
Citation: Zhang, F.; Wang, M.;

Parker, J.; Roberts, S.C. The Effect of

Driving Style on Responses to

Unexpected Vehicle Cyberattacks.

Safety 2023, 9, 5. https://doi.org/

10.3390/safety9010005

Academic Editor: Raphael Grzebieta

Received: 29 November 2022

Revised: 21 January 2023

Accepted: 28 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

safety

Article

The Effect of Driving Style on Responses to Unexpected
Vehicle Cyberattacks
Fangda Zhang 1 , Meng Wang 2, Jah’inaya Parker 3 and Shannon C. Roberts 2,*

1 The Center for Injury Research and Policy, Abigail Wexner Research Institute at Nationwide Children’s
Hospital, Columbus, OH 43025, USA

2 Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA 01002, USA

3 Department of Industrial and Systems Engineering, University of Wisconsin—Madison,
Madison, WI 53706, USA

* Correspondence: scroberts@umass.edu; Tel.: +1-413-545-2165

Abstract: Vehicle cybersecurity is a serious concern, as modern vehicles are vulnerable to cyberattacks.
How drivers respond to situations induced by vehicle cyberattacks is safety critical. This paper sought
to understand the effect of human drivers’ risky driving style on response behavior to unexpected
vehicle cyberattacks. A driving simulator study was conducted wherein 32 participants experienced a
series of simulated drives in which unexpected events caused by vehicle cyberattacks were presented.
Participants’ response behavior was assessed by their change in velocity after the cybersecurity
events occurred, their post-event acceleration, as well as time to first reaction. Risky driving style was
portrayed by scores on the Driver Behavior Questionnaire (DBQ) and the Brief Sensation Seeking
Scale (BSSS). Half of the participants also received training regarding vehicle cybersecurity before
the experiment. Results suggest that when encountering certain cyberattack-induced unexpected
events, whether one received training, driving scenario, participants’ gender, DBQ-Violation scores,
together with their sensation seeking measured by disinhibition, had a significant impact on their
response behavior. Although both the DBQ and sensation seeking have been constantly reported
to be linked with risky and aberrant driving behavior, we found that drivers with higher sensation
seeking tended to respond to unexpected driving situations induced by vehicle cyberattacks in a
less risky and potentially safer manner. This study incorporates not only human factors into the
safety research of vehicle cybersecurity, but also builds direct connections between drivers’ risky
driving style, which may come from their inherent risk-taking tendency, to response behavior to
vehicle cyberattacks.

Keywords: vehicle cyberattacks; driving behavior; driving simulation; DBQ; sensation seeking

1. Introduction
1.1. Vehicle Cybersecurity and Human Factors

The last few decades have witnessed a transition of automotive systems from elec-
tromechanical to electronic and software-driven systems [1]. Today’s vehicles are important
to society and are examples of a cyber-physical system because of their integration of
computational components and physical systems [2,3]. As increasingly more vehicles
are connected to the Internet, cyberattacks against modern vehicles are said to be in-
evitable [3,4]. It is reported that the frequency and cost of cyberattacks continue to grow
exponentially worldwide [5,6]. As a consequence, cybersecurity is one of the highest
priorities for industry, academia, and government [5].

Cyberattacks can be passive, with no system damage, or active, with damage being
fatal to the system or the entire network [2,6]. For example, a vehicle cyberattack or a vehicle
system error can: (1) cause false or misleading information to be displayed to the driver [7],
(2) cause driver distraction [7], (3) show erroneous output on the human–machine interface
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(HMI) of the vehicle system [8], and (4) obstruct traffic by commanding compromised
vehicles under their control to benefit the attacker [9]. Resultantly, vehicle cyberattacks
can lead to outcomes ranging from minor comfort restraints to actual crashes [10,11]. It
has already been reported that hackers are able to manipulate and control certain vehicles
remotely [12–14]. In July 2015, Fiat Chrysler recalled 1.4 million cars due to doubts about
car software and alleged remote control [1].

Vehicle cyberattacks differ from common vehicle failures in that they are more likely
to be sudden without salient signals for the driver to notice [3]. Researchers have suggested
that a key feature of vehicle cyberattacks lies in their unpredictability, which leads to a belief
that there might not exist a one-size-fits-all solution to prevent vehicle cyberattacks [11].

