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Abstract: Forward collision warning (FCW) systems typically employ forward sensing technologies
to identify possible forward collisions and provide an alert to the driver in the event they have not
recognized a threat. These systems have demonstrated safety benefits. However, because the base
rate of collisions is low, sensitive FCW systems can provide a high rate of alarms in situations with no
or low probability of collision, which may negatively impact driver responsiveness and satisfaction.
We examined over 2000 naturally occurring FCWs in two modern vehicles as a part of a naturalistic
driving study investigation into advanced vehicle technologies. Analysts used cabin and forward
camera footage, as well as environmental characteristics, to judge the likelihood of a crash during
each alert, which were used to model the likelihood of an alert representing a possible collision. Only
nine FCWs were considered “crash possible and imminent”. Road-type, speed, traffic density, and
deceleration profiles distinguished between alert severity. Modeling outcomes provide clues for
reducing nuisance and false alerts, and the method of using subjective video annotation combined
with vehicle kinematics shows promise for investigating FCW alerts in the real world.

Keywords: forward collision warnings; naturalistic driving study; crash avoidance

1. Introduction
1.1. Forward Collision Warning Systems

Rear-end crashes constitute between 20 and 30% of all police-reported crashes in the
United States [1] and constitute nearly a third of fatal crashes in environments of speeds
over 45 MPH [2]. Forward collision warning (FCW) was the first advanced crash avoidance
technology to begin to offer drivers assistance in avoiding these crashes. FCW systems are
part of many vehicles’ collision avoidance systems (CAS), which typically employ radar
or vision systems to identify possible forward collisions and provide an audible, visual,
tactile, or combination of alert modalities to notify the driver in the event they have not
recognized a hazard in their forward path [3]. A system may also pre-charge the brakes to
facilitate a rapid response to the potential threat or pre-tension the seatbelts to help enhance
protection of occupants in the event of a crash. Unlike automatic emergency braking (AEB)
or emergency steering function (ESF), both of which were developed and deployed more
recently (FCW systems were made widely available on passenger cars and trucks in the
mid-2000s), FCW alerts alone do not provide any control input into the vehicle’s steering,
throttle, or brakes, but depend upon the driver to respond appropriately to a hazard [3].
FCW alerts are intended to attract the driver’s attention to the forward path of the vehicle
so that the driver is better prepared to attend and respond to a possible hazard or threat
emerging in that forward path. Because an FCW alert is specifically intended to give the
driver time to attend and react, the algorithms which govern the timing of FCW alerts
were developed through extensive human factor research and development (e.g., [4]) to
accommodate both how long it takes a driver to notice and respond to an alert, as well
as the time it takes for a driver to accomplish a braking response [4]. As a result, FCW
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alerts are issued much earlier than those CAS components (such as AEB) that are designed
to respond later in the collision-possible sequence, after the driver has failed to respond
to help mitigate or prevent crashes [4]. However, for many of the scenarios in which an
FCW can be effective, such as the scenario used in the NHTSA FCW performance test
procedure [5], AEB may be ill-suited. In this scenario, in which a driver follows a moving
lead vehicle that unexpectedly departs the lane, revealing a stopped lead vehicle, an FCW
alert is used with a time-to-collision (TTC) of 2.1 s, to which the driver, who is engaged in a
non-driving-related task (NDRT), should respond and avoid or mitigate a collision. While
many of the FCW alerts studied did alert drivers to make stopping or evasive maneuvers,
the authors note the scenario may not lend itself to effective mitigation via AEB, due to “the
combination of short target acquisition time, sensor limitations (e.g., target identification),
and system response time (e.g., for algorithm processing and brake system activation) [5]
(p. 101)”. Despite the developments of other advanced technologies, FCWs remain an
important tool in crash avoidance and mitigation.

