
Citation: Devine, J.K.; Choynowski,

J.; Hursh, S.R. Potential Effects of

Permanent Daylight Savings Time on

Daylight Exposure and Risk during

Commute Times across United States

Cities in 2023–2024 Using a

Biomathematical Model of Fatigue.

Safety 2023, 9, 59. https://

doi.org/10.3390/safety9030059

Academic Editor: Raphael

Grzebieta

Received: 21 June 2023

Revised: 4 August 2023

Accepted: 23 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

safety

Article

Potential Effects of Permanent Daylight Savings Time on
Daylight Exposure and Risk during Commute Times across
United States Cities in 2023–2024 Using a Biomathematical
Model of Fatigue
Jaime K. Devine 1,* , Jake Choynowski 1 and Steven R. Hursh 1,2

1 Institutes for Behavior Resources, 2104 Maryland Ave, Baltimore, MD 21218, USA;
jchoynowski@ibrinc.org (J.C.); shursh@ibrinc.org (S.R.H.)

2 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,
4940 Eastern Ave., Baltimore, MD 21224, USA

* Correspondence: jdevine@ibrinc.org

Abstract: Background: Permanent Daylight Savings Time (DST) may improve road safety by provid-
ing more daylight in the evening but could merely shift risk to morning commutes or increase risk
due to fatigue and circadian misalignment. Methods: To identify how potential daylight exposure
and fatigue risk could differ between permanent DST versus permanent Standard Time (ST) or
current time arrangements (CTA), generic work and school schedules in five United States cities were
modeled in SAFTE-FAST biomathematical modeling software. Commute data were categorized by
morning (0700–0900) and evening (1600–1800) rush hours. Results: Percent darkness was greater
under DST compared with ST for the total waking day (t = 2.59, p = 0.03) and sleep periods (t = 2.46,
p = 0.045). Waketimes occurred before sunrise 63 ± 41% percent of the time under DST compared
with CTA (42 ± 37%) or ST (33 ± 38%; F(2,74) = 76.37; p < 0.001). Percent darkness was greater during
morning (16 ± 31%) and lower during evening rush hour (0 ± 0%) in DST compared with either CTA
(morning: 7 ± 23%; evening: 7 ± 14%) or ST (morning: 7 ± 23%; evening: 7 ± 15%). Discussion:
Morning rush hour overlaps with students’ commutes and shift workers’ reverse commutes, which
may increase traffic congestion and risk compared with evening rush hour. Switching to permanent
DST may be more disruptive than either switching to ST or keeping CTA without noticeable benefit
to fatigue or potential daylight exposure.

Keywords: daylight savings time; light exposure; fatigue risk; biomathematical modeling of fatigue;
road safety; traffic

1. Introduction

Daylight Saving Time (DST) is a period of the year between March and November
when clocks in most parts of the United States are set one hour ahead of Standard Time
(ST), leading to more sunlight during evening hours. The United States first established
DST in 1918, and federal regulations regarding DST have been unchanged since 2007 [1,2].
In recent years, however, 29 states have introduced legislation to abolish the twice-yearly
changing of clocks, and in March 2022, the United States Senate passed legislation called
the Sunshine Protection Act to make DST permanent starting in 2023 [3].

Proponents of permanent DST argue that more daylight in the evenings would increase
physical and economic activity, reduce energy costs, and improve road safety. Opponents of
permanent DST argue that shifting the clock permanently forward may result in circadian
misalignment and negative health effects as individuals will be forced to start their days
before dawn during the winter months [4–6]. The body of research looking into the potential
effects of DST on the economy, exercise, or energy costs has produced mixed results [7–12].
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While some findings indicate a benefit of permanent DST in these areas, other studies
suggest little or even a detrimental effect. Road safety is another area of contention within
the debate surrounding permanent DST. Abolishing the twice-yearly transition between
standard time and DST has been recommended for improving safety through a reduction
in motor vehicle accidents [13]. Some studies argue that permanent DST would have
beneficial effects on road safety by shifting more daylight to the evening hours when crash
risk is highest [14]. Darkness is a major contributor to motor vehicle accident risk during
evening rush hours [13–17]. However, shifting light to the evening hours comes at the cost
of light during early morning commutes [15].

A lack of natural sunlight in the morning could not only increase the risk of vehicular
accidents during these times but could result in circadian misalignment as individuals
are forced to start their day prior to sunrise [4–6]. Circadian misalignment is associated
with increased cardiovascular disease risk, metabolic syndrome, and other health risks [4].
Light is the body’s strongest zeitgieber, or environmental cue about time. Natural day-
light is usually 100 to 1000 times brighter than artificial light, and a lack of exposure to
natural sunlight, even with the use of electrical lighting, has been shown to alter circadian
physiology and sleep behavior [18]. The time of awakening is additionally correlated
with sunrise and tends to be later in the winter [19]. Establishing year-round DST could,
therefore, result in population-level sleep disruption and fatigue, particularly during winter
months [4,6,18,19].

