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Abstract: To evaluate the risk of a pipe in the water supply network of Beijing, we used the accident
records of the gridding urban management (GUM) system. In addition, road and building information
derived from a three-dimensional (3D) electronic map was also employed. A machine learning
algorithm, the decision tree, was employed to train and evaluate the dataset. The results show that
the contributions of the surrounding buildings and roads are neglectable, except for super-high-rise
buildings, which have limited contributions. This finding is consistent with the results of other studies.
The decision tree identifies dominant features and isolates the risk contribution of such features.
The output tree structure indicated that the time since the last accident is a dominant factor, to which
super-high-rise buildings contribute slightly. A cut-off value of 0.019 was chosen to predict high-risk
regions. Approximately 0.4% of the data were predicted to be high risk, and the corresponding gain
in risk rate was approximately 19.2. This model may be used in cities where detailed profiles of water
supply pipes and maintenance records are not available or are expensive to achieve.
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1. Introduction

Water supply is an important part of the urban lifeline in a city. In China, the Water Pollution
Prevention and Control Action Plan was initiated by the State Council in April 2015. This plan is
also known as the Water Ten Plan (WTP). The WTP proposed several measures and set out long-term
objectives at a national level [1], and the renovation and upgradation of aging water pipes in distribution
networks was initiated. These pipes have been in service for more than 50 years and are mostly made
of outdated materials. In addition, a long-term goal for the national average leakage rate in water
distribution networks was proposed. After achieving this goal, the average leakage rate would be
lower than 12% by 2017 and 10% by 2020. It is worth noting that the national average water loss rate
was 14.32% in 2015 [2].

However, it is usually difficult to predict when, where, and how severe a pipe failure may occur
in a water supply network. The frequency of the breakage and failure of pipes in water distribution
networks tends to increase over time. This may be caused by a variety of reasons, such as environmental
temperature variations and different operation pressure levels in pipes.

Some researchers have tried to locate leakage sites in order to prevent water loss. Different
methods have been proposed to detect leakages in water distribution systems. These methods include
artificial neural networks, state estimation, stochastic process control, and time series modeling [3].
The accuracy of these methods requires extensive system monitoring due to the measurement of system
parameters such as pipe flow rate and pressure head [3].
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Some researchers have focused on prediction pipeline leakage using stochastic models, namely
certainty and probability models [4]. Popular certainty models include the time index model, the time
power model, and the time linear model. Either the number of leakages per unit of time or pipe length
or the total number of pipe leakages is predicted by these models. As a probability model, a hazards
model predicts the probability of a pipe leakage in an instant for one specified pipe. In recent years,
various artificial intelligent algorithms, such as artificial neural networks, the ant colony algorithm,
and the genetic algorithm, have been used for predicting leakages in pipe networks. Furthermore,
models combining several of the aforementioned algorithms have flourished.

Some groups have studied pipeline state prediction methods, including pipe leakage, pipe burst,
and comprehensive assessment [5]. Pipe leakages are usually caused by very slight damage to pipes.
These events are frequently modeled as a time series when the number of current leaks in the same
pipeline is more than four. The gray forecasting theory was adopted by Zhang et al. [6] to find an
inherent pattern by suppressing the influence of random factors through data washing and to determine
the occurrence trend of future leakages. Wang et al. [7], Jin et al. [8], and Wang et al. [9] modeled
the pipeline leakage time interval, the pipeline monthly maintenance times, and the annual leakage
rate as the time series data, and they then carried out forecast analysis. These methods are a second
exponential smoothing model, a third exponential smoothing model, and a wavelet neural network,
respectively. When the frequency of pipeline leakage did not hold for the time series assumption,
linear models were proposed by Zhang et al. [6,10] and Wang et al. [7] to predict the next time a pipe
leakage would occur. These models used the depth of installation, the hydraulic pressure, and the
pipe diameter as features. Grey relational analysis (GRA) was employed to analyze and evaluate all
the factors and to draw the order of the factors influencing pipeline leakage [4]. Additionally, a linear
prediction model was trained to determine the first leakage time after the networks were deployed.