1.2. Research into the Strengths and Weaknesses of FCW Systems

Three field operational trials (FOTs) found that FCW reduced the tendency for tail-
gating (compared to driving with no FCW system in the vehicle) under conditions where
tailgating is more prevalent (ACAS FOT [6]; EuroFOT [7]; IVBSS [8]) and reduced the
amount of time that drivers spent following a vehicle ahead at short headways. The Euro-
FOT data also showed that FCW led to an increase in time headways and a reduction in
harsh braking incidents across rural and urban conditions. When headways are lengthened
during car-following, it has been hypothesized that this may provide drivers with addi-
tional time to respond to unexpected rear-end crash conditions that might emerge. It has
been further hypothesized that an FCW alert may at times (e.g., when a driver is distracted)
alert the driver to an approaching (or closing) conflict earlier than the driver would have
otherwise detected it. However, the data from the ACAS and IVBSS FOTs showed that
FCW alone did not have a broad effect on reducing conflicts (even though it had effects on
reducing tailgating behavior).

Other studies, including on-road and track experiments, have provided evidence that
drivers can potentially take advantage of collision warnings to improve safe driving in some
situations. In early on-road experimental studies, Dingus et al. [9] employed both visual
and auditory warnings to assess distance maintenance and found that visual warnings,
in particular, were associated with a significant increase in headway maintenance but
auditory warnings alone provided no benefit. Fisher et al. [10] examined headway, FCW,
and incident rate for drivers in a 3–12-month field experiment and found no significant
change in headway or average speed due to auditory FCW usage over time, but modeling
suggested a reduction in incident rate as a result of FCW, possibly due to drivers learning
to respond faster to FCW alerts, using them as cues, and as such reducing the likelihood of
a conflict. These studies suggest that FCW alerts demonstrate the capacity to be effective at
reducing crash and conflict rates.

To that end, historical crash statistics have demonstrated some actual effectiveness of
FCW systems. The Highway Loss Data Institute [11] observed a significant reduction in
property damage claims associated with the presence of an FCW feature. Cicchino [12] ob-
served a 23% reduction in rear-end striking crash involvement, but no significant reduction
in such crashes with injuries (a reduction in injury crashes was observed for FCW alone for
multiple car crashes); however, these effects were larger and more consistent for vehicles
also equipped with AEB. Cicchino [13] observed a similar 27% reduction in police-reported
rear-end striking crash involvement for vehicles equipped with FCW, which was improved
to 50% when paired with AEB.

In addition to effectiveness, much of the research on FCWs has concerned driver
acceptance. Najm [6] looked comprehensively at driver acceptance of FCW and adaptive
cruise control (ACC) systems in a FOT, and observed a relationship between the issuance of
FCWs to actual threats and positive attitudes toward the system. Drivers who were alerted
to actual threats by the FCW system under study (especially while distracted) were more
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likely to provide positive feedback across several scales than other drivers, but, because
actual threats were rare, most drivers did not view the FCW system positively (ACC, on
the other hand, was viewed generally positively). In a Chinese FOT examining FCWs,
lane departure warnings (LDWs), and side blind zone alerts (SBZAs), Li et al. [14] found
that FCW acceptance trailed SBZA acceptance, and that this trend was even stronger for
LDW alerts; this may be in part due to a higher rate of alerts that were not actual threats.
The Consumer Reports’ Advanced Safety Systems Survey [15] showed that while 69%
of owners of vehicles with FCW systems were very satisfied with the system, only 54%
reported that they trusted the system to work every time.

The major technical challenge to maximizing the potential safety benefits from FCWs
and improving acceptance has been the handling of “false alarms”. Parasuraman et al. [16]
observed that the events that FCW systems are designed to prevent, collisions, have a very
low base rate, such that even highly precise alert systems designed to alert a driver to
a potential impending collision will likely have many false alarms. Thus, Parasuraman
et al. [16] argue that detecting collision-possible events may be more practical (and possibly
desirable, as it may be used as a driving aid), but that driver acceptance would require a
low false alarm rate (ideally indistinguishable from zero). Unfortunately, in all practicality,
the reduction of a false alarm rate this low when the posterior probability of a collision
is also low (indeed, for many drivers it may be decades between incidents in which they
even need to make a true evasive maneuver) may be impossible without setting a detection
threshold so low that it misses key events. Critically, Parasuraman et al. [16] argue for
the importance of identifying the posterior probability of collision likelihood to reduce
false alarms and to increase FCW acceptance and effectiveness. This may be one path to
enhancing driver acceptance of and trust in FCW systems.

