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Abstract: Urban cycling is increasingly common in many North American cities and has the potential
to address key challenges of urban mobility, congestion, air pollution and health. However, lack of
safety is often cited by potential bike users as the most important deterrent to cycling. This study
aimed to evaluate the effect of cycling facility type on traffic conflict likelihood. Four participants
recorded a total of 87 h (1199 km) of video, which was reviewed by trained observers to identify and
characterize traffic conflicts, yielding 465 conflicts with vehicles and 209 conflicts with pedestrians.
Bootstrapped generalized additive logit regressions (GAM) were built to predict traffic conflict
likelihood. Results show that while cycling on an off-street bike path effectively reduces the likelihood
of conflict with a vehicle, it increases the probability of conflict with a pedestrian. Bike lanes were
associated with an increase in the likelihood of a conflict with a vehicle. Decision makers should
favor physically segregated and clearly marked cyclist-only facilities to ensure safe and efficient
conditions for commuter cyclists.

Keywords: traffic conflicts; quasinaturalistic cycling study; cycleways; cycling facilities; cycling
safety; generalized additive model (GAM)

1. Introduction

While improving their individual health and reducing traffic and pollution, urban
cyclists are vulnerable to many risks, such as air pollution and noise exposure, as well as
injuries from collisions with other road users [1–6]. In the midst of an “urban cycling renais-
sance” in many North American cities, great attention is dedicated to improving cycling
conditions [7]. Lack of safety is one of the most common deterrents identified by potential
bicycle users [8]. Usual methods to evaluate safety include police-declared collisions and
hospital admissions databases [9]. However, these studies often suffer from underreporting
bias since most minor injuries and crashes are not reported to authorities [10].

Surrogate safety measures were developed to counteract the limitations inherent to
crash and injury study designs. With traffic conflict analysis, it is possible to study interac-
tions between road users and characterize them as normal or conflictual [11]. Conflicts are
conceptually close to collisions: they are defined as “an interaction between a bicyclist and
another road user such that at least one of the parties has to change speed or direction to
avoid a collision” [9] (p. 4). Studying conflicts is proactive rather than reactive, meaning
that it does not rely on a crash to actually happen in order to conduct the research [11]. Fur-
thermore, noncollision safety events (conflicts), ranging from right-of-way encroachments
to near-miss experiences, are known to play an important role in cycling motivation and
perceived traffic risk [12–14], sometimes even more than collisions, since the former are far
more frequent than the latter. Though traffic conflict analysis was mostly developed for car
driving studies since the 1970s, its use to study cyclist interactions is increasing [15].

Methods to study traffic conflicts include fixed-site observation [11,15–17] and natu-
ralistic cycling studies using instrumented bicycles [18–22]. Fixed-site observation with a
video camera offers an omniscient view on the interactions between the road users, thus
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allowing researchers to compute many traffic conflict indicators, such as postencroachment
time (PET) and time-to-collision (TTC) [11,15,16]. On the other hand, naturalistic cycling
studies (or more generally, mobile data collections) offer the potential to cover a broad
territory and a wide variety of urban contexts [18,23].

1.1. Cycling Risk and Protection Factors

Factors influencing cycling safety are both individual and contextual. Individual
factors are those specific to every cyclist. Some studies have shown that male cyclists are
less likely to experience conflicts and collisions than their female counterparts are [11,24].
Level of cycling experience may also play a role in the ability to maneuver in complex
cycling conditions [11,21]. Older cyclists and cyclists that do not wear reflective clothing
are more likely to experience severe injury or fatality [25]. When approaching at a higher
speed, a cyclist risks experiencing a more severe conflict than when riding at a lower
speed [11].

Contextual factors apply to every cyclist in a given environment. For example, in
Valencia, it was found that bus stops were pedestrian conflict hotspots along a protected
cycle track corridor (passengers either crossing the cycle track to enter or exit the bus or
standing in the cycle track waiting for the next departure) [26]. Riding on a slope can
lead to an increase in crash or conflict occurrence and severity [9,27–29]. Time of day, day
of the week and geographical position can also affect traffic risks for cyclists since traffic
conditions vary greatly across time [21,22,27,28] and space [22,30,31]. Intersections are
natural conflict and collision hotspots [18,21–23,27–29]. Uneven or poorly maintained road
surfaces can lead to crashes and conflicts [22,23,27,32].

Among contextual factors, those concerning the built environment, and more specifi-
cally, cycling facility type, are those upon which urban planners have the greatest leverage.
It is generally accepted that bicycle-specific infrastructure has a protective effect on cyclists’
safety [9,21–23,27,28,33]. For example, in Montréal, it was found that relative risk of in-
jury was lower on cycle tracks (on-street bicycle paths with physical protection) than on
comparable reference streets without cycling facility [34]. However, this protective effect
may not be consistent across all bicycle facility types. Harris et al. [28] found that cycle
tracks reduced the risk of injury; however, the same was not true for multiuse trails, bike
lanes and shared lanes. In Vancouver, safety-relevant incidents were more common at
intersections between a multiuse trail and roads than at reference intersections between
two roads without bicycle-specific infrastructure [29]. Surprisingly, another study found
a higher rate of safety-critical events when riding on a cycleway than when riding on a
road without bicycle-specific treatment [35]. This apparent contradiction may be due to the
relatively broad definition of bicycle infrastructure, which is not consistent from one study
to another and from one jurisdiction to another.