Increased fatigue due to waking before sunrise is important not only for health reasons
but also for road safety. Importantly, if drivers are fatigued, the benefit of better lighting
conditions may not translate to a reduction in crash risk. This impact could be especially
deleterious for school children. Research shows that delaying school start times benefits
students’ sleep and daytime function, as well as reducing adolescent motor vehicle crash
risk [20–23]. If DST becomes permanent, the benefit of the legislature to delay school start
times could essentially be nullified.

Many of the arguments for or against permanent DST hinge on the assumption that
individuals’ work or school activities start between the hours of 0700 and 0900. These
types of schedules would be affected by a one-hour shift in the timing of sunrise. In fact,
both proponents of permanent DST and proponents of permanent standard time argue
that darkness, either in the mornings or the evenings, respectively, could be avoided by
adjusting schedules to avoid activities during these times [5,15]. However, the 16% of the
United States population who currently follow shift work schedules [24] would also be
affected by changes to sunrise and sunset. Shift workers are at an increased risk of fatigue
and sleep problems that may affect their safety and ability to perform [25,26]. While it is
known that both DST and shiftwork impact the health and safety of workers [27], the direct
impact of time change arrangements on shift workers has not been thoroughly investigated.

If enacted, the Sunshine Protection Act would result in permanent DST in most states
beginning in November 2023 on the assumption that the change will benefit society [3].
While the research literature does not definitively support a health or economic advantage
to permanent DST, no studies have directly compared the impact of permanent DST
against ST or current time arrangements (CTA) in the same location at the same time
beforehand. A biomathematical model of fatigue such as the Sleep, Activity, Fatigue, and
Task Effectiveness Fatigue Avoidance Scheduling Tool (SAFTE-FAST) can simultaneously
predict the impact of permanent DST compared with CTA or permanent ST on fatigue risk
and potential daylight exposure across seasons, time zones, and activity schedules in a
way that is impossible to achieve using actual real-world data. The current study aims to
answer the research question of how time change arrangements differentially affect sleep
timing, sleep duration, task effectiveness, and potential daylight exposure between day,
evening, and night shift work schedules as well as school schedules and daily commutes
in five major United States cities during autumn, winter, spring, and summer conditions
during 2023–2024 using the modeling software SAFTE-FAST. The goal of this analysis is to
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provide objective, a priori computational data on the impact of time change arrangements
for the benefit of transportation safety officials, policymakers, and circadian researchers.

2. Materials and Methods
2.1. SAFTE-FAST Biomathematical Modeling Software

SAFTE-FAST is a two-step, three-process model that estimates sleep patterns around
work duties using a function called AutoSleep and then provides a continuous prediction of
Effectiveness as a function of performance on the Psychomotor Vigilance Task (PVT) [28,29].
Effectiveness is expressed as a percentage scaled to a fully rested person’s normal best
performance on the PVT (e.g., 100%) [29,30]. The higher the score, the lower the fatigue risk.
For reference, Effectiveness scores below 77 indicate PVT performance comparable to an
individual with equivalent to 18.5 h of continued wakefulness for a fully rested person or a
blood alcohol concentration (BAC) of 0.05 g/dL [31,32]. The ability of AutoSleep to predict
average sleep behavior (i.e., sleep timing and duration) as a function of work schedules, time
of day, and sleep propensity has been successfully evaluated in shift-working operational
populations [30,33,34]. AutoSleep predicts sleep as a function of available time outside of
work events as well as time of day. As such, evening and night schedules result in a split
sleep schedule commonly observed in shift-working populations. SAFTE-FAST solutions
are used in transportation and shiftwork environments as part of a fatigue risk management
system (FRMS). SAFTE-FAST has previously been used to evaluate accident risk in railroad
engineers [35]. Regulators for the Federal Rail Administration (FRA) consider Effectiveness
scores at or below 70 to constitute an area of high fatigue risk [36].

The SAFTE-FAST model predicts circadian misalignment by mimicking the process of
the internal circadian oscillator as it adjusts to a different time zone or activity schedule.
Model-estimated circadian misalignment is incorporated into Effectiveness performance
predictions. SAFTE-FAST has been shown to be reliable in predicting circadian misalign-
ment in association with accident analysis in air traffic controllers and railroad crews [37,38].
The current study did not model schedule changes or travel across time zones. Thus, for
the purposes of these hypothetical schedules, the only assumed source of circadian mis-
alignment was the bi-annual clock change under CTA conditions.