1.3. The Current Study

In light of the strong potential benefits of FCW systems and evidence for reduced
crash risk associated with FCW systems, both experimentally and on the road, but sub-
optimal levels of FCW system acceptance and trust, the current study leverages data from
production vehicles in a FOT study in order to identify real world FCW alerts, the contexts
in which they occurred, and the apparent necessity of their issuances in two production
vehicles with FCW systems: the 2016 Range Rover Evoque and the 2017 Volvo S90. The
goals of this study were fourfold: 1. develop a method using subjective video annotation of
video of FCW issuances in naturalistic driving to estimate alert severity, and use driving
kinematics to validate those estimates; 2. estimate the probability of an FCW in response
to imminent collision (i.e., a situation in which a rapid evasive maneuver is required,
such as steering or hard braking) versus a collision-impossible event (i.e., a situation in
which a forward collision could not happen), which Parasuraman et al. [16] referred to
as a “false alarm” in the alerting scenario in which a broad range of crash possibility was
considered; 3. demonstrate an association between these probabilities and vehicle dynamic
data; 4. model the context under which imminent and collision impossible FCW events
are likely to occur to better estimate the posterior probability of collision likelihood (and,
conversely, false alarm likelihood) informing the calibration of FCW systems.

2. Materials and Methods
2.1. Participants

The dataset included 37 participants who were recruited to take part in the MIT
Advanced Vehicle Technology (MIT-AVT) study. Participants were recruited from the greater
Boston, Massachusetts area, and were screened using background and driving record checks
to ensure that no drivers had been involved in a police-reported crash or received more than
one traffic violation within the past year, as the study involved providing them a research
vehicle and institutional review board required some diligence in excluding the highest risk
drivers. Participants were also excluded if highway driving was not a reported part of their
normal driving routine to ensure that drivers would have some highway exposure in which
to consider assistive driving feature usage. Twenty-one participants (11 female, with an
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average age of 41.3 years [minimum age = 21, maximum age = 65]) were randomly assigned
to drive a 2016 Range Rover Evoque (“Evoque” going forward), and 16 participants (8 male,
with an average age of 45.8 years [minimum age = 27, maximum age = 66]) were randomly
assigned to drive a 2017 Volvo S90 (“S90” going forward). These vehicles were chosen for
their semi-autonomous driving capabilities (e.g., adaptive cruise control, lane centering)
for other research purposes, but both vehicles also have the FCW functionality that is the
focus of this study. As such, this study is not a comprehensive evaluation of current FCW
systems, but an application of a novel methodology to two production systems serving only
as example implementations using tools available to researchers who do not otherwise have
access to algorithm implementation details or on-board sensor output, as typically only the
manufacturers of the vehicles or systems have.

2.2. Apparatus and Training

Participants were introduced to their vehicle at MIT and were trained on its various
features, including a static introduction to its safety features and instrumentation in the
vehicle. They took part in an on-road demonstration session involving several CAS and
assistive driving systems, their settings, and possible alerts (e.g., LDW sensitivity settings
and alerts, FCW sensitivity settings but not alerts), lasting approximately one hour. After
this, participants kept the vehicle for four weeks, during which they drove it as a part of
their normal driving routine. To maximize the naturalistic nature of the project, driver
familiarization and instruction consisted of information available to purchasers of the
vehicles via the operator’s manual or official vehicle website, and drivers could adjust
vehicle settings as they wished, including the FCW distance settings (i.e., the threshold at
which FCW alerts were issued based on the vehicle’s own algorithm).

Vehicles were instrumented with a custom data acquisition system (RIDER, Real-time
Intelligent Driving Environment Recording) which collected, among other information,
vehicle kinematic data (via the controller area network (CAN) bus and on-board accelerom-
eter sensors), and video data (via four 720 p video cameras positioned around the cabin
to collect views of the driver’s face, the driver’s behavior inside the cabin, the instrument
cluster, and the forward roadway). These streams of data were synchronized at the point of
data acquisition and stored at 30 Hz; more details on the RIDER data acquisition system can
be found in Fridman et al. [17]. The resulting dataset consisted of a synchronized stream of
video and kinematic data such as longitudinal acceleration.

