46]. The reasons for the popularity of the bicycle as utilitarian mode of transport
are manifold. The flat topography, high-quality bicycle infrastructure along main corridors, short
distances and a good accessibility of central facilities are commonly regarded as major attractors.

2.2. Crash Data

The crash data used for this study consists of over 3000 police crash reports and covers a time
period of 10 years (2002–2011). The federal bureau of statistics (Statistik Austria) is responsible for
crash data collection in Austria and publishes an annual national road crash report. Usually, the
collected and processed police reports are reported back to the respective authorities. In the case of the
city of Salzburg, the department of urban planning and transport maintains the crash database for all
road incidents within the city. This authoritative dataset is exclusively fed by police reports. Hence,
hospital records [47], insurance claims [48], crowdsourced information [49], or other alternative data
sources are not included.

No estimations for the underreporting rate of bicycle crashes exist for the city of Salzburg.
However, indications for the dimension of the problem are available in the literature. Watson et al. [44]
showed that two thirds of bicycle crashes that were reflected in hospital data could not be linked
to police reports in Queensland (Australia). De Geus et al. [14] estimate a fraction of only 7% of all
minor crashes are being reported to the police in Belgium. Similar underreporting rates are presented
by Janstrup et al. [50] for the Danish province of Funen. Although these rates cannot be directly
transferred to the city of Salzburg, we must be aware that the data used in this study might only cover
a maximum of one third of all crashes. However, it can be assumed that regions with an increased
crash risk can be identified with the proposed workflow, because crashes with severe injuries and high
material damage tend to be captured more probably by police reports.

For the purpose of this study crash reports, with at least one involved bicyclist and valid
location information, were extracted from the database. A total of 3045 geolocated crash reports
between January 2002 and December 2011 met both criteria and were thus considered for further
analysis; 51 crash reports suffered from invalid location information. In the present case, only location
information for the risk calculation was relevant. Thus, associated data about the involved parties,
liabilities and crash details were not considered.
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2.3. Exposure Variable

As demonstrated in Section 1.3, commonly employed exposure data is not suitable for the
mapping of local risk patterns. Thus, we used the results from a spatial simulation of bicycle flows as
the exposure variable for this study. For details concerning the agent-based simulation model itself we
refer to Wallentin and Loidl [51].

The agent-based model (ABM) simulated the total number of traverses per segment for one day
(6 June 2014). Segments are the spatial increment of the digital representation of the road network.
In our case, the road network was modelled as an undirected graph, where nodes correspond with
junctions and edges with segments. In accordance with Yiannakoulias et al. [23] we did not employ
the number of traverses (or trips) as the exposure variable, but the total distance travelled. Thus, the
number of traverses was multiplied with the segment length. Based on the simulation of a single
day and counting data for the whole year 2014 the flows (total distance travelled) were extrapolated
accordingly (Figure 3). This extrapolation exhibits a certain degree of generalization, as the implicit
assumption is that variabilities over time are evenly distributed over space.
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two central, permanently counting stations (induction loops) (b).

The crash data covered the years from 2002 to 2011. Unfortunately no counting data was available
for the entire time period. Thus, we multiplied the simulated annual flow by 10, disregarding the
change of bicycle traffic over time. For the current state of research this degree of generalization was
tolerated, since alternative exposure variables are by far less suitable for the purpose of local risk
mapping and the focus of this study was on spatial patterns.

2.4. Conceptual Workflow

The aim of this study was to map bicycle risk patterns on the local scale, in order to account
for spatial variabilities adequately (see Figure 4 for the overall workflow). Although the geolocated
crash data and the simulated flow would allow for risk calculations on the level of road segments,
the data was aggregated for the sake of statistical robustness. Consequently, the decision on the most
suitable spatial reference unit (level of aggregation) was a trade-off between the amount of spatial
heterogeneity and the size of the confidence interval of the risk calculation. Additionally, the MAUP
was to be considered.

In order to test the type of reference unit and the effect of the unit size, irregular and regular
reference units were defined. Additionally, network-based reference units were generated (for the
algorithm for the delineation of network-based units we refer to Loidl et al. [30]).
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Each reference unit was overlaid with the geolocated crash reports and the total distance travelled.
The high standard deviations for the number of crashes per reference unit in Table 1 indicate that
crash locations and bicycle flows are unevenly distributed over space, what is in line with a previous
study [30,31]. For the present study the following spatial reference units were tested.