SAFTE-FAST also has the capability to model a buffer around work events to indicate
the time during which individuals would reasonably be expected to be commuting to or
from a work location. Furthermore, SAFTE-FAST contains a NASA-provided algorithm
for determining the available sunlight for any location on the globe for any date and time.
SAFTE-FAST uses this light information to indicate the degree of concordance between the
sleep-wake pattern and the rising and setting of the sun and, by implication, determine the
phase shift effects associated with the onset and offset of DST time changes or to extrapolate
information about potential daylight exposure during sleep, commute times, working
hours, and across the entire day. While this information is not a standard output in the
software, the software parameters were adapted to allow the extraction of light data in
addition to predicted performances for the analyses described herein. The model cannot
account for individual differences, such as time spent indoors or chronotype at this time,
but it can provide an estimate of the potential amount of daylight to which individuals
could be exposed under different conditions. Additionally, the model can be used to
estimate lighting conditions on the road during model-identified commute times.

2.2. City Selection Criteria
2.2.1. Location and Observation of DST

SAFTE-FAST predicts sunrise and sunset as a function of location and date. Locations
were selected based on their ability to model the range of effects that time change arrange-
ments may have on light and risk across regions that would be affected by the Sunshine
Protection Act [3], i.e., states within the United States (U.S.) that currently use temporary
DST rather than permanent ST. U.S. states Arizona and Hawaii and the U.S. territories of
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American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the Virgin Islands
observe permanent ST and are not eligible for inclusion [39].

Calculating sunrise and sunset for any given day and year requires latitude and
longitude in degrees as input [40]. Day length is fairly consistent across the seasons in
latitudes close to the Equator (~0–23◦) and varies to an extreme degree in the Artic circle
(~66–90◦). In order to select locations that would experience seasonal variation, locations
needed to be between 23◦ N and 66◦ N, as well as at least 2◦ different from the other
selected locations.

There are five time zones within the U.S. that observe DST—Eastern Time, Central
Time, Mountain Time, Pacific Time, and Alaska Time [5,41]. While these time zones are not
strictly determined by longitude, the U.S. time zones are defined in the Uniform Time Act
roughly by degree of longitude west from Greenwich [42], as shown in Figure 1. In order
to model a range of U.S. cities, each location needed to be in a different U.S. time zone.
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Figure 1. City Locations Selected for Modeling. Map of the five metropolitan statistical areas selected
for modeling based on time zone by longitude range (in black), with city and state names, latitude,
longitude, distance of the city in degrees west from the start of the time zone, estimated population,
and traffic fatality rates (listed in box). The average school start times for each selected city’s state are
additionally listed in the boxes.

2.2.2. Population and Traffic Congestion

Since the goal of this computational analysis was to evaluate risk in relation to road
safety, selection criteria included risk due to traffic based on highway fatality rates and
population size. Inclusion criteria for cities required a highway fatality rate for the county
that was greater than 1.0 per 100,000 inhabitants as reported by the National Highway
Traffic Safety Administration’s (NHTSA) State Traffic Safety Information (STSI) report [43].
Locations also needed to meet the U.S. Census Bureau criteria for metropolitan statisti-
cal areas by having at least one urbanized area of 50,000 or more inhabitants [44]. The
largest metropolitan statistical area in a given time zone that met all inclusion criteria
was selected for subsequent analysis. The five selected city locations were (1) New York
City, New York; (2) Chicago, Illinois; (3) El Paso, Texas; (4) Los Angeles, California; and
(5) Anchorage, Alaska.

2.3. Selection of Time Periods

Four 30-day time periods were selected for modeling based on seasonal variation in
day length based on solstices and DST changeover. Dates were selected to represent time
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periods after the potential enactment of the Sunshine Protection Act [3] in November 2023.
The winter solstice is scheduled to occur on 21 December 2023, and the summer solstice is
scheduled to occur on 20 June 2024. DST ends on the first Sunday in November and starts
on the second Sunday in March [3,42]. This corresponds to 5 November 2023 and 10 March
2024. Autumn schedules were generated for 1–30 November 2023; winter schedules were
generated from 15 December 2023 to 15 January 2024; spring schedules were generated for
1–31 March 2024; and summer schedules were generated for 15 June–15 July 2024.