2.3. Data Reduction and Annotation

Data for this study came from nearly 6000 trips, comprising over 2200 h and 50,000 m
of travel. FCWs in both vehicles were identified using trained computer vision algorithms
applied to the video images recorded from the instrument cluster camera, since, in addition
to an auditory alert, a visual FCW telltale was presented to drivers by the systems. To
do this, a single shot detector was used to detect the FCW icon. A training dataset for a
VGG16 convolutional neural network model [18] was built leveraging manual annotation
and expanded iteratively based upon high confidence positive detections. While positive
algorithmic detections were all manually validated by human coders (mitigating the poten-
tial of false positives), the detection routine’s false negative rate is unknown and is to some
degree influenced by extrinsic factors such as solar glare and other reflections obscuring
the image of the indicator. However, periods of time of high deceleration (>0.3 g) were
identified and manually checked for missed FCW issuances (of which zero were found), so
it is likely that any missed FCW issuances were of the “nuisance” category, and thus the
rates of nuisance alerts described should be potentially viewed as a lower bound.

This analysis consists of 2034 FCW alerts identified in this manner (1790 for the Evoque,
and 243 for the S90). For each FCW, a period of time subtending 5 s before to 10 s after
the alert issuance was resected from available data for analysis. For this analysis, this
data consisted of CAN-based vehicle speed (and derived vehicle acceleration) and the
quad-split video from the four cameras (with synchronized audio from inside the cabin).
These data were synchronized at the point of capture; the fifteen seconds of video were
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used by analysts for epoch annotation, and the fifteen seconds of longitudinal acceleration
were used to validate severity classifications.

The first pass of video annotation was done on the quad-split video, wherein annota-
tors reviewed each clip for validity (i.e., whether an alert was truly issued) and assigned
each FCW issuance a rating based on the likelihood of a crash based only on visual infor-
mation available in each clip. Ratings and descriptions are shown in Table 1. While the
team of analysts viewed each of the nine “crash possible and imminent” FCW epochs and
agreed on the categorization, the majority of the other epochs were coded by a single ana-
lyst. Thus, while it is unlikely the “crash possible and imminent” epochs do not represent
potentially imminent crashes (based on this coding approach), the rate of missed imminent
and possible crashes among the other epochs is unknown, and thus the count of nine may
represent a lower-bound estimate. Videos were additionally annotated by separate analysts
for features of environmental context. Analysts were trained to focus on attributes of the
driving scenario and the environment, and based their analyses on the five seconds of video
before the issuance of the FCW alert. Attributes included locality, illumination, roadway
geometry (curve and grade), divider or barrier presence, the presence and behavior of any
lead vehicle, traffic density, and weather. Quality assurance checking was applied to a small
percentage of the epochs (15%) that showed high agreement among analysts. Analysts
were trained to focus on attributes of the driving scenario and of the environment. This
coding was not applied in a frame-by-frame manner; rather, the clip was viewed from start
to finish at least once by the video analyst, who then coded the attributes of the scenario
as a whole (e.g., what type of road, weather, etc.). Annotations were single-coded, and a
formal interrater reliability analysis was not computed. A sample image of video from
which analysts based their annotations is displayed in Figure 1.

Table 1. Severity ratings and descriptions for FCWs.

Severity Rating Description

Nuisance

While an FCW was actually issued to the driver, the cause of this did
not appear to be any relevant vehicle in the roadway, in the judgment
of the analyst. (Note that this differs from definitions of “nuisance alert”

in which whether the driver appears to have noticed the potential
hazard is the key criteria).

Crash unlikely When the FCW was issued, a crash with another vehicle appeared
unlikely in the judgment of the analyst.

Crash possible but
not imminent

When the FCW was issued, a crash with another vehicle appeared
possible in the judgment of the analyst but the time scale of the possible

collision was such that a rapid driver response was not required.

Crash possible
and imminent

When the FCW was issued, a crash with another vehicle appeared
possible in the judgment of the analyst and the time scale of the

possible collision was such that a rapid driver response was required.
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Figure 1. An example frame of quad-split video used by analysts to determine FCW severity and
contextual attributes. The red square indicated the onset of the issuance of the FCW to the analysts.