Pipe burst refers to the situation where a pipeline leakage rises to the ground due to structural
damage to the pipeline, and it must be repaired immediately [11]. Most research on pipe burst is
based on the hypothesis proposed by Shamir et al. [12], which states that the number of bursts is
exponential to the age of the pipe. A model was proposed by Ma et al. [13] to predict pipe replacement
time by employing the predicted pipe burst rate and the limit pipe burst rate equation proposed by
Shamir et al. [12]. This model was designed to minimize the total cost of repairing and replacing pipes
during their service life. A method combining survival analysis and burst hazard was proposed by
Zhou et al. [14] and Ke et al. [15]. Their studies used the age, diameter, and material of the pipe as
features to predict the pipe burst rate per unit of length. The assumption was that the baseline hazard
is a quadratic function of the age of the pipe.

In recent years, comprehensive assessment methods involving more variables have been proposed.
Zeng et al. [16] evaluated dynamic hydraulic factors and their impact on pipe bursts in a stage-by-stage
fashion. The time series of the evaluation index vectors, composed of velocity, pressure, and the pressure
difference of the pipe sections, were used as the input for a back propagation neural network (BPNN)
to obtain the safety level of each time point of a pipe section. They used a revised evaluation metric of
pipe burst rate to carry out a comprehensive evaluation of pipeline safety [15]. Chang et al. [17] also
employed BPNN to comprehensively predict pipeline damage risk using the material, age, diameter,
length, and coupling of the pipe.

A more comprehensive study was performed by Kumar et al. [18]. They modeled the failure of
water pipes as a binary classification task, which predicted whether a failure may or may not occur for
a city block within a specified period. Several data sources were combined, leading to a comprehensive
dataset composed of pipe diameter, pipe age, pipe material, installation year, soil type, rock type,
pressure zone, road rating, the number of previous breaks in that city block, etc.

However, the capability and application of the above models remain constrained. First of all,
these models require information about the pipeline itself, namely the diameter, age, materials, depth,
pressure, etc. In addition to this detailed information about the pipelines, some of these models also
require accident records to be continuously acquired, with little missing or corrupted data. Moreover,
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the prediction method of the leakage model has only achieved limited results so far and can only
be applied to a simple and specific pipeline network system. For complex pipe network systems,
the calculation speed and accuracy of real-time simulation software need to be further improved [19].

The municipality faces challenges not only in managing the expected large amount of replacements
but also in quickly identifying and fixing problems as soon as possible. The situation is even worse
in Beijing, where a large proportion of the water pipelines have been serving for longer than their
projected lifetimes. Approximately 2000 km of water pipelines are scheduled for renewal during both
the 12th FP (the 5-year plan) and the 13th FP. In addition, gridding urban management (GUM) is
employed by the Beijing municipality to collect accurate and timely information on urban problems.
GUM divides an area (e.g., a district) into a number of spatial grids and collects 173 types of urban
problems, including pipe blasts and leaks, within five categories [20]. Urban management inspectors
patrol the streets regularly and report problems to management centers.

Complete and detailed profiles of pipelines are not publicly available, which prohibits the
application of the previously mentioned methods. In addition, the irregularity of the pipe leakage
records also limits the potential application of these methods.

Therefore, we propose a decision tree machine learning method to assess the risk of water pipe
accidents on a regional level. The water supply accident records collected by GUM were used as
features. Moreover, the impact of the surrounding roads and buildings were included in this model;
this extra information was extracted from a 3D electronic map.

2. Materials and Methods

2.1. Data

This study used 859 accident records of water supply pipelines collected by the Beijing GUM
System, spanning from 1 January 2013 to 30 December 2016.

Roads and building information were derived from a 3D electronic map around the accident site.
This information was parameterized by the width and height of the road, the area, and the coordinate
values of buildings. The widths of the roads reflect the traffic load borne by the pipeline, and the
surrounding buildings contribute to the static load of the pipes underneath.

A deformation analysis model of pipelines under static load was derived using Mindlin’s
solution [21]. The maximum settlement displacement was specified as 30 mm, a common criterion
for most cities [22]. The impact of buildings and roads within 240 m of the site of an accident was
evaluated. This value was chosen in order to cut off buildings whose contribution to the settlement
displacement is less than 3 mm [23].

Moreover, the construction time was assumed to be the construction time of nearby buildings.
Then, it was transformed into a categorical variable (Table 1).

Table 1. Clustering of accident-related factors [5].

No. Factors Description Classification Boundary

1 Number of buildings Number of buildings within 240 m
of the accident site

0–104, 105–133, 134–168,
169–208, ≥ 209

2 Total area of buildings Total area of buildings within 240 m
of the accident site, m2

0–53, 329, 53, 330–97, 121,
97, 122–155, 373, 155,

374–253, 347,≥ 253, 348

3 Mean area of buildings Mean area of buildings within
240 m of the accident site, m2

0–512, 513–753, 754–1100,
1101–1591, ≥1592
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Table 1. Cont.