1.2. Research Objectives

Although our understanding of contextual factors influencing cycling safety is im-
proving, many variables remain underexplored. The effects of time and space on conflict
occurrence have not yet been included as nonlinear effects in logit models. Many natu-
ralistic cycling studies have been conducted in European settings [18,22,26,35]; however,
to date, we have not found published results of such studies set in the Canadian context,
where urban fabric and road geometries are very different. More importantly, cycling
infrastructure’s effect on safety has been evaluated in a variety of ways, but in many cases,
category definitions were too broad, and the interaction between cycleway and road types
is yet to be tested. Consequently, the aim of this paper is to evaluate cycleway and road
types’ combined effect on conflict occurrence with vehicles and with pedestrians, after
controlling for individual and contextual factors.
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2. Materials and Methods
2.1. Study Area: Montréal Agglomeration

The Montréal agglomeration (2 million inhabitants in 2020) offers a unique case
study, as it features both segregated and nonsegregated cycleways [36], which could be
considered a hybrid between the American and European cycleway paradigms described
by Furth [37]. Although the commuter cyclist mode share (2.5% of all trips to work) [38]
is humble in comparison to the European cycling capitals such as Amsterdam (21% of all
trips to work) [39], Montréal is among the most bike-friendly cities in North America, with
a large and growing cycling network [40] and a longstanding bike-share service [41]. In
this vein, Vancouver and Montréal are the only North American cities to belong to the
Copenhagenize 2019 Index [42].

2.2. Data
2.2.1. Primary Data: An Extensive Mobile Data Collection

This paper relies on a quasinaturalistic study design to evaluate conflicts experienced
by specially instructed cyclists. Four participants were involved in the mobile data col-
lection: four graduate students in Urban Studies (three male and one female, respectively
25, 28, 29 and 36 years old), selected by convenience, in good shape and with moderate
urban cycling experience (more than two years of regular utilitarian cycling). All subjects
gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was ap-
proved by the Ethics Committee of Institut national de la recherche scientifique (project No.
CER 19-509).

All participants wore the same cycling jersey and rode similar bicycles (regular bikes
similar to those used in other studies; Rocky Mountain RC 10 Performance, Vancouver, BC,
Canada) provided by the research team. Bicycles were equipped with all the mandatory
reflective pieces in the province of Québec (yellow reflectors facing forward and backward
on both pedals, yellow reflectors facing sideways on both wheels, white reflector on
handlebar facing forward and red reflector on the seatpost facing backward) and with
a protective helmet (not required by law). Primary data were collected during daytime
hours (8 a.m. to 6 p.m.), on six dry weather weekdays of June 2019, using an action camera
mounted on the handlebar of the bicycle (Virb XE, Garmin International, Inc., Olathe, KS,
USA) and a GPS watch on the cyclist’s wrist (Forerunner 920 XT, Garmin International,
Inc., Olathe, KS, USA).

The participants cycled alone on predefined routes for 87 h and for a total of 1199 km.
This extensive mobile data collection allows us to maximize spatial coverage of the study
area and ensure a diversity of urban settings [43]. All data collection days started and
ended at the university, thus allowing researchers to stay in touch with the participants,
provide support when needed and supervise the data acquisition process closely. Cyclists
were instructed to abide by the common traffic rules, ride at a safe speed for an urban
context (between 15 and 20 km/h) and divide their routes into 40 min segments to simplify
data processing.

2.2.2. Secondary Data: Road and Cycleway Networks

The cycleway and street networks used in this study are those publicly available
through the open data platform of the City of Montréal [44,45]. For each network, types
were grouped in order to have enough observations per category for bootstrapped sta-
tistical modeling (a minimum of 30 observations per category after undersampling, see
Section 2.4.2). Grouped cycleway types correspond approximately to the four levels of
cyclist separation presented by Furth [37]:

• Shared lane: regular street with no specific right-of-way for cyclists, designated by a
“sharrow” (bicycle marking) on the tarmac to identify recommended bike routes.

• Bike lane: one-way dedicated lane for cyclists, separated by roadway stripping.
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• On-street bike path: two-way cyclist-only right-of-way located on the road. In Montréal,
73% of these paths are physically separated from vehicles by bollards, a jersey, a
median or a fence [44].

• Off-street bike path: standalone path, in an independent right-of-way, dedicated to
cyclists only (multiuse trails used by pedestrians and cyclists are excluded from the
dataset).

Road types include:

• Local street: road with a volume of fewer than 3000 vehicles per day [46], whose main
function is access to residences [47].

• Collector street: road with a volume of more than 1000 vehicles per day [46], which
allows for transit on short distances, provides access to buildings of local importance
and links between local and arterial roads [47].