3. Results
3.1. FCW Severity Ratings

FCW counts and probabilities are displayed for each severity rating and vehicle in
Table 2. As can be seen, the FCW alerts issued when an evasive maneuver was likely to be
needed—the “Crash possible and imminent” alerts (“imminent alerts” going forward)—
were exceedingly rare, comprising between 0.2% (S90) and 2.1% (Evoque) of alerts. Con-
versely, FCW alerts issued where there is no notable event (observed by the annotator) to
which the driver should attend—the “nuisance” alerts (“nuisance alerts” going forward)—
were more common, but also rare, comprising between 0.8% (Evoque) and 9.5% (S90) of
alerts. These are the two categories of alerts that are of critical interest in this analysis, as
they represent either the probability of an alert representing a potential collision (imminent
alerts) or the probability of an alert not representing a possible collision (a nuisance alert),
which are two facets critically identified by Parasuraman et al. [16] for developing an
effective FCW system.

Table 2. FCW counts and probabilities by vehicle and severity rating.

Alert Severity Rating
Range Rover Evoque Volvo S90

Count P Count P

Nuisance alert 15 0.008 23 0.095
Crash unlikely 1696 0.95 139 0.57

Crash possible but not imminent 75 0.042 76 0.31
Crash possible and imminent 4 0.002 5 0.021

Total 1790 1.0 243 1.0

There are major differences in the counts of FCWs observed between the two vehicles,
despite similar exposure and random assignment of participants to the two vehicles. Criti-
cally, these differences principally occurred in the “crash unlikely” category, and, based on
inspection of FCW feature settings upon return, seems to be due to a few participants in the
Evoque having set their FCW warning distance threshold to the most conservative setting.
Notably, there were not major differences in counts between vehicles in the categories of
prime interest: crash possible and imminent and nuisance alert. A follow-up analysis did
not find any interactions between contextual attributes and severity ratings between the
vehicles or between deceleration profiles and the vehicle type, and so, due to the small
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amount of imminent and nuisance alerts, the two vehicles were combined for mixed-effects
logistic regression analyses and deceleration profile plots. As in Najm et al. [6], no relation-
ship was observed between the distance settings of FCWs, as recorded when vehicles were
returned, and the number of imminent alerts experienced by drivers in either vehicle.

3.2. Associating Severity Ratings with Deceleration Profiles

The subjective rating scale for FCW severity is based on video annotation. In addi-
tion, we examined the association between FCW ratings and acceleration computed from
moment-by-moment changes in vehicle speed (CAN-bus data). It was expected that, for
FCWs rated with the highest level of severity (imminent), deceleration would be maximal
and possibly start prior to the FCW alert, while nuisance FCWs would have the mildest de-
celeration occurring only after the alert. Aggregate plots of averaged acceleration (plotted
with 1 s rolling means smoothing) are shown in Figure 2.
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Figure 2 illustrates that alerts issued to imminent hazards had consistent and the
strongest average deceleration for each second between −1.5 (1.5 s before FCW issuance)
and +3.7 (3.7 s after FCW) issuance; alerts issued to imminent hazards also showed the
earliest average deceleration (−1.5 s before FCW issuance versus −0.27 s for alerts issued
to crash possible hazards (which is suggestive of the possibility that crash possible but not
imminent hazards may have been associated with frequently evoking a response in drivers,
while crash imminent hazards may have been associated with facilitating or encouraging a
stronger brake response), +0.7 s for alerts issued to crash unlikely “hazards”, and +1.5 s for
nuisance alerts issued under conditions of no discernible hazard). While the number of
critical alerts (especially alerts to imminent hazards) is too small for a by-subject analysis of
average minimum deceleration by severity, the non-overlapping nature of the aggregate
plots at critical time intervals suggests that subjective ratings of FCW severity reflect
significant differences in deceleration profiles and support the use of subjective ratings
from video FCW epochs to investigate the patterns of FCW issuances in naturalistic driving.
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3.3. Severity by Context

We computed the proportion of alerts for imminent hazards and those for “nui-
sance” conditions by annotated contextual attributes and used logistic mixed effects regres-
sions [19] with driver as a random factor to estimate the odds ratios of each type of alert as
a function of each contextual condition (See Table 3). Models were assessed independently
to establish univariate estimates of odds ratios of the likelihoods of each type of alert with
each level of each factor.