Table 1. Descriptive statistics of spatial reference units. Number of crashes and the total distance
travelled (in km) covers a time period of 10 years.

Type Number of
Units

Mean
Size/Length

Min-Max
Size/Length

Number of
Crashes

Total Distance
Travelled

City boundary 1 65.66 km2 - 3045 211,881,301.3

Census districts 32 2.05 km2 0.32–9.41 km2 x = 95.16 x = 6,621,290.67
σ = 59.58 σ = 4,480,156.25

Square grid

4 29.74 km2 - x = 761.75 x = 53,341,757.43
σ = 435.82 σ = 24,541,406.77

16 7.44 km2 - x = 199.44 x = 15,240,502.12
σ = 296.63 σ = 17,510,622.49

64 1.86 km2 - x = 47.61 x = 4,183,667.25
σ = 95.22 σ = 5,541,589.9

256 0.46 km2 - x = 11.90 x = 1,212,312.67
σ = 27.08 σ = 1,907,209.11

Hex grid

9 16.24 km2 - x = 338.56 x = 23,707,769.77
σ = 493.56 σ = 30,431,269.94

37 2.60 km2 - x = 82.35 x = 5,766,754.81
σ = 132.82 σ = 7,407,292.35

130 0.65 km2 - x = 23.44 x = 1,680,078.17
σ = 43.46 σ = 2,442,302.80

447 0.16 km2 - x = 6.82 x = 484,887.14
σ = 13.13 σ = 822,243.05

2190 0.03 km2 - x = 1.39 x = 98,364.95
σ = 3.41 σ = 203,197.45

Network voronoi

25 29.8 km 7.23–59.23 km
x = 119.32 x = 108,489,485.02
σ = 121.17 σ = 116,657,894.47

50 14.9 km 0.96–38.94 km
x = 59.82 x = 54,245,335.48
σ = 68.12 σ = 97,581,581.05

75 9.93 km 0.27–22.66 km
x = 39.97 x = 36,162,789.35
σ = 49.34 σ = 64,971,853.35

100 7.45 km 0.56–25.45 km
x = 29.96 x = 27,122,440.62
σ = 38.99 σ = 62,068,620.58
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Based on the number of crashes and the simulated total distance travelled, the risk was calculated
for each reference unit. These crash rates were only calculated for reference units where both crash
data and simulated flows were available. When these risk calculations had been mapped, spatial
patterns emerged.

The problem with bicycle crashes is that they are rare events and it is decisive for any interpretation
to identify random occurrences. Thus, a measure is required that determines the robustness of derived
risk calculations (crash rate). In order to do so, a 95% confidence interval was calculated for each
reference unit applying an exact binomial test [52] as implemented in the open source software package
“R” (https://www.r-project.org/). The size of the confidence interval indicates the robustness of risk
calculations and helps to interpret crash rates. The larger the confidence interval, the lower is the
statistical robustness, and the higher is the chance that the calculated risk is the product of random
processes or an artefact. In order to provide information about the quality of calculated crash rates, the
risk map was complemented with mapped confidence interval sizes.

With regard to the trade-off between spatial heterogeneity and statistical robustness we made use
of a scatterplot with logarithmically scaled axes. With this, we were able to plot the calculated risk, the
number of accidents and the size of the confidence interval. Based on this scatterplot, reference units
with a maximum visual compactness could be identified. Together with the mapped crash rates and
confidence intervals, the scatterplot served as a decision basis for the choice of appropriate reference
units. MAUP effects could be identified through the link of map series and the scatterplot.