• Arterial road: large road with a volume of between 5000 and 50,000 vehicles per day [46]
that connects several neighborhoods together and allows for transit on relatively long
distances [47].

Cycleway and road types are then coupled to create interaction variables (Figure 1).

2.3. Data Reduction and Validation

Each GPS point recorded by the watch was snapped to the nearest road link. The
results were then validated by members of the research team using video clips to ensure
the most accurate cycleway and road type classification. Two independent trained ob-
servers reviewed every video file recorded by the cameras through Vifeco, an open-source
software developed in-house that allows observers to annotate several features directly
on videos [48]. Conflict counts were performed using an iterative approach to ensure data
quality and consistency. First, using 23 videos, the two observers were trained together
to identify conflictual interactions with a pedestrian or a motorized vehicle (according
to the traffic conflict definition mentioned in the introduction). Second, each observer
individually annotated the rest of the videos.

Agreement between the annotations of the two independent observers reached 80%.
Two factors could explain this apparently low rate. First, many nonsevere conflicts may be
arduous to distinguish from normal driving maneuvers or courteous behaviors. Second,
all videos were reviewed blindly by two observers, meaning that each observer did not
have access to the annotations of their colleague. In comparison, far from undermining
their results, other studies relied on a data reduction process done by only one video
observer [15,16] or by two video observers without reporting agreement statistics [22,35].
Subsequently, the two observers watched the discordant events together to decide whether
or not to include them in the final dataset, consulting a third expert (second author)
when needed.

Conflicts with pedestrians that occurred on multiuse trails (that is, where pedestrians
are allowed to walk), conflicts caused by our participant and conflicts that resulted from
road users complying with traffic rules and signage (for example, legitimately parked cars)
were excluded from the final dataset.
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Figure 1. Cycleway and road types (interaction). Pictures taken from the video recordings of the handlebar camera.
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2.4. Data Analysis
2.4.1. Variables and Hypotheses

Data analysis was conducted in R version 4.0.3 [49]. First, conflict frequency (i.e., num-
ber of conflicts) and ratios per time and distance units were broken down by cycleway and
road type. Second, using package “mgcv” [50], generalized additive models (GAMs) with
logit distributions were fitted separately for vehicle and pedestrian conflict likelihood of
occurrence as the outcome variable (i.e., likelihood of a conflict event to happen). Vehicle
and pedestrian conflicts were separated for the analysis since they represent very different
threats to cyclists and are not likely to follow the same patterns.

Several control variables were included in the models as a means to obtain unbiased
coefficients (Table 1). First, traffic conflict likelihood is influenced by many individual
factors, such as level of cycling experience, age, gender and riding habits [11,35], which
could not all be included in our models for parsimony reasons and for lack of sufficient
observations per category. Thus, participant ID was included as a way to account for
individual variability among the four collectors. Second, the likelihood of conflict can
differ from one day to another since traffic conditions are known to vary throughout the
week [27]. The day of the week was thus introduced as a categorical linear effect. Third,
we expected proximity to an intersection and to a bus stop to be positively associated with
traffic conflict occurrence, as suggested by literature [21,26]. Fourth, likelihood of conflict
could vary according to both time of day and space. We expected a greater number of traffic
conflicts during peak traffic periods, namely the morning and afternoon rush hours [16,35].
Moreover, geographical position is likely to have a significant effect on the occurrence
of traffic conflicts since many authors have shown that they are distributed in clusters
rather than randomly [31]. Consequently, the time of day (number of min since 08:00) and
geographical coordinates (X, Y) were introduced as splines (nonlinear effects). Fifth, as the
speed of the participant increases, traffic conflict occurrence is likely to increase as well [51].
Furthermore, including it as a spline allows testing if this effect is linear or not. Readers
should note that slope was not controlled specifically, as was done in some collision [27]
and conflict [19] studies. The terrain in Montréal is relatively flat, and geographical position
is already included in the model, which should encompass some of the effect that slope
could potentially have.

Table 1. Model specification.

Type of Variable Variable Family Effect

Outcome
Pedestrian conflict occurrence Binomial -

Vehicle conflict occurrence Binomial -

Control

Participant ID Categorical Linear
Day of collection Categorical Linear

Presence of an intersection within 15 m Binomial Linear
Presence of a bus stop within 15 m Binomial Linear

Time of day Continuous Smooth
Geographical position Continuous Smooth

Speed Continuous Smooth

Predictor Cycleway and road type (interaction) Categorical Linear

After controlling these factors, we expected cycleway and road type to significantly
affect traffic conflict likelihood. For both vehicle and pedestrian conflicts, we did not expect
shared lanes and bike lanes to reduce conflict likelihood [28]; in fact, bike lanes could
even foster vehicle conflicts, as was noted by Beck et al. [52] in a motor vehicle passing
distance study. For vehicle conflicts, we expected on-street and off-street bike paths to
reduce vehicle conflict likelihood [34]. However, we expected conflict likelihood with a
pedestrian to be higher on off-street bike paths [26,51]. Including road type as an interaction
with cycleway type should reveal nuances in the associations between cycleway type and
conflict likelihood. Indeed, one could reasonably expect a given cycling facility type to
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have a reduced protective effect when located on a street with more vehicular danger (i.e.,
an arterial road) than on a quieter street (i.e., a local street).