A few notable trends emerged from this analysis. First, FCWs in imminent hazard
conditions only occurred in the presence of a lead vehicle. No FCWs in imminent hazard
conditions were observed in response to the sudden emergence of a vehicle into the forward
roadway from another street, driveway, or parking lot. Conversely, nuisance FCWs were
significantly more likely to be observed in the absence of a lead vehicle, or when the lead
vehicle appeared to be driving at a steady speed or accelerating. Nuisance FCWs were
also significantly less likely to occur on highways (compared to arterial, collector, and local
roads), and significantly more likely to occur on local roads (compared to other localities).
FCWs in imminent conditions were significantly more likely to occur in high traffic density,
while nuisance alerts were significantly more likely to occur in low traffic density. Nuisance
alerts were also more likely to occur on undivided roadways and on curved road segments.

Interactions between factors were also considered. Figure 3 displays the probability
density curves for speed (averaged across the 5 s period prior to each FCW) for each level
of FCW severity for highway alerts only; because only 4 imminent alerts were available,
each alert’s average speed is plotted as a vertical dashed line. All four FCWs in imminent
hazard conditions occurred at speeds far greater than most of the speeds observed in the
other severity categories but below typical posted highway speed limits, with an average
speed of 43 MPH (compared to 24–28 MPH for the other categories). Nearly 75% of FCWs
issued in non-imminent conditions on highways were issued at less than the minimum
speed (36 MPH) for FCWs in imminent conditions.

For non-highway FCWs, the relationship between speed and severity is depicted in
Figure 4, again with probability density curves for most of the FCW severity categories.
For the five alerts in imminent conditions, the average speed of the 5 s pre-FCW period
is individually plotted. Here, the trend is reversed, with all five FCWs for imminent
hazards occurring at low speeds. Conversely, nuisance alerts off-highway occur at higher
speeds than other categories of severity. Over 62% of nuisance alerts occurred at speeds
over 23 MPH (the fastest off-highway imminent alert observed), while only 20% of non-
nuisance alerts occurred off-highway over 23 MPH. For the participants who experienced
a “crash possible and imminent” alert, a mixed-effects logistic regression was computed
to assess a potential interaction between road type (highway or not) and pre-FCW speed
(square-root transformed due to significant right skew). This interaction was significant
(b = −0.95, p = 0.028). Similarly, a mixed-effects logistic regression was computed to assess
the influence of the interaction between speed and locality on nuisance likelihood, which
was also significant (b = 0.63, p = 0.013), but in the opposite direction. This suggests that the
likelihood of an imminent or a nuisance alert depends partly on an interaction between
road type and vehicle speed.
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Table 3. Imminent and nuisance alert probabilities and odds ratios. Probabilities (P) are the probability
of each combination of alert severity and alert context occurring across all alerts. Each OR was
calculated from regression slopes in independent univariate mixed-effects logistic regressions [19],
with driver as a random factor, in which the likelihood of an imminent or nuisance alert for each level
of context provided was compared to all other levels in that specific context (i.e., “Low density traffic”
was contrasted with all traffic that was not annotated as low density). ORs could not be computed
for conditions that did not occur (e.g., imminent alerts with no lead vehicle). Lower 2.5% limits (LL)
and upper 97.5% limits (UL) for each OR estimate are also provided. ORs significantly greater than 1
indicate this level of this factor was associated with a greater likelihood of this type of alert, and the
opposite effect was true for ORs significantly less than 1.

Attribute
Imminent Nuisance

P OR LL UL P OR LL UL

Highway 0.0078 2.67 0.66 11.4 0.014 0.017 0.0074 0.033
Local 0.0024 0.38 0.019 2.37 0.041 3.6 1.6 7

No lead vehicle 0 N/A N/A N/A 0.17 82.2 35.5 197
Lead vehicle Accel. 0 N/A N/A N/A 0.047 10.3 3 32.9
Low traffic density 0 N/A N/A N/A 0.065 7.63 3.73 15.9
High traffic density 0.0067 7.22 1.21 10.3 0.0086 0.27 0.12 0.58

Rain or snow 0 N/A N/A N/A 0.021 1.1 0.35 2.84
No barrier present 0.0024 0.27 0.05 1.1 0.021 1.43 0.71 3.04

Not divided 0.0022 0.25 0.03 1.13 0.03 2.91 1.43 6.3
Geometry (grade) 0.011 2.2 0.11 13.8 0.021 1 0.16 3.56
Geometry (curve) 0.0083 1.83 0.26 7.89 0.058 3.93 1.89 7.89
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4. Discussion