No. Factors Description Classification Boundary

4 Number of high-rise buildings
Number of high-rise buildings

(buildings with ten or more floors,
Code for Design of Civil Building)

0–1, 2–5, 6–7, 8–17, ≥18

5 Number of super-high-rise
buildings

The number of super-high-rise
buildings (higher than 100 m, Code

for Design of Civil Building)
surrounding the accident site

0, 1, 2–3, ≥4

6 Mean pressure of buildings Mean pressure contributed by all
surrounding buildings, kN

0–25, 213, 25, 214–60, 763,
60, 764–93, 101, ≥ 93, 102

7 Displacement

Displacement caused by
surrounding buildings, estimated by

the aforementioned deformation
analysis model

0–100, 101–323, ≥ 324

8 Regional construction year The construction year of the area
where the accident occurred

≤1987, 1988–1993,
1994–2005, ≥2006

9 Pipeline lifetime
The interval between the regional

construction year and the year of the
accident, years

≤20, 20–30, ≥30

10 Month of accident Month of the accident 1–4, 5–6, 7–8, 9–10, 11–12

11 Road width The width of the road close to the
accident site, m

0–6, 7–9, 10–18, 19–21,
22–30, ≥31

12 Category of accident

The category was defined by the
gridding urban management (GUM)
system, including 539 leakages and

320 bursts

Leakage/burst

2.2. Preprocessing of Variables

In total, 12 relevant factors were derived by processing the acquired accident data. There were
seven building factors, three time factors, one accident type factor, and one road factor.

All continuous variables were categorized, and the results of these factors are listed in Table 1.
To facilitate categorization, lowess curves were first fitted using lowess in R. The curves were then
clustered using K-means and subdivided into different segments according to the clustering results.

Below is an example of how the displacement was categorized (Figure 1). A lowess curve was
first fitted based on the displacement and survival time since 1 January 2013. The curve was then
clustered into five segments, and the final category was further manually reduced into three.
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2.3. Data Preprocessing

Biganzoli et al. [24,25] showed that artificial neural networks (ANNs) can be applied to the
modeling of survival data. Time intervals were used as additional inputs with explanatory variables,
logic functions were used in the hidden layer, and the single output was the estimated failure probability.
The survival data were transformed before fitting an ANN model.

Table 2 is an example of the converted data. An original sample with a lifetime of four days was
converted into four samples. Two new variables were added, namely time interval and outcome (i.e.,
survival or death), while the other variables, X1 and X2, remained unchanged.

Table 2. Example of survival data transformation [5].

No.
Input Target

X1 X2 Time Interval

1 1 2 1 0
2 1 2 2 0
3 1 2 3 0
4 1 2 4 1

Our dataset contained 859 accident records. These events were converted using this method,
resulting in approximately 530,000 records on a daily basis, with 1 for an accident and 0 for none.

The converted dataset was randomly divided into approximately 35,000 samples (approximately
66%) for the training set and the rest (approximately 34%) for testing.

2.4. Model

To build the decision tree model, we used the function ctree in an R package named Party [26].
The inputs included the 12 accident-related factors, in addition to the time interval. The only output
was the risk coefficient, ranging between 0 and 1, which revealed the probability of pipeline accidents.
The closer the output is to 1, the more likely the pipeline is to be damaged.

Based on all 530,000 day-based events, the average accident rate was approximately 0.16%. This
is a typical configuration of an extremely unbalanced dataset. The decision tree outputted the accident
risk (Figure 2). The probabilities of leaves 12 and 15 were considerably higher than the average accident
rate, indicating discriminative features. To quantify their effects, we introduced the amplification ratio
of risk (ARR) to evaluate the model.

Precision = number of true positives/(number of true positives + number of

false positives)

ARR = precision/average accident rate

The model parameters were optimized by two-fold cross-validation. Minsplit (the minimum
number of samples in a node) was set to 100–800, span 100; minbusket (the minimum number of
samples in a leaf node) was set from 25 to half of minsplit, span 25; maxdepth (the depth of the
decision tree) was set from 3 to 8. Based on different combinations of the input parameters, a two-fold
cross-validation model was established and the ARR was calculated. The results showed that the
minimum sample size of the node set had no effect. When the minimum sample size of the leaf was 25
and the maxdepth was 3, the model results were optimal.
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Figure 2. Decision tree structure. Leaves represent class labels; y refers to the probability of the risk
and n is the number of samples. Branches represent variables that lead to these class labels; p is the
significance measure of branches.