We did not include variables that directly evaluate vehicular traffic danger (such as
traffic volumes and speeds and presence of heavy vehicles), even though they are known
to increase conflict likelihood [16]. Real-time traffic indicators could be calculated using
dynamic traffic counts on the videos captured by the handlebar camera; however, this
process would add to the already labor-intensive video reviewing process. Nevertheless,
as far as the models in this study are concerned, the temporal and spatial control variables
and the road type interaction variable are likely to serve as proxies for vehicular traffic
danger indicators.

2.4.2. Dataset Composition for Logit Modeling

Our dataset was composed of conflict events and baseline events, i.e., random points
in the dataset where no conflict occurred [18]. In order to avoid the class imbalance problem
in our dataset (very large number of baseline events in comparison to conflict events), we
used a resampling technique of undersampling (reducing the number of baseline events
for it to correspond to approximately 2 times the number of conflict events) [18,24]. In
other words, first, two datasets were produced: one with vehicle conflicts and one with
pedestrian conflicts. Then, to these two separate datasets, we appended a certain number of
baseline events, corresponding to twice the number of conflicts, randomly drawn from the
rest of the dataset. One problem with this sampling method is the risk of randomly selecting
a nonrepresentative sample of baseline events, hence introducing bias in the estimation
of the model parameters. To overcome this problem, we bootstrapped the sampling and
model fitting process (1000 iterations) and then extracted mean and percentiles (2.5% and
97.5% to form a 95% confidence interval) from the parameters (i.e., coefficients, fit statistics,
etc.). Reported model results are, thus, distributions of parameters, rather than a single
estimate for each predictor. Interpretation is, however, similar to that of a regular logit
model, in the sense that predictors are considered significant when their odds-ratio upper
and lower confidence interval limits are both greater or less than 1.

3. Results
3.1. Exploratory Data Analysis

This study relies on 5208 min of on-street and off-street cycling, for a total of 1199 km
(Table 2). Most of the riding took place in the central districts; nevertheless, the data
collection covers the whole island of Montréal (Figure 2). Video reviewers identified
465 conflicts with vehicles and 209 conflicts with pedestrians. For the major part, cyclists
rode on regular streets without cycling facility (3213 min, 61.7%). The most frequent cycling
facility type taken by the participants is the off-street bike path (541 min, 10.4%).

For vehicle conflicts, on nonprotected cycling facilities (shared lane and bike lane),
we measured rates ranging from 4.0 conflicts per 60 min for a shared lane on a local street
to 13.0 conflicts per 60 min for a bike lane on a collector street. These high rates contrast
with those of on-street bike paths located on local streets (2.9 conflicts per 60 min), collector
streets (3.0 conflicts per 60 min) and arterial roads (1.3 conflicts per 60 min). The picture is
just as compelling for off-street bike paths: notwithstanding the participants’ high exposure
to this facility type (541 min, 10.4%), they experienced very few conflicts (13 conflicts, 2.8%),
leading to the second lowest rate of conflicts (1.4 conflicts per 60 min). Readers should
note that although it may seem surprising to experience a conflict with a vehicle on an
off-street facility, the situation may arise when cyclists are approaching a road intersection
or a driveway entrance, for example.
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Table 2. Dataset description.

Cycleway and Road Type 1

Cyclists’ Exposure Conflict Frequency

Minutes Kilometers Vehicle Pedestrian

n % n % n %
per
60

min

per
100
km

n %
per
60

min

per
100
km

01 Street without cycling facility (ref.) 3213 61.7 791 66.0 290 62.4 5.4 36.7 82 39.2 1.5 10.4
02 Shared lane–local street 286 5.5 70 5.8 19 4.1 4.0 27.1 11 5.3 2.3 15.7
03 Shared lane–collector street 110 2.1 32 2.7 9 1.9 4.9 28.1 2 1.0 1.1 6.2
04 Bike lane–local street 203 3.9 48 4.0 35 7.5 10.3 72.9 5 2.4 1.5 10.4
05 Bike lane–collector street 254 4.9 57 4.8 55 11.8 13.0 96.5 10 4.8 2.4 17.5
06 Bike lane–arterial road 174 3.3 29 2.4 28 6.0 9.7 96.6 4 1.9 1.4 13.8
07 On-street bike path–local street 103 2.0 18 1.5 5 1.1 2.9 27.8 6 2.9 3.5 33.3
08 On-street bike path–collector street 138 2.6 25 2.1 7 1.5 3.0 28.0 14 6.7 6.1 56.0
09 On-street bike path–arterial road 186 3.6 20 1.7 4 0.9 1.3 20.0 14 6.7 4.5 70.0
10 Off-street bike path 541 10.4 109 9.1 13 2.8 1.4 11.9 61 29.2 6.8 56.0
Total 5208 100.0 1199 100.0 465 100.0 5.4 38.8 209 100.0 2.4 17.4

1 Shared lane on arterial road, a very rare type, is absent from our dataset.

Figure 2. Secondary, primary and processed data. (a) Montréal’s cycling network; (b) mobile data collection (sample routes);
(c) pedestrian conflict locations; (d) vehicle conflict locations.