In regard to traffic safety, the three main components are drivers, vehicles, and the
driving environment [15]. Efforts should accordingly also be devoted to these three aspects
to tackle the safety issue under the context of vehicle cyberattacks. Therefore, the role of
vehicle systems and drivers shall both be considered and treated equivalently critical for ve-
hicle cybersecurity studies [16]. Researchers and designers have been actively studying the
potential access points of vehicle cyberattacks and the vulnerability of vehicle systems and
connections from a technological perspective, hoping to design future vehicle systems in a
safer way against cyberattacks [14]. Yet, there lacks an understanding of drivers’ response
behavior to vehicle cyberattacks, even though previous research has stressed the important
role of human drivers when vehicle cyberattacks occur [3]. That is, the component of
“driver” is understudied. What human factors underlie drivers’ safe and unsafe response
behavior in such an environment needs to be uncovered and better understood [17].

1.2. Self-Reported Risky Driving Behavior

Many factors pertaining to human drivers can affect driving safety, such as being
inexperienced, risky driving behavior, and driver error [18,19]. It is believed that drivers
often engage in behaviors that pose a risk to both themselves and to other road users [20].
Researchers have developed tools to measure such risky driving behaviors, among which a
widely used instrument is the Driver Behavior Questionnaire (DBQ) [20–23]. In addition to
the DBQ, drivers’ personalities have been a subject of interest in exploring what may affect
a driver’s behavior [24,25]. It is suggested that personality traits are an important influence
on both risk perceptions and driving behavior and that they are closely linked with risky
driving behaviors [26,27]. One personality trait that has received considerable attention is
sensation seeking [28]. As human factors are very broad topics [3], in this paper, we solely
focused on the role of one’s self-reported risky driving behavior assessed by the Driver
Behavior Questionnaire and sensation seeking in how they respond to vehicle cyberattacks.

1.2.1. The Driver Behavior Questionnaire (DBQ)

The DBQ is a survey that measures three self-reported risky and aberrant behaviors
in driving: (1) errors—misjudgments or failures of observation that could be hazardous
to others, (2) lapses—attention and memory failures that can cause embarrassment but
are unlikely to have an impact on driving safety, and (3) violations—deliberate contra-
ventions of legally regulated or socially accepted behaviors associated with safe vehicle
operation [17,29]. One main reason that researchers have expressed interest in the DBQ is
the frequently reported relationship between DBQ scores and risky driving behavior [17].
For example, in a previous driving simulator study exploring the impact of personal traits
on driver behavior, it was found that drivers with higher DBQ-Violation scores tended
to brake less heavily [30,31]. Others found that drivers with high DBQ-Violations scores
drove faster and demonstrated more lane changes in a highway setting [17,30]. However,
there is also little published information on the relationship between DBQ scores and actual
driving behavior that may bear some relationship to crash risk [17]. In the context of a
driver encountering vehicle cyberattacks, specifically, research data are extremely limited
regarding how DBQ scores are associated with how one responds to a vehicle cyberattack.
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1.2.2. Sensation Seeking

Sensation seeking is a personality characterized by “the need for varied, novel, and
complex sensations and experiences and the willingness to take physical and social risks
for the sake of such experiences” [32,33]. Researchers have found that individuals high in
sensation seeking appear to be drawn to activities that are high in risk, such as reckless
driving [34,35]. It is suggested that sensation seeking is a potent predictor of a wide array of
problem behaviors and that high sensation seekers are more likely than their low sensation-
seeking counterparts both to try and repeat risky activities [35,36]. Sensation seeking has
also been linked with traffic crash involvement [37]. Researchers have pointed out that it is
significantly related to aberrant driver behavior, such as driving while intoxicated, speeding,
and low seat belt usage [28,37]. In general, the association between sensation seeking and
risky driving behavior has been constantly reported by traffic safety professionals and
researchers [28]. However, there is also growing evidence showing that sensation seeking
may moderate the manner in which drivers respond to other factors such as perceived
risk [28]. Some researchers showed that high sensation seekers performed better on focused
attention tasks [37]. When one encounters unexpected driving situations caused by vehicle
cyberattacks, the attention needed to notice and observe what might be happening, as well
as maintain safe driving, is expected to be substantial. Whether drivers with high sensation
seeking would perform better under a cybersecurity event remains unknown. That is,
although sensation seeking is believed to be associated with various risky driving behaviors,
its effect in the context of a more specific driving situation (i.e., vehicle cyberattacks) needs
to be further assessed. Sensation seeking is operationally defined in terms of scores on the
Sensation Seeking Scale (SSS) [28,38]. In the present work, we employed a short version of
the SSS, the Brief Sensation Seeking Scale (BSSS) [35], which measures four dimensions of
sensation seeking: boredom susceptibility, disinhibition, experience seeking, and thrill and
adventure seeking.