2.4. Generation of Work Schedule Data

Three work schedules were selected for modeling on the basis of start and end times
relative to sunrise and sunset under different time change arrangements—a typical day shift
(0900–1700), an evening shift beginning around sunset (1700–0100), and an overnight shift
ending around sunrise (2300–0700). These schedules correlate with the national distribution
of work schedules between day (84% of workers), evening (6% of workers), and night
shifts (4% of workers), as reported by the United States Bureau of Labor Statistics [24].
Each schedule included a 40 h work week with 8 h shifts occurring during weekdays. An
exception was that overnight shifts began at 2300 on Sundays in order to end on Monday
mornings. A month’s worth of schedules for each shift was generated in order to produce
a monthly average prediction of Effectiveness and potential daylight exposure.

2.5. Generation of School Schedule Data

School schedules for each location were based on average start times and hours of
school per day by state using data from the U.S. Department of Education, National Center
for Education Statistics, Schools and Staffing Survey (SASS) [45,46]. A generic school
schedule was generated for each selected location for autumn, winter, and spring, as
described in Section 2.3. Summer schedules were not modeled since most schools are out
of session during this time. For the purposes of this model, the school was assumed to be
out of session for Thanksgiving break (23–24 November 2023), winter break (25 December
2023–1 January 2024), and spring break (25–29 March 2024).

2.6. Modeling Time Change Arrangements in SAFTE-FAST

Documentation detailing the initial development and validation of the SAFTE model,
including model equations and system diagrams, are described in Hursh 2003 and
Hursh et al., 2004 [29,47]. A modified version of SAFTE-FAST software (Version 5.8.028)
that reports potential daylight exposure by event was used to model work and school
schedules by season, city, and time change condition. A separate SAFTE-FAST project
file was created for each time change condition (CTA, Permanent DST, and Permanent
ST). Identical work and school schedule data were uploaded into each scenario. The only
differences between scenarios were time change conditions. AutoSleep is a sleep estimator
in SAFTE-FAST that uses information about work events, time of day, and prior sleep to
predict average sleep decisions under operational constraints. Documentation regarding
the development and validation of the AutoSleep algorithm was published by Roma et al.,
2012, Devine et al., 2022, Gertler et al., 2012, and Hursh et al., 2011 [30,33,48,49]. AutoSleep
predicted sleep episodes around school or work events using default settings. No sleep
was assumed to occur during work hours for these analyses, and no napping was assumed
to occur. A 60 min commute time buffer was assumed for the hour before work/school
starts and the hour after the conclusion of work/school. Events were categorized as sleep,
wake, work, or commute using the SAFTE-FAST Activity and Description output columns.
Cognitive performance in SAFTE-FAST is predicted using a metric called Effectiveness.
Effectiveness scores are based on reaction time speed on the Psychomotor Vigilance Task
(PVT). Effectiveness is expressed as a percentage of individual optimum performance
(e.g., 100); lower Effectiveness scores indicate slower cognitive reaction times. Further
documentation about how Effectiveness is computed in SAFTE-FAST can be found in
Hursh et al., 2004 [29]. Event timing, average and minimum Effectiveness, and potential
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daylight exposure (measured as minutes of daylight, minutes of twilight, and minutes of
darkness) were exported to .csv files.

2.7. Statistical Analysis

SAFTE-FAST CSV files were compiled in Excel 2013. Average and minimum Effective-
ness scores were averaged across all days within each season (autumn, winter, spring, and
summer) to create a seasonal mean prediction of Effectiveness for each schedule and condi-
tion. Average AutoSleep duration and waketime provided predicted values of expected
sleep duration and morning waketime for each schedule.

Potential daylight exposure was estimated as the percent of darkness (minutes of
darkness/total minutes of event ∗ 100) for sleep, work, commute, and overall wake events.
For the purposes of these analyses, minutes of twilight and minutes of daylight were
aggregated to reflect time periods with any amount of ambient daylight. Prediction of
sunrise and sunset times for 2023–2024 were extracted from the sunearthtools.com Sunrise
Sunset Calculator [50]. Distance between AutoSleep expected morning waketimes and
sunrise, in minutes, were computed for each modeled day by subtracting sunrise from
waketime and averaged across all days by season for each schedule and condition. Positive
values indicate waketimes occurring after sunrise, while negative values indicate wake
times occurring before sunrise. AutoSleep events were assigned a binary distinction to
indicate waketimes occurring before sunrise (1) versus waketimes occurring after sunrise (0).
The percentage of waketimes occurring before sunrise for each condition was computed as
the total number of waketimes occurring before sunrise over the total number of waketimes
for all major periods of sleep by season for each schedule and condition.