Pedestrian conflict rates follow an opposite trend. Although most conflicts occurred
on streets without cycling facility (82 conflicts; 39.2%), it is much less than one could have
expected if conflict occurrence corresponded with exposure (3213 min, 61.7%). Nonpro-
tected facilities (shared lanes and bike lanes) display low rates of pedestrian conflicts.
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The most eloquent example is the shared lane on a collector street: cyclists from our data
collection only experienced 1.1 conflicts per 60 min. On-street bike paths have much higher
rates of conflicts with pedestrians: on collector streets, cyclists from the data collection were
subject to 6.1 conflicts per 60 min. While accounting for 10.4% of cyclists’ total exposure in
minutes, 29.2% of the conflicts with pedestrians took place on off-street bike paths, making
it the infrastructure with the highest number of conflicts per 60 min (6.8 conflicts).

3.2. Model Results

Model results are reported in Table 3. Fit statistics show that the models explain
only a small proportion of the total variance (Vehicle: R2 = 0.16, CI (95%) = 0.14–0.19;
deviance explained = 0.16, CI (95%) = 0.14–0.18. Pedestrian: R2 = 0.16, CI (95%) = 0.12–
0.20; deviance explained = 0.16, CI (95%) = 0.13–0.20.). This reflects the fact that conflict
likelihood depends upon a broad spectrum of factors that are not modeled here. However,
these statistics do not undermine the ability of the models to reveal significant associations
between cycleway type (predictor variable) and conflict likelihood (outcome variable),
which is the main objective of this paper.

Table 3. Model results.

Parameter
Vehicle Pedestrian

Odds Ratio (OR) Odds Ratio (OR)

Mean CI (95%) a Mean CI (95%) a

(Intercept) 0.58 0.47 0.71 0.42 0.31 0.60
Control variables

Linear terms
Participant 1 Ref. Ref.
Participant 2 0.70 0.56 0.90 0.75 0.54 1.04
Participant 3 0.90 0.72 1.16 0.55 0.39 0.79
Participant 4 0.91 0.73 1.13 0.70 0.49 1.01
Wednesday, June 12 Ref. Ref.
Monday, June 17 0.99 0.78 1.29 0.97 0.67 1.37
Tuesday, June 18 0.90 0.71 1.15 1.45 1.02 2.06
Wednesday, June 19 1.19 0.89 1.54 0.90 0.60 1.33
Friday, June 21 1.37 1.01 1.86 0.72 0.44 1.15
Intersection within 15 m 1.12 0.93 1.33 1.28 0.97 1.67
Bus stop within 15 m 1.04 0.82 1.36 0.68 0.47 1.01

Smooth terms (splines)
Time of the day (edf b) 5.11 2.21 6.65 1.31 1.00 3.04
Time of the day (p-value) 0.04 0.00 0.41 0.58 0.12 0.98
Geographical position (edf b) 10.98 8.68 13.56 7.79 5.11 10.37
Geographical position (p-value) 0.00 0.00 0.00 0.05 0.00 0.25
Speed (edf b) 4.85 4.15 5.84 2.33 1.34 3.03
Speed (p-value) 0.00 0.00 0.00 0.00 0.00 0.01

Predictor variables
01 Street without cycling facility Ref. Ref.
02 Shared lane–local street 0.76 0.56 1.06 1.64 1.07 2.70
03 Shared lane–collector street 1.28 0.81 2.24 1.15 0.52 3.80
04 Bike lane–local street 2.10 1.44 3.20 1.07 0.61 1.98
05 Bike lane–collector street 2.66 1.93 3.80 1.64 1.04 2.94
06 Bike lane–arterial road 1.21 0.82 1.92 0.78 0.42 1.62
07 On-street bike path–local street 0.50 0.30 0.99 1.68 0.83 4.85
08 On-street bike path–collector street 0.44 0.28 0.70 3.43 1.81 7.75
09 On-street bike path–arterial road 0.19 0.12 0.33 2.63 1.43 5.58
10 Off-street bike path 0.30 0.23 0.39 3.95 2.75 6.12
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Table 3. Cont.

Parameter
Vehicle Pedestrian

Odds Ratio (OR) Odds Ratio (OR)

Mean CI (95%) a Mean CI (95%) a

Fit statistics
R squared (adjusted) 0.16 0.14 0.19 0.16 0.12 0.20
Deviance explained 0.16 0.14 0.18 0.16 0.13 0.20

a CI: confidence interval. Statistically significant values are shown in bold. b edf: estimated degrees of freedom, i.e., number of knots
(inflection points) in the spline. Consequently, a higher edf value means a greater spline variability and a greater influence on the response
variable. Regarding the smooth terms, confidence intervals represent edf and p-value variations among the 1000 models. Thus, a spline is
deemed significant when its p-value is below or equal to 0.05, 95% of the time.