To determine the cut-off value, a trade-off between the ARR in the span of high risk and the
percentage of positives (PoP) of the data needs to be achieved. A higher PoP indicates more regions to
patrol, which may lead to extra costs. A higher ARR, on the other hand, may miss high-risk regions.
To determine a reasonable trade-off, the training data were modeled 50 times by cross-validation,
and lowess curves were fitted for different cut-offs with the ARR and PoP, respectively, as shown in
Figures 3 and 4, respectively.
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3. Results

3.1. Output Model

The structure of the decision tree shows that time is the dominant factor in determining the risk of
pipes in a region. For samples with a survival time longer than 1291 days (for example, a pipe older
than 1291 days with no event records), the risk of an event occurring during June to December is higher
than during the other months of the year. For samples with a survival time longer than 950 days,
a super-high-rise building may slightly increase the risk.

3.2. Fifty-Fold Cross-Validation

The 50-fold cross-validation results are listed in Figures 3 and 4. Figure 3 shows that the ARR
increases along with the increment of the cut-off value, whereas the PoP decreases rapidly with the
increment of the cut-off value, as shown in Figure 4.

A reasonable cut-off value may be picked from (0.018, 0.038), as a rapid drop of the PoP exists in
this range. The lower limit was chosen to ensure that the ARR was greater than 20 (it reads 20.0 at 0.018
in Figure 3), and the upper limit was chosen to ensure that the PoP was higher than 0.1% (in Figure 4,
it reads 0.105% at 0.038).

3.3. Model Performance

We chose the cut-off value to be 0.019, and we evaluated our model on the test set to determine
its performance. The PoP and ARR results are listed in Table 3. The model predicts 0.41% of the
test samples as being of high risk; the risk probability is 19.2 times higher than the average risk rate,
i.e., an ARR of 19.2.

Table 3. Partial model validation results.

Cut-Off Value
Test Data Training Data

ARR Percentage of Positives ARR Percentage of Positives

0.019 19.2 0.41% 24 0.23%

A discrepancy of approximately 20% was found in the ARR of the test data compared to that
of the 50-fold cross-validation. This indicates that the generalization capability of this model needs
further improvement. This could be attributed to our limited dataset; moreover, the dataset was
extremely unbalanced.

4. Discussion

Most of the aforementioned models in the literature survey require information about pipes, which
is usually limited, especially for old urban regions for periods before the establishment of the information
system for city management. We used event records collected by the GUM system. Compared to other
methods, the advantage is its quick and cheap data acquisition, while the disadvantage is its limited
prediction accuracy.

Despite the limited accuracy, management efficiency may be improved by identifying high-risk
regions using model prediction. For example, for a PoP of 0.4% and an ARR of 19, approximately 8%
(0.4%×19) of events may be found by patrolling 0.4% of the regions which are predicted to be of high
risk by our model.

However, the generalization capability of our model needs to be further improved, as its accuracy
is approximately 8%. This limited accuracy may be attributed to the quality of the raw data. Moreover,
the absence of more discriminative features, such as the pipe material and diameter, the working
pressure of the pipes, and the depth and age of the pipes, may also contribute to this limited accuracy.
The features that we used were pressure from nearby buildings and roads, the age of the pipe as
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estimated from surrounding construction time, seasons when events occurred, and event type. To the
best of our knowledge, none of the first three features have ever been used by other researchers.

It can be concluded from the output of the decision tree that the most discriminative factor in
determining a high-risk region is survival time (Figure 2). The next discriminative feature is the month
of the year. Figure 2 shows that the risk of an event occurring during June to December is considerably
higher than in other months of the same year. The event types in the GUS event records are mostly
given by non-professionals or non-experts, which is usually a subjective decision based on the severity
of the leakage. This inaccuracy may be attributed to the insignificance of this feature. The width of
roads, the pressure of buildings, and the regional construction year contribute little to the identification
of high-risk regions. However, super-high-rise buildings may slightly increase the risk of pipe events.
The feature of age shows limited contribution to this risk, which is consistent with [4].

Additionally, the transformed data are extremely imbalanced. This could also have contributed to
the limited accuracy. If the data were transformed in a month-based way, such an imbalance could
be alleviated.

Accumulating more data always improves the prediction accuracy. Meanwhile, a hierarchical
data model would help, since the maintenance and management of different urban areas affects the
occurrence of pipeline events.
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