Schedules were identified using numeric codes containing information about location
(New York City, Chicago, El Paso, Los Angeles, or Anchorage), shift type (day, evening,
night, or school), and season (autumn, winter, spring, summer). Repeated measures of
analysis of variance (ANOVA) were used to compare differences between time change
conditions (CTA, Permanent DST, and Permanent ST) for sunrise time, waketime, and
expected sleep duration, controlling for schedule specifics (location, shift, and season). The
ANOVA F test is generally robust to violations of variance when sample sizes are equal [51].
Repeated measures of ANOVA were further used to compare differences between time
change conditions for average and minimum Effectiveness and percent darkness for the
total waking day, commute-to-work, workday, and commute-home.

Commute times differed by schedule and did not reflect Effectiveness during rush
hours for all schedules. To estimate the risk associated with morning and evening rush
hours, Effectiveness and percent darkness during commute times were additionally cat-
egorized by time of commute. Morning rush hour was defined as any commute times
occurring between 0700–0900, and evening rush hour was defined as any commute times oc-
curring between 1600–1800. Morning rush hour Effectiveness and percent darkness thereby
corresponded to commute-to-work values for day and school schedules and commute-
home values for night schedules. Evening rush hour Effectiveness and percent darkness
corresponded to commute-home values for day schedules and commute-to-work values
for evening schedules. Differences in average and minimum Effectiveness and percent
darkness for morning and evening rush hours were compared using repeated measures
in time ANOVA, controlling for schedule. Time change conditions were treated as a re-
peated measure for all evaluated variables. Assumptions of normality of distribution for all
variables were tested using the skewness/kurtosis tests for normality. The independence
of observations can be assumed due to the computational nature of these generated data.
Effect sizes were computed as eta-squared (η2) using the estat esize function in STATA.
Effect sizes are interpreted as η2 ≥ 0.01, indicating a small effect, η2 ≥ 0.06, indicating a
medium effect, and η2 ≥ 0.14, indicating a large effect, based on accepted rules of thumb.
All statistical analyses were performed in Stata MP 15.
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3. Results
3.1. Schedule Descriptive Statistics

Figure 1 depicts the selected locations by time zone, population, traffic fatality rate, and
average school start time. Three separate time change condition scenarios were constructed
in SAFTE-FAST to model four different work schedules across five cities during four
seasons for work schedules or three seasons for school schedules for a total of 75 schedules
per scenario and 225 total schedules. Time change conditions (CTA, permanent DST, and
permanent ST) were the only differences between SAFTE-FAST scenarios. Shift start time,
shift end time, expected morning waketime, and expected sleep duration did not differ
between scenarios (all p > 0.2) and are summarized in Table 1. AutoSleep predicts split
sleep schedules for evening and night workers; the first waketime occurring during any
modeled day served as the expected morning waketime in these subgroups. School start
times vary by state, as depicted in Figure 1.

Table 1. Waketimes and Sleep Duration by Schedule.

Shift Type Shift Start Time Shift End Time Expected Morning
Waketime

Average Expected Sleep
Duration per 24 h (in mins)

Day 09:00 17:00 07:16 ± 00:04 482 ± 45
Evening 17:00 01:00 07:25 ± 00:04 363 ± 60

Night 23:00 07:00 07:53 ± 00:06 338 ± 43
School 08:10 ± 00:17 14:45 ± 00:27 07:14 ± 00:04 460 ± 67

3.2. Time Change Arrangements and Exposure to Daylight

Figure 2 depicts differences in hours of daylight by season, shift, and city location
between time change conditions. There were expected main effects of city location, shift
type, and season on exposure to daylight; these results are included in Supplementary Data
Table S1. Table 2 summarizes the repeated measures of ANOVA results for exposure to
daylight by time change conditions (ST, DST, CTA), controlling for city location, shift type,
and season. Skewness and kurtosis values for sunrise, the distance between sunrise and
work, and all percent darkness variables described in Table 3 were near zero, indicating
normal distribution, symmetrical skewness, and platykurtic kurtosis. The number of
observations for each of these analyses was 225. Bonferroni’s post hoc analysis revealed
significant differences between all conditions for average sunrise, the distance between
sunrise and waketime, and the percentage of waketimes occurring before sunrise (all
p ≤ 0.001). There were significant differences between DST and ST conditions for percent
darkness during the total waking day (t = 2.59, p = 0.03) and percent darkness during sleep
(t = 2.46, p = 0.045), but not between either DST or ST and CTA (all p > 0.3). There were
significant differences between DST and either CTA (t = 3.05, p = 0.008) or ST (t = 3.19,
p = 0.005) for percent darkness during the commute-to-work, but not between CTA and
ST (t = 0.14, p = 1.0). There were no significant differences between the percent darkness
during the work day or commute-home between conditions (all p > 0.6).