3.2.1. Control Variables

Participant and day of collection are significant for the vehicle and the pedestrian
models. Proximity to an intersection and to a bus stop did not significantly influence
likelihood of conflict during our collection, although one can notice that the odds ratio
of the intersection variable is almost significant for both models. Time of day is almost
significant for the vehicle model, and geographical position is significant for both models,
which means that conflict likelihood did follow nonlinear temporal and spatial trends
during our data collection. Such results stress the importance of including these control
variables when modeling traffic conflict likelihood; nevertheless, one must be careful with
their interpretation. While having the potential to significantly influence traffic conflict
likelihood, their results cannot be generalized beyond the scope of this data collection.

Although speed was initially included as a control variable in the model, it yields
results worth analyzing by themselves (Figure 3). Below 10 km/h, speed is associated
with a lower conflict likelihood. As speed increases, its risk-reducing effect evaporates,
until conflict likelihood reaches a stability point, approximately at 15 km/h for the vehicle
model and 20 km/h for the pedestrian model. Beyond these thresholds, conflict likelihood
is constant and hovers around zero, which means that speed no longer has a significant
effect. However, our results do not show the severity of the conflict, which is known to be
associated with cyclist speed [11].

Figure 3. Cyclist speed’s marginal effect on conflict occurrence with (a) a vehicle and (b) a pedestrian. In other words, this
graph depicts the independent contribution of cyclist’s speed on the response variable (conflict occurrence, 0–1) centered on
zero, once controlled for all the other independent variables. A negative conflict occurrence can thus be interpreted as a
negative effect on the likelihood of conflict. The solid red line represents the mean of all model splines, the dashed red lines
represent the confidence interval (95%) and the translucent black lines in the background represent each individual spline
(n = 1000).
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3.2.2. Vehicle Conflict Likelihood Predictors

Model results show that some, but not all, cycleway types significantly influence
vehicle conflict likelihood (Table 3). Cycling on a shared lane had no significant effect on
conflict likelihood. When located on a local (OR = 2.10; CI (95%) = 1.44–3.20) or a collector
street (OR = 2.66; CI (95%) = 1.93–3.80), cyclists on a bike lane were more than twice as
likely to experience a conflict with a vehicle than when cycling on a reference street without
cycling facility. However, when the bike lane was located on an arterial road, that effect
was not significant. On the other hand, cycling on an on-street bike path is associated
with a significantly lower probability of conflict with a vehicle, no matter the type of street
on which they are located: local street (OR = 0.50; CI (95%) = 0.30–0.99), collector street
(OR = 0.44; CI (95%) = 0.28–0.70) and arterial road (OR = 0.19; CI (95%) = 0.12–0.33). Not
surprisingly, the same is true for off-street bike paths (OR = 0.30; CI (95%) = 0.23–0.39).

3.2.3. Pedestrian Conflict Likelihood Predictors

Conflict likelihood with a pedestrian also varies according to infrastructure type
(Table 3). Cycling on a shared lane on a local street (OR = 1.64; CI (95%) = 1.07–2.70)
or on a bike lane on a collector street (OR = 1.64; CI (95%) = 1.04–2.94) has a slightly
significant increasing effect on conflict likelihood. When located on other types of roads,
this effect is not significant, meaning that the probability of experiencing a conflict with
a pedestrian is no different on those facilities than on a reference street without cycling
facility. On-street bike paths are associated with higher likelihoods of conflict: when located
on a collector street (OR = 3.43; CI (95%) = 1.81–7.75) or on an arterial road (OR = 2.63;
CI (95%) = 1.43–5.58), they expose cyclists to a probability of traffic conflict higher than
the reference level. However, that effect is not significant when the on-street bike path
is located on a local street. Off-street bike paths show an even greater association: when
cycling on such facilities, cyclists from our data collection were 3.95 (CI (95%) = 2.75–6.12)
times more likely to experience a conflict with a pedestrian than when cycling on a street
without cycling facility (reference).

4. Discussion
4.1. Limitations

Conflict severity has not been evaluated in this study; however, it could bring relevant
nuances to our conclusions in future research. Participants involved in this study are all
graduate students in Urban Studies, which is not a representative sample of the cyclist
population. Nonetheless, using a small and rather homogeneous sample of cyclists on
schematically allocated routes has the advantage of reducing variance attributable to
riding styles and route sampling frequency [22]. Other studies asked their participants
to identify traffic conflicts themselves, eliminating researcher bias in the identification
of the conflicts [18]. However, our approach has the advantage of standardizing conflict
identification among all participants.

4.2. Contribution to Scholarly Knowledge

This paper is a novel attempt at modeling cyclists’ exposure to traffic conflict risk
using an extensive mobile data collection. The dataset used in this study includes many
nonsevere events, which are often disregarded in other studies that focus on critical
events [18,35]. Moreover, it brings nuances to the generally accepted statement that cycling
infrastructure is safer for cyclists [9]. Indeed, its protective effect depends upon cycleway
type (in interaction with road type) and conflict partner (vehicle and pedestrian).