3. Results

As it becomes obvious in Figure 5, crash locations are not evenly distributed over space, but
clustered. This spatial heterogeneity cannot be captured when the city is investigated as a whole.
On average 1.43 crashes per 100,000 km cycled (95% Confidence Interval (CI) [1.38 . . . 1.48]) occurred
during the 10 years of investigation. Aggregating the data to census districts reveals distinct patterns
of risk distribution. Interestingly the frequency of crash occurrences does not directly correspond
with the crash rate. The highest crash rates emerge north of the city center and in the very east-most
region. However, the high risk in the eastern district can be identified as an artifact by the mapped
confidence interval. For this area a very low flow was simulated because the model concentrated
on utilitarian trips. The statistical district in the east covers a mountainous area with lots of leisure
cycling. Consequently, the number of crashes is disproportionately high in relation to the simulated
total distance traveled. In contrast to this particularity, the comparable high risk in the districts around
the city center is statistically more robust and should, thus, be subject to further analyses.Safety 2016, 2, 17 8 of 16 
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Although natural barriers (river, railway, etc.) and population density are commonly considered
in the definition of census districts, they are still hard to compare. Additionally, phenomena that are
not constituted by a static population but by dynamic elements (e.g., bicycle traffic flows generated by
commuters) are not fully captured by census districts. In our case major corridors with high volumes
of in- and out-flux are relevant. This becomes evident when considering the statistical district in the
very north-most region. It covers a large area and the calculated crash rate is relatively high. In fact,
there is an important bicycle corridor, connecting the city center with the adjacent municipality along
a primary road. The crashes are concentrated along this road, while there are hardly any other crash
locations in the whole district. Thus, the spatial heterogeneity within this district is high and calls for
further disaggregation.

Different to census districts, regular reference units are equal in size. On the one hand this helps
in the interpretation of results because there is no need to control for the area. On the other hand,
underlying structures are not considered in the definition of the reference units and, thus, the MAUP
becomes an eminent issue. In the present case regular reference units are primarily used to calculate
crash rates for various levels of aggregation.

Hex grids are the most compact units that can cover the entire planar space without gaps.
This explains their popularity in domains that deal with continuous phenomena, such as ecology [53].
Apart from the type of the reference unit, the size strongly influences the patterns that emerge. Figure 6
maps the risk calculations for five different levels of aggregation. The smaller the reference units, the
better local particularities are mapped. However, as the reference units with the two lower levels of
aggregation cover only very small areas each, they are prone to extreme outliers (as the range of values
in the legend indicates) and artifacts. These values can only be interpreted in conjunction with the
mapped confidence intervals.
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Mapping the risk calculations based on square grids reveals patterns that are in some parts
different from the hex grid (Figure 7). This is due to the shape and to the respective size. Comparing the
two maps in the center nicely demonstrates the MAUP (scale effect). Whereas the map with the
higher level of aggregation shows a rather low risk level in the north, the pattern is different
at a lower level of aggregation. However, again, the mapped confidence interval is decisive for
judging on the quality (statistical robustness) of this local particularity. The square grid maps with
different levels of aggregation (Figure 7) demonstrate the spatial heterogeneity within aggregated units.
Decomposing the reference unit in the northwest of the map with the highest level of aggregation
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reveals the variability within this aggregate. In the present case it becomes obvious that the areas with
a high crash rate are concentrated along a corridor.
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As argued before, bicycle crashes are network-bound incidents. Thus, planar reference units
neglect this characteristic to a certain degree, which can lead to biased analysis results. Take for
example two locations with a significantly high number of crashes. In reality these two locations are
disconnected (e.g., by a river) but close to each other, when only the Euclidean distance is considered.
It might happen that these two locations are aggregated to the same spatial reference unit, indicating
an area with high risk, although there is no relation in reality. Considering this argument, we also
tested different network-based reference units (for details refer to [30,54]).

Figure 8 shows the effect of network-based reference units on the emerging patterns. Depending on
the level of aggregation, regions in the network with a high crash rate become obvious that tend to be
hidden in planar reference units. Similar to Figure 7, the MAUP effect can also be observed in this case
(see the reference units with high risk in the east).
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Figure 8. Risk calculations network-based reference units (100, 75, 50, and 25 units from left to right).