The goals of this study were to develop a method for using subjective video annotation
to estimate the probability of an FCW in response to an imminent collision event versus
a collision highly unlikely situation, as well as to characterize the vehicle dynamics and
contexts associated with each class of event. To this end, over 2000 FCW alerts were identi-
fied from over 50,000 miles of travel, which were subjectively sorted into four categories
of FCW severity by trained analysts. One of these levels, “crash possible and imminent”
represented scenarios most likely to require evasive maneuvers consistent with actual
crash avoidance; this score was applied nine times, with a very low overall probability.
The level “nuisance alert” represented scenarios in which the alert provided no useful
information about the forward scene (in which there was no discernible hazard present).
This was the least desirable kind of alert and could be said to represent a false alarm from
the perspective of the driver; this category was applied 42 times by analysts. The counts of
these categories did not differ markedly between vehicles, despite overall differences in
alert rates (with higher rates observed for the Range Rover Evoque). Vehicle deceleration
profiles throughout the FCW epochs demonstrated that dynamics, in aggregate, aligned
with the subjectively coded FCW severity, providing one form of validation.

Following Parasuraman et al. [16], we identified the probabilities of either: 1. crash
imminent alerts (representing likely crashes without immediate driver intervention); 2. nui-
sance alerts (representing the obverse of a very generally defined “vehicle in forward
roadway” alert which can be argued to at least provide the potential for relevant informa-
tion for the driver, even if they do not need to respond). A helpful FCW system should
ideally maximize the probability of imminent alerts and minimize the probability of nui-
sance alerts. In reality, however, for many sensing systems, raising a threshold to minimize
the probability of false alerts will also reduce the probability of correctly detecting the
conditions of interest (i.e., reduce the number of hazards that the system detects, and cause
the system to erroneously miss more hazards). Therefore, more advanced approaches to
filtering out or removing false signals may be advantageous.

By examining the subjectively annotated contexts in which all the alerts occurred, we
were able to compute the conditional probabilities of both imminent and nuisance alerts by
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contextual attribute, as well as their associated odds ratio. This led to the identification of
a number of important factors in co-determining the likelihood of either alert. Alerts to
imminent hazards were more likely to occur on highways; when on highways, all alerts
occurred at speeds over 35 MPH, while only 25% of lower severity alerts occurred at
these speeds. However, a simple speed filter would be insufficient (unless only stopping
or mitigating high speed collisions were the goal), as, off-highway, alerts to imminent
hazards showed the opposite pattern, occurring at very low speeds. In either locale, alerts
to imminent hazards tended to occur in medium- or high-density traffic; because these
systems are designed to alert drivers to vehicles in their paths, this is expected, as higher
traffic density presents higher probabilities of lead vehicles, slowing lead vehicles, and
stopped lead vehicles. Nuisance alerts, on the other hand, were more likely to occur without
adjacent traffic, on local roads, on curved roads, and without a decelerating or stopped lead
vehicle. It is likely that many of these are due to road-adjacent features triggering FCW
alerts. It is unknown what specific driver behaviors may be associated with triggering
higher rates of both nuisance and imminent FCWs, although routine driving with a short
TTC to a lead vehicle is likely to be associated with both.

The identification of these tendencies and probabilities is a step toward identifying
the limitations of current production FCW systems and potentially improving their system
design to maximize critical alerts and minimize false alarms. However, because only two
consumer-available FCW systems were examined in this analysis, and for a short-term
exposure, altering design to accommodate the characteristics of the nine imminent alerts
observed would likely result in some overfitting and lead to missing some imminent alerts
while not benefiting necessarily as much a reduction in false alarms as expected. Further-
more, it is likely that the number of FCWs observed here represents a lower boundary.
While each FCW alert issuance that was detected was manually verified from video by two
separate coders, the rate of missed FCW alerts is unknown (limitations in the computer
vision algorithm discussed earlier), as is the distribution of undetected FCW alerts across
the severity categories. In addition, while 15% of the contextual annotations were reviewed
by other analysts to examine agreement (which informal appraisal deemed high), and
aggregate accelerations of vehicles differed substantially across subjective assessments of
severity (suggesting subjective assessments were associated with objective performance
differences), a formal interrater reliability analysis would quantify the ability to which
coders can identify both the severity of FCW alerts and the attributes of context in which
they occur. Further, the overall use of multiple coders to assess each FCW epoch would
likely improve the accuracy of the results. Potential next steps might be to adapt this
analytic approach to more consumer-available FCW systems, as well as to sample ran-
dom epochs of driving to estimate the rate of undetected FCW alerts, if any. Future work
could benefit from greater availability of vehicle sensor data such that analysts could more
comprehensively assess alert triggers and unrelated facets of the scene.