1.3. Research Gap and Objective

To date, only limited research work has been conducted to investigate how drivers
respond to unexpected driving situations caused by vehicle cyberattacks, and as a result,
the relationship between behavioral patterns, risky driving, and personality is not well
understood. The objective of the present study was to understand the association between
drivers’ self-reported risky driving behavior, portrayed by the DBQ and sensation seeking,
and responses to vehicle cyberattacks. We conducted a driving simulator study in which
drivers experienced a series of simulated drives wherein they encountered abnormal
driving situations akin to vehicle cyberattacks.

2. Materials and Methods

This research complied with the American Psychological Association Code of Ethics
and was approved by the Institutional Review Board at the University of Massachusetts
Amherst. This study is a continuation of a previous study [11]. In the previous phase
(phase 1), we focused on gathering qualitative information concerning drivers’ experience
with and responses to vehicle cyberattacks. In this phase (phase 2), we quantitatively
assessed drivers’ response behavior to vehicle cyberattack-induced situations via a driving
simulator experiment.

2.1. Participants

Thirty-two (32) participants (aged 18–26 years) were recruited from the University of
Massachusetts Amherst campus and the town of Amherst using flyers and emails for this
study. A power analysis showed that with a sample size of 32 and an effect size of 0.38,
when setting the alpha error to 0.05, the power is 0.8. The average age of the participants
was 20.5 years (SD = 1.98 years). There were 7 female participants and 23 male participants,
while the remaining 2 identified themselves as “nonconforming.” Only individuals with a
valid United States driver’s license were included in this study.
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2.2. Driving Simulator and Scenarios

A fixed-based RTI (Realtime Technologies Inc.) driving simulator consisting of a fully
equipped 2013 Ford Fusion surrounded by six screens with a 330-degree field of view was
used for the study (Figure 1). The cab has two dynamic side mirrors, providing participants
with realistic side and rear views of the scenarios. In the car, there is a fully customizable
virtual dashboard and center stack. The driving environment consisted of long sections of
roadway with four straight sections and four curves—a loop—with no traffic lights or stop
signs and a speed limit of 35 (Figure 2). The driving environment was 2-way, 4-lane, and
rural-based.
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We implemented three vehicle cyberattacks, as suggested by the literature [3,7,8]:
(1) siren—sirens similar to a police car or an ambulance start to sound while there are no
vehicles in sight of the participant, (2) dashboard signs—a high-pitch beep sounds, followed
by two warning signs that illuminate on the dashboard repeatedly and randomly; (3) lane
change—the participant’s vehicle is suddenly controlled by the experimenter and starts
to repeatedly weave between lanes. These three cybersecurity events were embedded in
each of the three experimental drives. The cybersecurity event always occurred in the last
section of a driving scenario to ensure that participants did not become oversensitized to
the appearance of hazards [11,39]. The driving scenarios were presented to all participants
in the same order: siren, dashboard signs, lane change.

2.3. Procedure

Participants came to our driving simulation laboratory for one visit. After giving
consent, they filled out several questionnaires about their demographics and driving
history. Then half of the participants received training on vehicle cybersecurity and how
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to properly respond to vehicle cyberattacks before the simulated drives (for those who
received training, 3 were female, 12 were male, 1 was nonconforming; for those who did
not receive training, 4 were female, 11 were male, 1 was nonconforming). We accounted
for this effect by incorporating whether one received training into our analysis, and the
details can be found in session 2.4. In addition, half of the participants were notified by
an in-vehicle warning signal regarding the current situation and what action they might
want to take after the occurrence of a cybersecurity event. We excluded this effect of
warning by averaging participants’ post-cybersecurity event driving data up until the
point where the warning was issued. Details regarding how we handled the effect of
warnings regarding participants’ physical driving behavior are given in Section 2.4 as
well. Participants completed a practice drive to accustom themselves to the simulated
driving environment, followed by 4 experimental drives, including a baseline drive (normal
drive without any events) and 3 experimental drives in which each was associated with
a cyberattack event. Their driving behavior was recorded by 2 in-vehicle video cameras
and the simulator itself, yielding two sets of variables that might be of interest: driver
behavior (e.g., hand and foot movements, checking side or rear mirrors) and driving data
(e.g., speed, acceleration). When all drives were completed, participants again filled out a
series of questionnaires, including the DBQ and the BSSS.