4.2.1. Safety Incidence Rates (SIRs) among Other Conflict Studies

Table 4 shows an overview of the incidence rates presented by other studies. While
most studies measured rates below 1 event per 60 min and 5 events per 100 km, one paper
used a broader definition of conflict (encompassing all traffic violations) and measured 3
and 17 events per 60 min and 100 km [21]. The present study measured high incidence
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rates (5 and 2 conflicts with vehicles and pedestrians per 60 min, see Table 2 for further
details). Directly comparing incidence rates from one paper to another is challenging due to
the variety of geographical contexts (e.g., country and city size) and of conflict definitions
used by the authors. Among other factors, higher rates in our study may reflect that
notwithstanding its strong cycling community and rapidly evolving cycling infrastructure,
Montréal is still a North American metropolis with large vehicle and pedestrian flows, as
well as many car-oriented street designs [7].

Table 4. Safety incidence rates of some cycling safety studies.

Select Cycling Safety Studies Area
Dataset Size Safety Incidence Rates

Events (n) min km Per 60 min Per 100 km

Johnson et al. [20] Melbourne, Australia 54 7658 – 0.42 * –
Gustafsson and Archer [22] Stockholm, Sweden 220 14,400 4910 * 0.92 * 4.48 *
Dozza and Werneke [18] Gothenburg, Sweden 63 6840 1549 * 0.55 * 4.07 *
Schleinitz et al. [35] Chemnitz, Germany 77 22,320 5280 * 0.21 * 1.44
Hamann and Peek-Asa [21] Iowa City, USA 180 3436 * 1078 * 3.14 16.70

* Rates derived from other data presented in the paper.

4.2.2. Nonprotected Bike Lanes: Not the Thought That Counts

Bike lanes not only fail to prevent conflicts with vehicles, but also seem to foster them.
In this study, bike lanes were often illegally occupied by motorists as if it were a residual
space to perform numerous tasks that cannot be done in the moving vehicle lane. The
most frequent example is the vehicle parked in the bike lane (Figure 4a). Lack of physical
separation also makes it easy for car drivers to partially encroach on the bike lane when
engaging in some maneuvers, such as turning right at an intersection (Figure 4b). In line
with the residual space-use of the bike lane, motorists often take advantage of it to enter
and exit their vehicle away from moving motorized traffic (Figure 4c). All these situations
force cyclists to swerve away from the encroachment point towards the center of the
street (when the conflict stems from a parked vehicle) or towards the curb or the parking
lane (when the conflict is caused by a vehicle in the moving lane). This is particularly
worrisome when analyzed in conjunction with the findings from Beck et al. [52]: in their
study analyzing motor vehicle passing distance with cyclists, they found that bike lanes
were associated with significantly shorter passing distances than regular streets without
cycling facility. This association between safety events and bike lanes (more conflicts
and shorter passing distance) may seem harmless in itself since most collision and injury
studies do not report similar significant associations [28,33]. However, when experienced
repeatedly, these events may have an effect on cycling motivation, especially for safety-
conscious individuals [53], and may lead in some cases to minor crashes, which are often
absent from collision and injury databases due to underreporting bias [10].

Figure 4. Vehicle conflicts on bike lanes located on collector streets: (a) parked car, (b) lane encroachment and (c) access
to vehicle.
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4.2.3. The Backfiring Effect of Physically Separated Cycling Facilities

On-street and off-street bike paths strongly decrease vehicle conflict likelihood. This
supports previous Canadian studies that found lower relative risks of injury on protected
cycle tracks than on reference streets without cycling facility [33,34]. However, this protec-
tive effect seems to attract more than just cyclists.

Other vulnerable road users (mostly pedestrians) often seek refuge in the bike path,
even if a dedicated sidewalk is available nearby. In the example shown in Figure 5a, the
pedestrians choose to walk on the bike path probably because the sidewalk is much closer
to the road, i.e., to vehicular danger and its associated noise and air pollution. Among
pedestrians, many conflict partners were joggers (Figure 5b), for whom the bike path is a
much more comfortable infrastructure than the sidewalk’s uneven surface. Bike paths are
also used as a residual space by neighbors for their garbage collection bins (Figure 5c). Note
that although bins in themselves were not counted as conflicts, pedestrians manipulating
them were. Such findings seem congruent with those of Schleinitz et al. [35] who measured
higher safety incidence rates (SIRs) of conflicts with other cyclists and pedestrians on
cycling infrastructure than on regular roads.

Figure 5. Pedestrian conflicts on off-street bike paths with (a) a walker, (b) a jogger and (c) other.

One result that may seem surprising at first glance is the slightly higher likelihood of
conflict with a pedestrian on shared lanes that are located on a local street and on bike lanes
that are located on a collector street. First, for both predictors, this effect is much smaller
than it is for on-street and off-street bike paths. Second, as for shared lanes, it may reflect
that the lower traffic volumes increase pedestrians’ confidence to walk in the street rather
than on the sidewalk. Third, as for bike lanes, this effect is likely related to the presence or
absence of physical separation features. Indeed, while bollards were present in only 3% of
the baseline events located on collector street bike lanes, they were present in 20% of the
conflicts with pedestrians that occurred on collector street bike lanes.