3.3. Time Change Arrangements and Predicted Effectiveness

Table 3 summarizes differences in Effectiveness scores between time change conditions.
Skewness and kurtosis values for all Effectiveness variables described in Table 3 were near
zero, indicating normal distribution, symmetrical skewness, and platykurtic kurtosis.
Repeated measures of ANOVA were performed to compare the effect of time change
conditions (ST, DST, CTA) on average and minimum predicted Effectiveness across the year,
controlling for city location, shift type, and season. Repeated measures of ANOVA with
this model were conducted separately for commute-to-work, work day, commute-home,
and total waking day predictions of Effectiveness. The number of observations for each of
these analyses was 225. Bonferroni’s post hoc analysis revealed that average and minimum
Effectiveness scores were significantly higher under either permanent DST or ST conditions
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compared with CTA for commute-to-work, work day, commute-home, and total waking
day (see Table 3; all p ≤ 0.001). There were no significant differences between DST and
ST (all p > 0.9). There were no differences between time change conditions for minimum
or average Effectiveness during the total waking day, controlling for city location, shift
type, and season (all p > 0.9). There were expected differences in Effectiveness by shift
and season. Effectiveness did not differ by city location. These results are summarized in
Supplementary Data Table S2. Differences in Effectiveness during CTA were driven by dips
during March and November related to clock changing (see Supplementary Data Table S2).
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Figure 2. Exposure to Daylight by Schedule and Time Change Conditions. Graphic depiction of 
hours of daylight across the 24-h day (top x-axis) by time change condition (CTA: orange bar, DST: 
yellow bar, ST: blue bar) and season on the y-axis for (a) New York City, (b) Chicago, (c) El Paso, 
(d) Los Angeles, and (e) Anchorage. Work schedule start and end times are indicated by black 
lines. School start and end times are indicated by purple lines. Morning and evening rush hours 
are indicated by red shading. 

Table 2. Effects of Time Change Conditions on Exposure to Daylight. 

 CTA 
(M ± SD) 

Permanent DST 
(M ± SD) 

Permanent ST 
(M ± SD) 

F(2,74) 
Value p Value η2 (95% CI) 

Average Sunrise 07:08 ± 02:48 07:35 ± 03:18 06:42 ± 03:18 387.24 <0.001 ** 0.84  
(0.79–0.87) 

Distance between Sunrise 
and Waketime ‡ 19 ± 69 min −15 ± 86 min 44 ± 86 min 406.82 <0.001 ** 

0.85  
(0.80–0.87) 

Percentage of Waketimes 
Occurring Before Sunrise 

42 ± 37% 63 ± 41% 33 ± 38% 76.37 <0.001 ** 0.51 
(0.39–0.59) 

Percent Darkness During 
the Total Waking Day 

32 ± 13% 29 ± 13% 33 ± 12% 94.69 <0.001 ** 0.56 
(0.45–0.64) 

Percent Darkness During 
Commute-to-work 28 ± 44% 32 ± 45% 28 ± 44% 6.48 0.002 * 

0.08 
(0.01–0.17) 

Percent Darkness During 
Work Day 41 ± 42% 41 ± 42% 41 ± 42% 0.08 0.93 

0.001 
(0.00–0.01) 

Percent Darkness During 
Commute-Home 

31 ± 44% 30 ± 45% 31 ± 44% 0.37 0.68 0.005 
(0.00–0.04) 

Percent Darkness During 
Sleep 66 ± 24% 71 ± 26% 63 ± 24% 103.11 <0.001 ** 0.58 

(0.48–0.65) 
‡ Negative values indicate waketimes occurring before sunrise. Positive values indicate waketimes 
occurring after sunrise. * indicates p values ≤ 0.05; ** indicates p values ≤ 0.001. η2 ≥ 0.01 indicates a 
small effect; η2 ≥ 0.06 indicates a medium effect; η2 ≥ 0.14 indicates a large effect. 

Table 3. Effects of Time Change Conditions on Average and Minimum Effectiveness. 

 CTA (M ± SD) Permanent 
DST  

Permanent 
ST  F(2,74) Value p Value η2 (95% CI) 

Figure 2. Exposure to Daylight by Schedule and Time Change Conditions. Graphic depiction of hours
of daylight across the 24-h day (top x-axis) by time change condition (CTA: orange bar, DST: yellow
bar, ST: blue bar) and season on the y-axis for (a) New York City, (b) Chicago, (c) El Paso, (d) Los
Angeles, and (e) Anchorage. Work schedule start and end times are indicated by black lines. School
start and end times are indicated by purple lines. Morning and evening rush hours are indicated by
red shading.

Table 2. Effects of Time Change Conditions on Exposure to Daylight.