2.4. Variables and Data Analysis

Our dependent variables were defined and chosen to represent participants’ response
behavior to each of the cybersecurity events. Previous studies have used active-driving
performance indicators, such as reaction time, to understand hazard response behavior [40].
Some researchers relied on drivers’ visual behavior to characterize their risky driving
behavior [41,42]. Others have posited that braking patterns/behaviors can be useful in
inferring a driver’s perceived risk [40,43]. Moreover, some have used average velocity dur-
ing a driving task as a metric to quantify one’s behavioral patterns regarding longitudinal
controls [17,44]. In the present paper, we focused on these driving metrics as participants’
response behavior to the cybersecurity events: (1) delta velocity (from driving data yielded
by the simulation system), defined as the difference in velocity between after and before an
event occurs and calculated by subtracting the velocity collected after the occurrence of an
event by the velocity collected in a 5 s time window right before the event; (2) post-event
acceleration (from driving data yielded by the simulation system), defined as the average
acceleration in a 2 s time window after the occurrence of an event; and (3) time to first
reaction (from driving behavior recorded by the video cameras), defined as the difference
in time between the occurrence of a cybersecurity event and the first time a participant
took any of these following actions: changed from 1 hand to both hands on the wheel,
hovered and switched between the gas and pedal, checked the side mirrors, checked the
rear mirror, looked at the dashboard, changed lanes, or pulled over. We carefully looked
at the video data and chose these measures as they were observed after the cybersecurity
event occurred, but they were not observed (frequently) before the event. We, therefore,
believed that these behaviors would be an indicator of a driver being attentive to driving
and could be incorporated to help shape participants’ pattern of response behavior toward
vehicle cyberattacks.

By definition, delta velocity less than 0 will indicate a decrease in driving speed after
the cybersecurity event occurs; negative post-event acceleration shall suggest decelerating
behavior, and shorter time to first reaction may, to some degree, indicate one being more
attentive and perceiving potential risks. It should be noted that: (1) for the lane change
drive, we referred participants’ time to first reaction to only consider the behavior of pulling
over; and (2) values for delta velocity and post-event acceleration will not exhibit any effect
of warning, as data were acquired before any warnings came into play, while time to first
reaction may be affected by whether a participant received warnings.

Drivers’ age and gender have been shown to be related to risky driving behavior, such
as accident rates [17,20,23,45]. As such, we decided to incorporate them as independent



Safety 2023, 9, 5 6 of 14

variables. Participants’ self-reported risky driving behavior was assessed by DBQ scores
(i.e., 3 subscales: errors, lapses, violations) and scores to the 4 subscales of BSSS (boredom
susceptibility, disinhibition, experience seeking, thrill and adventure seeking). As men-
tioned previously, half of the participants received training on vehicle cybersecurity and
how to respond to vehicle cyberattacks before going through the drives. We, therefore,
accounted for the training effect on all three response behavior metrics by including train-
ing as an independent variable, as previous research has demonstrated the positive effect
of training on reducing drivers’ risky behavior and crash involvement [46]. Regarding
the effect of warning, as it could only possibly affect participants’ time to first reaction,
we included it in the analysis of time to first reaction. In addition, it is suggested that
individual behavior patterns are largely determined by specific driving situations [17]. We
thus performed the analysis considering the potential effect of different driving scenar-
ios (different cyberattack-induced events) as an independent variable. The independent
variables are summarized in Table 1.

Table 1. Summary and description of the independent variables.

Variable Type Mean Standard Deviation

Female Male Female Male

Driving scenario Categorical,
reference level lane change / / / /

Gender
Categorical,
coded as binary with reference level
female participants

/ / / /

Training Categorical, coded as binary with
reference level no training / / / /

Warning Categorical, coded as binary with
reference level no warning / / / /

Age Numeric 21.0 20.4 2.19 1.90

DBQ-Errors Numeric 1.0 0.5 1.01 0.40

DBQ-Lapse Numeric 1.5 0.9 1.02 0.57

DBQ-Violation Numeric 1.3 1.3 0.73 0.69

Boredom susceptibility Numeric 3.6 3.4 0.94 0.79

Disinhibition Numeric 3.6 3.0 0.84 1.02

Experience seeking Numeric 3.4 3.9 1.04 0.76

Thrill and adventure seeking Numeric 3.6 3.4 1.38 1.10

As an exploratory process, we first built univariate linear regression models between
each of the independent variables (i.e., driving scenario, gender, training, warning (only
for time to first reaction), age, the 3 subscales of the DBQ, the 4 subscales of the BSSS) and
each of the response behavior metrics (i.e., delta velocity, post-event acceleration, time to
first reaction) to check whether any significant relationships exist. If so, the significant
independent variables would be entered into a larger linear regression model together
for each dependent variable. Resultantly, 3 large statistical models corresponding to the
3 response behavior metrics were built, and the results were further investigated. The
statistical significance level (α) was set to 0.05. All analyses were performed using the
programming language R [47].