4.2.4. The Relevance of Cycleway and Road Type Interaction Variables

Cycling facilities do not have the same effect on conflict likelihood depending on the
type of road on which they are located. Such interaction variables are seldom found in
the literature. In the vehicle model, bike lanes increase conflict likelihood when located
on local and collector streets; however, this effect is not significant for bike lanes located
on arterial roads. Higher traffic flows and the more transit-focused nature of these roads
may explain why fewer vehicles park in the bike lane for a quick stop. As for pedestrians,
conflict likelihood is higher on on-street bike paths that are located on arterial and collector
roads; however, this effect is not significant when the bike path is located on a local street.
This may be linked to the lower pedestrian volumes typically measured on local streets.

Note that one must be cautious with the interpretation of the interaction variable
coefficients: we do not recommend installing bike lanes on arterial roads. Even if our
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results show that vehicle conflict likelihood is lower when the bike lane is located on an
arterial road than on a collector or local street, conflict and collision severity may be higher
on arterial roads due to the higher traffic volumes and speeds, as well as the presence of
heavy vehicles. In this vein, bike lanes on arterial roads could prove to be more dangerous
overall than bike lanes on collector streets.

4.3. Implications for Decision Makers
4.3.1. Cycleway Design Considerations

Understanding the combined effect of cycleway and road type on conflict likelihood
could be relevant to urban planners when (1) identifying which cycling facility type
to build along a given corridor and (2) anticipating potential conflicts and installing
protection features.

Public guidelines in Québec recommend allocating shared lanes only on streets with
low vehicle flows [54]. Although not contradicting this recommendation, our results
prove that likelihood of conflict with a vehicle is no different on streets with or without a
“sharrow”, which may raise questions on the merits of such a facility type.

Bike lanes that are not physically segregated from traffic should be avoided, especially
on streets where parking demand is high in comparison to the available spots and where
car drivers may be tempted to temporarily park the vehicle in the bike lane to run an
errand. This implies the use of physical separation features, be they simple solutions
such as bollards, larger investments such as medians, or any element more substantial
than paint.

On on-street and off-street bike paths, the few vehicle conflicts experienced by the
cyclists from this data collection were intersection- or driveway-related, which are locations
where the physical separation is breached. This stresses the need for better integration of
cycling facilities at intersections to ensure that the safe cycling conditions are continuous
throughout cycling routes [12]. It also supports current provincial guidelines, which
discourage planners from designing on-street two-way bike paths specifically because
of the potential conflicts at driveways and intersections [54]. Urban planners could, for
instance, extend the cycleway protection into the intersection by building a corner island
that gives turning vehicles a better sight of crossing cyclists [55].

Planners must nevertheless be sensitive to the backfiring effect that physically pro-
tected designs may have, i.e., pedestrians using them. This effect is only briefly addressed
in current public guidelines [54]. First, planners could accommodate pedestrians by pro-
viding them with comfortable infrastructure further away from traffic than the bike path,
eliminating in the first place the comparable advantage of walking on the bike path rather
than the footpath. Second, clear, frequent and highly visible road marking and signage
must be placed to designate cyclist-only rights-of-way. Signage is especially important
in northern cities like Montréal, where snowplowing and application of strong abrasives,
which are necessary to maintain the roads during the harsh winter months, can rapidly
fade away the road markings.

4.3.2. Education

Pedestrians (especially those wearing headphones) could use bike paths in a safer
manner by walking or running in the opposite direction of cyclist traffic, making it easier
to yield the way to oncoming cyclists. Education programs and awareness-raising patrols
could help pedestrians and cyclists to better share the paths. However, such programs
must not replace the provision of decent infrastructure for both pedestrians and cyclists.

5. Conclusions

The aim of this study was to evaluate cycleway and road types’ combined effect on
cycling conflict occurrence with vehicles and with pedestrians. Bootstrapped generalized
additive model (GAM) results show that not all cycleway types are created equal when it
comes to protecting their users from conflicts. Bike lanes are more vehicle-conflict prone
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than regular streets, which is counterproductive. Securing them with simple physical
features, such as bollards, could discourage their use as a residual space for vehicles.
On-street and off-street bike paths offer protection from conflicts with vehicles (except
at driveways or at intersections), which is consistent with the literature about cycling
safety. However, they fail to protect cyclists from conflicts with pedestrians. While the
former may have more severe outcomes than the latter, urban planners must not neglect
the dissuasive effect that experiencing frequent nonsevere conflicts can have on cycling
motivation. Indeed, having to avoid many pedestrians while cycling may translate into
a higher level of stress and a less efficient commute. Finally, including road type as an
interaction variable revealed the different effects on conflict likelihood that a given cycleway
type can have, whether it is located on a local street, a collector street or an arterial road.
Future research could evaluate the severity of the conflicts experienced by the cyclists and
perform cross-analyses with collision and injury databases to further detail the relations
between conflicts, collisions and safety.
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