CTA
(M ± SD)

Permanent DST
(M ± SD)

Permanent ST
(M ± SD) F(2,74) Value p Value η2 (95% CI)

Average Sunrise 07:08 ± 02:48 07:35 ± 03:18 06:42 ± 03:18 387.24 <0.001 ** 0.84
(0.79–0.87)

Distance between Sunrise
and Waketime ‡ 19 ± 69 min −15 ± 86 min 44 ± 86 min 406.82 <0.001 ** 0.85

(0.80–0.87)
Percentage of Waketimes
Occurring Before Sunrise 42 ± 37% 63 ± 41% 33 ± 38% 76.37 <0.001 ** 0.51

(0.39–0.59)
Percent Darkness During

the Total Waking Day 32 ± 13% 29 ± 13% 33 ± 12% 94.69 <0.001 ** 0.56
(0.45–0.64)

Percent Darkness During
Commute-to-work 28 ± 44% 32 ± 45% 28 ± 44% 6.48 0.002 * 0.08

(0.01–0.17)
Percent Darkness During

Work Day 41 ± 42% 41 ± 42% 41 ± 42% 0.08 0.93 0.001
(0.00–0.01)

Percent Darkness During
Commute-Home 31 ± 44% 30 ± 45% 31 ± 44% 0.37 0.68 0.005

(0.00–0.04)
Percent Darkness

During Sleep 66 ± 24% 71 ± 26% 63 ± 24% 103.11 <0.001 ** 0.58
(0.48–0.65)

‡ Negative values indicate waketimes occurring before sunrise. Positive values indicate waketimes occurring
after sunrise. * indicates p values ≤ 0.05; ** indicates p values ≤ 0.001. η2 ≥ 0.01 indicates a small effect; η2 ≥ 0.06
indicates a medium effect; η2 ≥ 0.14 indicates a large effect.

3.4. Time Change Arrangements and Rush Hour Commutes

Table 4 summarizes differences in Effectiveness scores and percent darkness during
morning rush hour (0700–0900) and evening rush hour (1600–1800) between time change
conditions. Morning rush hour included commute-to-work Effectiveness and percent
darkness values for day and school shift schedules and commute-home Effectiveness and
percent darkness values for night shift schedules for a total of 55 schedules. Repeated mea-
sures of ANOVA examined the difference between time change conditions (ST, DST, CTA)
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for morning rush hour Effectiveness and percent darkness, controlling for city location, shift
type, and season. The number of observations for each of the morning rush hour analyses
was 165. There was a trend for differences in average and minimum Effectiveness scores
by time change conditions during morning rush hours. Bonferroni’s post hoc analysis
revealed lower minimum and average effectiveness under CTA compared with either DST
or ST (all p ≤ 0.002). There were significant differences in percent darkness during morning
rush hour. Bonferroni’s post hoc analysis indicated that there was a greater percentage of
darkness under DST conditions compared with either CTA (t = 4.52, p < 0.001) or permanent
ST (t = 4.75, p < 0.001). There were no differences in percent darkness between CTA and ST
(t = 0.23, p > 1.00).

Table 3. Effects of Time Change Conditions on Average and Minimum Effectiveness.

CTA (M ± SD) Permanent DST
(M ± SD)

Permanent ST
(M ± SD) F(2,74) Value p Value η2 (95% CI)

Commute-to-work Average
Effectiveness 96.02 ± 3.27 96.12 ± 3.12 96.12 ± 3.14 9.50 0.001 ** 0.11

(0.03–0.21)
Commute-to-work Minimum

Effectiveness 94.94 ± 3.87 95.04 ± 3.73 95.04 ± 3.75 8.24 0.004 * 0.10
(0.02–0.19)

Work Day Average Effectiveness 91.21 ± 10.76 91.32 ± 10.60 91.33 ± 10.61 11.40 <0.001 ** 0.13
(0.04–0.23)

Work Day Minimum Effectiveness 86.70 ± 12.32 86.84 ± 12.13 86.83 ± 12.13 4.82 0.009 * 0.06
(0.004–0.14)

Commute-Home Average
Effectiveness 87.36 ± 11.83 87.50 ± 11.64 87.49 ± 11.63 3.37 0.04 * 0.04

(0.00–0.12)
Commute-Home Minimum

Effectiveness 86.31 ± 11.93 86.45 ± 11.75 86.44 ± 11.75 3.23 0.04 * 0.04
(0.00–0.11)

Total Waking Day Average
Effectiveness 93.60 ± 5.99 93.63 ± 5.98 93.63 ± 5.98 9.19 <0.001 ** 0.11

(0.03–0.20)
Total Waking Day Minimum

Effectiveness 89.45 ± 5.91 89.48 ± 5.90 89.48 ± 5.89 24.26 <0.001 ** 0.25
(0.13–0.35)

* indicates p values ≤ 0.05; ** indicates p values ≤ 0.001. η2 ≥ 0.01 indicates a small effect; η2 ≥ 0.06 indicates a
medium effect; η2 ≥ 0.14 indicates a large effect.