3. Results
3.1. Delta Velocity

Driving scenario, training, DBQ-Errors, and DBQ-Violation were shown to be statis-
tically significantly associated with delta velocity and then included in a larger multiple
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linear regression model. Because there was multicollinearity detected in the model, we fur-
ther assessed the correlation between the independent variables along with their variance
inflation factor (VIF) and decided to remove DBQ-Errors from the model.

Table 2 presents the results of the multiple regression. When accounting for the effect
of the other independent variables, driving scenario, training, and DBQ-Violation scores
all had a significant impact on participants’ delta velocity. Specifically, when compared
with the lane change drive, participants were associated with a significantly higher delta
velocity in the siren drive (β = 3.39, p < 0.001) and the dashboard signs drive (β = 4.30,
p < 0.001). Combined with the visualization in Figure 3, this indicates that participants
tended to increase their speed right after the cybersecurity event occurred (note that a value
of 0 indicates no speed change for delta velocity between after and before the cybersecurity
event) in both the siren and dashboard signs drives relative to the lane change drive, in
which they generally reduced speed. Similarly, participants who received training appeared
to be more likely to reduce their speed (β = −1.59, p = 0.021) after the cybersecurity event
occurred compared with those who did not receive training. Moreover, participants with
higher DBQ-Violation scores were more likely to increase their speed after the occurrence
of the cybersecurity event compared with their low-score counterparts (Figure 4).

Table 2. Multiple regression results on delta velocity.

Variable Coefficient Standard Error t-Value Pr (>|t|)

Driving scenario
(ref = lane change)

β = 3.39 (siren) 0.821 4.129 <0.001 *
β = 4.30 (dashboard signs) 0.814 5.284 <0.001 *

Training
(ref = no training) β = −1.59 0.680 −2.341 0.021 *

DBQ-Violation β = 1.34 0.489 2.735 0.008 *
Note: * indicates statistical significance.
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3.2. Post-Event Acceleration

Driving scenario, participants’ gender, DBQ-Violation scores, boredom susceptibility,
and disinhibition were shown to have a significant univariate relationship with post-event
acceleration. Because there was a multicollinearity issue, we followed the same procedure
as mentioned above. Boredom susceptibility was excluded from the larger model, and the
multiple linear regression results are detailed in Table 3.

Table 3. Multiple regression results on post-event acceleration.

Variable Coefficient Standard Error t-Value Pr (>|t|)

Driving scenario
(ref = lane change)

β = 0.22 (siren) 0.140 1.564 0.122
β = 0.63 (dashboard signs) 0.139 4.518 <0.001 *

Gender (ref = female) β = 0.30 0.137 2.173 0.033 *

DBQ-Violation β = 0.30 0.084 3.528 <0.001 *

Disinhibition β = −0.24 0.061 −3.876 <0.001 *
Note: * indicates statistical significance.

Compared with the lane change scenario, participants were associated with a signif-
icantly higher post-event acceleration in the dashboard signs drive (β = 0.63, p < 0.001).
From the visualization presented in Figure 5, we see that participants were more likely
to have accelerating behavior after the cybersecurity event in the dashboard signs drive
compared with the lane change drive. It should be noted that negative post-event ac-
celeration indicates decelerating behavior. Male participants were more likely to have
a statistically significantly higher post-event acceleration relative to female participants
(β = 0.30, p < 0.033). The direction of effect of DBQ-Violation is opposite to that of dis-
inhibition: participants with higher DBQ-Violation scores tended to have significantly
higher post-event acceleration than those with lower scores (β = 0.30, p < 0.001); those
with higher disinhibition portrayed by the BSSS were more likely to have lower post-event
acceleration compared with their low-score counterparts (β = −0.24, p < 0.001). From the
visualization presented in Figure 6, female participants were more likely to decelerate
after the cybersecurity event relative to males; higher disinhibition was associated with
decelerating behavior after the cybersecurity event; higher DBQ-Violation scores were
associated with less decelerating behavior after the cybersecurity event.
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3.3. Time to First Reaction

Only driving scenario and training had a statistically significant univariate association
with time to first reaction. They were then entered into a multiple regression model, the
results of which are presented in Table 4. Participants had a significantly shorter time to
first reaction in both the siren drive (β = −18.96, p < 0.001) and the dashboard signs drive
(β = −15.71, p < 0.001) compared with the lane change drive. Participants who received
training were more likely to have a shorter time to first reaction relative to those who did
not receive training (β = −8.93, p = 0.023).
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Table 4. Multiple regression results on time to first reaction.