Whereas spatial patterns become obvious from maps, the statistical distribution of crash rates and
confidence intervals remains hidden. Therefore, we link the maps with a scatterplot for each type of
reference unit. Figure 9 shows the result for the square grid reference units.
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The scatterplot, together with the maps help to identify outliers and to decide on an optimal level
of aggregation for a given purpose. The visual compactness of the points in the scatterplot indicates
the similarity of the reference units. Generally there is a direct relation between the size of the reference
units (generalization through aggregation) and the visual compactness in scatterplot. However, in the
case illustrated in Figure 9, the higher level of aggregation (orange dots) is less compact (higher range
of values on both axes) than the finer grid (green dots). In this case one might conclude that the finer
grid is to be preferred, as it better represents the spatial and the statistical distribution.
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4. Discussion

The results confirm the assumption of a high degree of spatial heterogeneity within highly
aggregated reference units. However, the MAUP and random crash occurrences can bias the emerging
examples significantly. In the following we want to discuss this trade-off referring to selected results.

4.1. Spatial Heterogeneity and Local Particularities

Figure 10 demonstrates the additional insight that is gained from risk mapping on a local scale.
It reveals distinct spatial patterns of risk, which are neither captured in the analysis of absolute numbers
of crashes [30] nor in aggregated statistics.

By far the most bicycle traffic occurs along the Salzach River in a north-south direction. From the
analysis on the local scale it can be concluded that although most crashes occur along this corridor
(Figure 5), the risk is comparably low. The situation is quite different in the north and in the south of
the city centre (the corridors are indicated in Figure 10). Here, the number of crashes is high in relation
to the simulated volume. In both areas bicycle infrastructure (mixed cycle-/pedestrian way and
on-road cycle lanes) runs along primary roads with a very high traffic load. Thus, dangerous situations
inevitably occur at intersections where connector roads cross the bicycle infrastructure. In sum, it can
be concluded from this particular example, but also from the maps in Figures 5–8 that high risk is
not primarily a function of bicycle traffic volume (although the bias in the crash reports, namely the
overrepresentation of bicycle-car collisions, need to be considered!), but more of the combination of
different modes and infrastructure types.

Generally, the mapping of crash risks on the local scale facilitates additional insights and
contributes to a better understanding of spatial variabilities of risk patterns. However, outliers
might distort these emerging patterns. From the example, mapped in Figure 10, one might conclude
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that an extremely dangerous hot spot exists in the northeast of the study area. In fact, the high risk is
due to the small population (total distance travelled). Therefore the confidence interval is very large;
the single crash recorded in this reference unit can be regarded as random. In accordance with the
maps in Figures 5–8 the necessity for a statistical measure to judge on the robustness of the results
becomes obvious. For independent events, which occur at rare intervals, the confidence interval
determined by an exact binomial test [52] is proven to be an adequate measure, independent from the
type of reference unit. Providing a measure for the robustness of calculated crash rates is especially
important for small reference units and for areas at the periphery of the area under investigation, since
the probability of artefacts is higher here than in more central areas.
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4.2. Scaling and Zoning Effects (Modifiable Areal Unit Problem, MAUP)

As conceptually discussed in Section 1.1, the MAUP affects the emerging patterns on the risk
maps. Independently from the large confidence interval (Figure 7) for the reference unit mapped in
Figure 11, the map series illustrates both the scaling and zoning effect.
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Figure 11. Simulated flows for 10 years (a) and example for MAUP effect (b). Crash locations are
mapped as black dots.

The mapped region is located at the periphery of the study area. This is why for some reference
units no flows are simulated (in grey). Depending on the level of aggregation and the size of the
reference unit respectively, the risk that is communicated by the map tends to be spatially overestimated.
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In fact, only 1/16 of the largest grid data is available. Therefore, the level of aggregation (scaling)
heavily influences the conclusion that might be drawn from the emerging spatial pattern.

In addition to the scaling effect, Figure 11 also illustrates the zoning effect. The single crash
location in the highlighted reference unit is located close to the boundary. Grid cells are, of course,
an arbitrary decomposition of a continuous space. Shifting the whole grid, for example in south
direction, would impact the mapped result in this case significantly. The risk for the respective cells
would be 0 for all levels of aggregation.