Furthermore, implementing possible design changes of FCW alerts, such as using
GPS-based or video-based scene information, to adjust thresholds for alerts first in an
experimental context (i.e., simulator or field experiment) may be desirable. For example,
the effects of limiting FCW alerts on highways to moderately high-speed contexts could
be evaluated experimentally to identify the magnitude of an improved benefit from a
higher precision/lower false alarm FCW alerting design in order to estimate expected
safety benefits from deploying updated FCW systems. Because such changes are likely to
see the greatest effect over longer periods of use (as a result of accumulated nuisance or
non-imminent alerts), such evaluation is likely to be observed in longer-term study designs,
such as FOT or naturalistic driving studies.

Finally, this study did not look at the changes in FCW issuances over time, which
might be expected as a driver experiences more (or fewer) FCW alerts than expected, and
either adjusts system settings or adjusts driving habits; thus, the impact of driving context
of FCW severity is viewed statically, when it is likely that the patterns observed do change
as a driver adjusts their own driving behavior in response to the behavior of an FCW
system. In addition, the study views the example FCW systems in a static way, when in the
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real-world, these systems are often subject to software updates within a vehicle and are
subjected to algorithm and sensor updates between vehicles (for example, moving from
radar to lidar or camera-based systems). Thus, it is not known how future implementations
of FCW systems may operate across contexts.

Overall, the use of video for the annotation of FCW severity in naturalistic driving
shows promise, especially when paired with kinematic data for some level of validation.
This can be utilized by researchers who do not have access to CAN radar, lidar, or other
diagnostic information about FCW system performance, or who have not instrumented
test vehicles with other sensors. Additionally, it remains unknown what the relationship
between radar-computed metrics, such as time-to-collision (TTC), and subjectively coded
severity is, whether or not there is strong linear correspondence, and whether there are
incidents with similar TTC that are subjectively interpreted as having different levels of
severity, and may have different deceleration profiles. This could be due to contextual
factors, such as the behavior of other vehicles, or previous decelerations by the driver;
understanding what elements, if any, in addition to TTC are utilized by subjective coders to
make severity ratings can be investigated in studies where objective and subjective data can
be co-examined. While the combining of subjective assessments with objective multi-sensor
time-series data would provide better accuracy and insight, front-facing cameras with some
way to identify FCW issuances (such as instrument cluster video) offer investigators a tool
for assessing the severity of alerts drivers are receiving in naturalistic studies.

5. Conclusions

Across thousands of FCWs issued, only nine represented alerts to hazards that video
analysts considered “imminent,” whereas nearly 40 represented alerts that video analysts
considered pure nuisance alerts with no readily identifiable cause. On highways, all the
alerts to imminent hazards occurred at or above 36 MPH, whereas 75% of the alerts to
non-imminent hazards occurred at speeds lower. Alerts to imminent hazards occurred in
high traffic density, and always in response to a slowing or stopped lead vehicle. Barriers,
weather, and road grade were unrelated to likelihood of alerts to imminent hazards, while
curve presence, lack of roadway division, and low traffic density were associated with
nuisance alert likelihood. Overall, it appears that, while FCW alerts are frequent, alerts to
imminent hazards are rare, but there are conditions that are highly associated with a much
greater likelihood of alerts to imminent hazards, and a much lower likelihood of nuisance
alerts. The overall high probability of nuisance alerts and alerts to non-imminent hazards
potentially reduce the desirability of FCW systems and the efficacy of FCW systems at
alerting drivers to real hazards, as suggested by Parasuraman et al. [16]; while studies have
shown safety benefits of FCW systems [12,13], this may be a limiting factor for improving
efficacy and acceptance. Future work can explore the use of driving and environmental
context in reducing the numbers of unneeded and false alerts while still improving the
proportion of valid and safety-positive alerts that will have value for drivers.
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