Variable Coefficient Standard Error t-Value Pr (>|t|)

Driving scenario
(ref = lane change)

β = −18.96 (Siren) 4.719 −4.018 <0.001 *
β = −15.71 (dashboard signs) 4.719 −3.33 <0.001 *

Training
(ref = no training) β = −8.93 3.864 −2.311 0.023 *

Note: * indicates statistical significance.

4. Discussion

The DBQ has been constantly reported by traffic safety professionals and researchers
to be associated with risky behaviors [17]. Sensation seeking, as a measure of one facet of
people’s personality traits, is also linked with risky driving behavior. The two correspond-
ing sets of scales (i.e., the DBQ and the BSSS) utilized in this paper portray one’s risky and
aberrant driving behavior to a great degree. While they are often studied to understand
drivers’ risky driving behavior, evidence regarding how they may affect detailed and
actual driving behaviors under various driving situations remains limited [17]. To extend
the research effort on the role of risky driving behavior in traffic safety, the present work
aimed to build and understand potential associations between drivers’ self-reported risky
driving behavior and response behavior to an understudied domain—situations induced
by vehicle cyberattacks.

Regarding how one’s risky and aberrant driving behavior portrayed by the DBQ
affects response behavior to situations induced by vehicle cyberattacks, in this work, the
violation subscale was found to be a significant factor affecting drivers’ response behavior
such that higher DBQ-Violation scores were associated with a smaller reduction in velocity
and a higher post-event acceleration after a cybersecurity event occurred. While one may
not conclude that those with higher DBQ-Violation scores would possess riskier response
behavior to events induced by vehicle cyberattacks, they at least did not respond in a
safer way in comparison to their low DBQ score counterparts. This might be partially
explained by the definition of DBQ-Violation itself: deliberate contraventions of legally
regulated or socially accepted behaviors associated with safe vehicle operation [17,29].
That is, individuals with higher DBQ-Violation scores may be more likely to violate safe
behaviors when operating a vehicle. Again, considering braking behavior can be indicative
of risk perception [40], the effect of DBQ-Violation might suggest that drivers with higher
DBQ-Violation scores are less likely to perceive the risk associated with an unexpected
cybersecurity event. In general, our findings regarding the effect of DBQ scores are in line
with the relevant literature that states that higher DBQ scores are closely related to drivers’
risky driving behavior [17,29].

Our results regarding the effect of one’s sensation seeking on response behavior to
vehicle cyberattacks suggest that when measured by the BSSS, only one’s disinhibition
was statistically significantly associated with how one responded to events induced by
vehicle cyberattacks. We found that participants with a stronger tendency to ignore societal
inhibitions (higher disinhibition scores) were associated with decelerating behavior after a
cybersecurity event occurred [32] (Eachus, 2004), indicating that they were either releasing
the gas pedal or applying the brakes. The findings imply that higher sensation seekers
drove in a more conservative and potentially safer way in terms of accelerating behavior
when unexpected and potentially hazardous driving situations occurred. While previous
research work has shown that drivers’ sensation seeking is associated with aberrant driving
behavior and crash involvement and that high sensation seekers tend to report risky
driving behaviors [34,35,37], our findings here did not establish that individuals with higher
sensation seeking (specifically disinhibition) were more likely to exhibit riskier response
behavior toward driving situations caused by vehicle cyberattacks. At the same time,
our findings may corroborate previous evidence that high sensation seekers performed
better on focused attention tasks than low sensation seekers [37,48]. Since braking behavior
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is said to be useful in inferring the perceived risk [40], our findings indicate that higher
sensation seekers were more likely to perceive the cyberattack risk. Given that the key
to sensation seeking is believed to be “the optimistic tendency to approach novel stimuli
and explore the environment” [28], the findings reported here may also be interpreted as
drivers with high sensation seeking tend to drive while also exploring the surroundings,
and as a result, they are more likely to notice what is happening in the environment and
take appropriate actions.