4.3. Results and Limitations of the Proposed Workflow

Producing map series with various types of reference units and different levels of spatial
aggregation makes the influence of these parameters on the emerging spatial patterns visible. From the
hex grid maps continuous corridors can be derived best and MAUP effects are minor. However, the
result for the lowest level of aggregation exhibits a large degree of uncertainty. For the maps based on
square grids we showed the effect of the reference unit’s size. Additionally, MAUP effects tend to occur
often, due to the less compact shape compared to hex grids. The network-based reference units are
valuable and provide additional insights, as the connectivity of locations is considered. Although the
algorithm for generating these units aims to produce units of equal size, they are hard to compare.
Hence MAUP effects impact the emerging patterns considerably. In sum, the case study demonstrates
that, for a final decision on most optimal reference units, information on the robustness of the results
and an overview of alternatives is necessary. Additionally, the purpose of the map (e.g., city overview
versus in-depth investigation of a specific corridor) ultimately decides the type and size of the spatial
reference units.

As our approach heavily relies on models, the results exhibit a certain degree of generalization.
This holds especially true for the agent-based simulation model and the extrapolation of the total
distance travelled for the entire period from 2002 to 2011. However, there are no studies yet, which
draw exposure data from full population surveys (see e.g., [13,14,21,23]).

In addition to the quality of the exposure variable the crash data directly impacts the emerging
patterns. We assume that more complete crash data would lead to slightly different results. For example,
along the Salzach River the calculated risk is comparable low (Figure 10). This might be due to the
severe underreporting of single-bike-crashes (SBC, [55]) and bicycle-bicycle collisions. Dealing with
risk, not only de facto crashes, but also near misses are considered as relevant. Here additional data
sources, such as the BikeMaps.org project [49], would complement conventional data sources.

5. Conclusions

We have shown that mapping bicycle risk patterns on the local scale reveals relevant information,
which aggregated approaches would not have been able to uncover. To our current knowledge this
is the first study, which calculates crash rates on the local scale. The lack of adequate exposure data
on this scale level has been the restricting factor up to recently. This can be overcome through the
utilization of simulated bicycle flows as exposure variable.

With the calculation of risk on the very local scale, the spatial heterogeneity is directly accounted
for. On the other hand the issue of statistical robustness and the MAUP effect become eminent. In order
to assess the quality of calculated crash rates, we calculated the 95% confidence interval for each spatial
reference unit. These two information layers can be visually linked (as in Figures 5–8), overlaid (as in
Figure 10, where the units are extruded proportionally to the size of the confidence interval) or plotted
in a scatterplot (Figure 9). This way, we were able to identify outliers and artifacts and to facilitate
valid interpretations of emerging spatial patterns. With regard to the MAUP effect we provided map
series with different types of reference units (shape) and levels of spatial aggregation (size). This way
we were able to make MAUP effects for bicycle risk patterns explicit. Although the results presented
in this paper are specific for the city of Salzburg, the conceptual workflow is transferable to any city as
long as geolocated crash reports and exposure data are available.
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The proposed workflow for mapping bicycle risk patterns on the local scale extends existing
approaches in spatial risk analysis. In addition to methodological improvements that stem directly from
the limitations discussed in the previous section, further research should focus on the following aspects:

• Temporal dynamics: it is generally known from literature that crash occurrences depend on
a number of influential variables. Among the most relevant is time. Future risk mappings
on the local scale should consider temporal dynamics, such as weekday-weekend patterns or
seasonality [30]. In conjunction with the spatial dimension this might help to launch effective and
adaptable interventions for increased bicycle safety.

• Subgroups: existing studies suggest different behavior depending on gender, age or trip
purpose [17–19]. It is to be investigated to which degree these differences are reflected in distinct
spatial patterns.

• Crash types: in this study all crashes were considered equally. In order to allow for an adequate
design and a prioritization of interventions, areas of high risk must be identified, considering the
crash type and severity.

• Explanatory analyses: once the risk is estimated for particular areas, it is of greatest interest
to reveal causal factors, which contribute to the risk. Current studies (for instance [47,56])
consider the spatial configuration mostly implicitly or neglect it at all. However, geographical
information systems (GIS) provide a platform to relate multiple perspectives on the road space [57].
Consequently, findings from studies on risk patterns on the local scale level can be related to
information on infrastructure, crowd-sourced user feedback, or results from traffic flow models in
further analyses.
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