The finding that female participants tended to decelerate more after the occurrence
of a cybersecurity event compared to male participants may indicate that they responded
to the event in a more conservative and possibly safer way. However, this could also be
an indication that the unexpected event caused a stress response among female partici-
pants when compared to male participants. Future research could be directed to further
investigate how gender affects (young) drivers’ response behavior to vehicle cyberattacks.

From a human factors perspective, it is suggested that when faced with a stimulus,
one’s decision-making relies on how one perceives the current situation, working mem-
ory, long-term memory, etc. Most of the commonly focused influencing factors on one’s
decision-making seem to be “knowledge-based”; that is, they are related to either one’s
own capabilities (e.g., long-term memory) or what can be utilized from the environment
to help make a decision. The significant effect of training found in the present study is
evidence supporting the belief, as it can aid one’s long-term memory. On the contrary, the
DBQ and the BSSS, measuring one’s risky and aberrant driving behavior and sensation
seeking, are more related to individuals’ inherent risk-taking tendencies. Toward this end,
this paper is significant in that it uncovered an association between one’s inherent risk-
taking tendency, which is likely to be independent of any knowledge, and one’s cognition
and decision-making under the specific context of vehicle cyberattacks. More importantly,
we demonstrated that while DBQ scores and sensation seeking are often reported to be
associated with risky driving behaviors, their impact on drivers’ response behavior toward
vehicle cyberattacks is the opposite, with higher sensation seeking exerting a potentially
positive influence. Meanwhile, previous findings have also stated that the detrimental effect
of sensation seeking on driving performance can be modulated by other factors [49]. These
highlight the need to consider the effect of commonly used measures in specific driving
situations as well as any interacting effect with other factors on one’s driving performance.

This study has its limitations. First, our sample size was relatively small (N = 32),
and participants were recruited from a geographically narrow area. The findings reported
here might not be generalizable. Second, order effects might not be fully accounted for in
the analysis, as the order in which the drives were presented to the participants was not
counterbalanced. However, we suspect the effect of being subtle, given that the different
driving scenarios and participants were never told if they were driving properly after each
drive. Third, although driving scenario was incorporated as an independent variable in our
analysis, the event presented in the siren drive might be weaker than that in the dashboard
signs drive and the lane change drive, the effect of which may not have been fully captured.
Last, the dependent variables chosen here are not safety critical. Future research could
assess the effect of sensation seeking on drivers’ response behavior to a broader spectrum
of events/driving situations induced by vehicle cyberattacks and might consider using the
full SSS to portray individuals’ sensation seeking.

5. Conclusions

This study sought to build and understand the association between human drivers’
self-reported risky and aberrant driving behavior and their response to vehicle cyberattacks.
It was found that higher DBQ-Violation scores were associated with a less safe response and
that higher sensation seeking (measured by disinhibition) was associated with decelerating
behavior after vehicle cyberattacks occurred. Drivers’ risk-taking tendencies might play
a role in affecting how they respond to unexpected and potentially hazardous situations.
However, such tendencies might exert different impacts on one’s driving behavior de-
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pending on the specific driving situations. Future research efforts should further assess
the effect of the DBQ and sensation seeking on driving behavior, not only the response
behavior toward vehicle cyberattacks but also a broad spectrum of specific and actual
driving behaviors that could be risky.
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37. Ayvaşık, H.B.; Er, N.; Sümer, N. Traffic Violations and Errors: The Effects of Sensation Seeking and Attention. In Proceedings of

the 3rd International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, Rockport, ME,
USA, 27–30 June 2005; pp. 395–402. [CrossRef]

38. Zuckerman, M.; Kolin, E.A.; Price, L.; Zoob, I. Development of a sensation-seeking scale. J. Consult. Psychol. 1964, 28, 477.
[CrossRef]

39. Ranney, T. Psychological fidelity: The perception of risk. In Handbook of Driving Simulation for Engineering, Medicine, and Psychology;
CRC Press: Boca Raton, FL, USA, 2011.

40. Muguro, J.K.; Sasaki, M.; Matsushita, K. Evaluating Hazard Response Behavior of a Driver Using Physiological Signals and
Car-Handling Indicators in a Simulated Driving Environment. J. Transp. Technol. 2019, 09, 439–449. [CrossRef]

41. Mehrotra, S.; Zhang, F.; Roberts, S.C. Looking out or Looking Away?—Exploring the Impact of Driving With a Passenger on
Young Drivers’ Eye Glance Behavior. Human Factors 2022, 00187208221081209. [CrossRef] [PubMed]

42. Zhang, F.; Roberts, S.C. Factors affecting drivers’ off-road glance behavior while interacting with in-vehicle voice interfaces. Accid.
Anal. Prev. 2023, 179, 106883. [CrossRef]

43. Xiong, X.; Wang, M.; Cai, Y.; Chen, L.; Farah, H.; Hagenzieker, M. A forward collision avoidance algorithm based on driver
braking behavior. Accid. Anal. Prev. 2019, 129, 30–43. [CrossRef] [PubMed]

44. Zhang, F.; Mehrotra, S.; Roberts, S.C. Driving distracted with friends: Effect of passengers and driver distraction on young drivers’
behavior. Accid. Anal. Prev. 2019, 132, 105246. [CrossRef] [PubMed]

45. Kontogiannis, T.; Kossiavelou, Z.; Marmaras, N. Self-reports of aberrant behaviour on the roads: Errors and violations in a sample
of Greek drivers. Accid. Anal. Prev. 2002, 34, 381–399. [CrossRef]

http://doi.org/10.1016/j.trf.2012.08.001
http://doi.org/10.1016/j.aap.2010.10.019
http://doi.org/10.3390/ijerph14111314
http://doi.org/10.1016/j.aap.2015.11.016
http://doi.org/10.1111/j.1559-1816.1997.tb01805.x
http://doi.org/10.1016/0001-4575(95)00005-K
http://www.ncbi.nlm.nih.gov/pubmed/7546068
http://doi.org/10.1080/00140139008925335
http://www.ncbi.nlm.nih.gov/pubmed/20073122
http://doi.org/10.1186/s12889-019-8087-0
http://doi.org/10.1080/15389588.2012.748903
http://doi.org/10.1016/j.aap.2007.08.010
http://doi.org/10.1016/j.aap.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/27984813
http://doi.org/10.1016/S0001-4575(97)00017-1
http://www.ncbi.nlm.nih.gov/pubmed/9316713
http://doi.org/10.1016/j.aap.2005.05.002
http://www.ncbi.nlm.nih.gov/pubmed/15955521
http://doi.org/10.1016/j.apergo.2015.07.020
http://doi.org/10.1016/j.trf.2008.06.005
http://doi.org/10.1016/S0191-8869(03)00074-6
http://doi.org/10.1016/0191-8869(95)00152-V
http://doi.org/10.1016/S0191-8869(01)00032-0
http://doi.org/10.17077/drivingassessment.1190
http://doi.org/10.1037/h0040995
http://doi.org/10.4236/jtts.2019.94027
http://doi.org/10.1177/00187208221081209
http://www.ncbi.nlm.nih.gov/pubmed/35466736
http://doi.org/10.1016/j.aap.2022.106883
http://doi.org/10.1016/j.aap.2019.05.004
http://www.ncbi.nlm.nih.gov/pubmed/31103877
http://doi.org/10.1016/j.aap.2019.07.022
http://www.ncbi.nlm.nih.gov/pubmed/31421453
http://doi.org/10.1016/S0001-4575(01)00035-5


Safety 2023, 9, 5 14 of 14

46. Roberts, S.C.; Zhang, F.; Fisher, D.; Vaca, F.E. The effect of hazard awareness training on teen drivers of varying socioeconomic
status. Traffic Inj. Prev. 2021, 22, 455–459. [CrossRef]

47. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
48. Ball, S.A.; Zuckerman, M. Sensation Seeking and Selective Attention: Focused and Divided Attention on a Dichotic Listening

Task. J. Personal. Soc. Psychol. 1992, 63, 825. [CrossRef]
49. Qu, W.; Zhang, W.; Ge, Y. The moderating effect of delay discounting between sensation seeking and risky driving behavior. Saf.

Sci. 2020, 123, 104558. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/15389588.2021.1940984
http://doi.org/10.1037/0022-3514.63.5.825
http://doi.org/10.1016/j.ssci.2019.104558

	Introduction 
	Vehicle Cybersecurity and Human Factors 
	Self-Reported Risky Driving Behavior 
	The Driver Behavior Questionnaire (DBQ) 
	Sensation Seeking 

	Research Gap and Objective 

	Materials and Methods 
	Participants 
	Driving Simulator and Scenarios 
	Procedure 
	Variables and Data Analysis 

	Results 
	Delta Velocity 
	Post-Event Acceleration 
	Time to First Reaction 

	Discussion 
	Conclusions 
	References