Table 4. Effects of Time Change Conditions on Rush Hour Effectiveness and Exposure to Light.

CTA
(M ± SD)

Permanent DST
(M ± SD)

Permanent ST
(M ± SD) F Value p Value η2 (95% CI)

Morning Rush Hour
Average Effectiveness 87.89 ± 14.37 88.05 ± 14.15 88.07 ± 14.16 F(2,54) = 3.14 0.05 † 0.05

(0.00–0.14)
Morning Rush Hour

Minimum Effectiveness 86.92 ± 14.22 87.06 ± 14.00 87.09 ± 14.00 F(2,54) = 2.90 0.06 † 0.05
(0.00–0.14)

Percent Darkness During
Morning Rush Hour 7 ± 23% 16 ± 31% 7 ± 23% F(2,54) = 14.35 <0.001 ** 0.21

(0.08–0.33)
Evening Rush Hour

Average Effectiveness 97.48 ± 0.92 97.50 ± 0.90 97.49 ± 0.91 F(2,39) = 0.54 0.58 0.01
(0.00–0.08)

Evening Rush Hour
Minimum Effectiveness 97.11 ± 0.68 97.12 ± 0.66 97.12 ± 0.67 F(2,39) = 0.51 0.60 0.01

(0.00–0.08)
Percent Darkness During

Evening Rush Hour 7 ± 14% 0 ± 0% 7 ± 15% F(2,39) = 8.80 <0.001 ** 0.18
(0.33–0.62)

† indicates p values ≤ 0.1; ** indicates p values ≤ 0.001. η2 ≥ 0.01 indicates a small effect; η2 ≥ 0.06 indicates a
medium effect; η2 ≥ 0.14 indicates a large effect.

Evening rush hour included commute-home Effectiveness and percent darkness values
for day shift schedules and commute-to-work Effectiveness and percent darkness values
for evening shift schedules for a total of 40 schedules. Repeated measures of ANOVA
examined the difference between time change conditions (ST, DST, CTA) for evening rush
hour Effectiveness and percent darkness, controlling for city location, shift type, and season.
The number of observations for each of the evening rush hour analyses was 120. There
were no significant differences in average and minimum Effectiveness scores by time
change conditions during evening rush hours. There were significant differences in percent
darkness during evening rush hours. Bonferroni’s post hoc analysis indicated that there
was a greater percentage of darkness under either CTA (t = 5.04, p < 0.001) or permanent ST
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(t = 5.23, p < 0.001) compared with permanent DST. There were no significant differences in
percent darkness between CTA and ST (t = 0.00, p = 1.00). Skewness and kurtosis values for
all variables described in Table 4 were between zero and one, indicating normal distribution,
symmetrical skewness, and platykurtic kurtosis. Breakdowns of average Effectiveness and
percent darkness during morning and evening rush hours by city, season, and time change
condition, with information about included schedules, are included in Supplementary Data
Tables S3 and S4, respectively.

4. Discussion

The purpose of this computational modeling project has been to evaluate the average
potential impact that time change arrangements alone may have on cognitive alertness
and exposure to daylight in United States locations under a variety of seasons and work
or school schedules. To our knowledge, this is the first attempt to model the impact of
time change arrangements using a biomathematical model of fatigue (SAFTE-FAST) with a
sleep prediction algorithm (AutoSleep). Our findings suggest that under ideal hypothetical
circumstances, abandoning the twice-yearly clock change may be nominally beneficial
for Effectiveness. Permanent DST conditions resulted in less light at waketime, during
morning rush hour, and less potential daylight exposure across the day than either CTA or
ST. Given the similarities between CTA and ST in these analyses, it appears that adjusting to
permanent ST may be logistically easier than adapting to permanent DST time conditions.

With regards to Effectiveness, these simulated data suggest that adopting either
permanent DST or permanent ST may prevent cognitive alertness deficits related to the
bi-annual transition between ST and DST in November and March (see Table 3). Although
they are statistically significant, the observed differences in predicted Effectiveness are less
than a full integer, and the effect sizes indicate only a medium effect. Moreover, scores
are above the FRA cut-off for fatigue risk (an Effectiveness score of 70) [36]. Time change
arrangements did not show a significant effect on rush hour Effectiveness in this analysis
(see Table 4) either. Taken together, it is unlikely that fatigue risk would be noticeably
different based on the time change conditions alone. Previous research investigating the
contributing role of DST transitions on cognitive performance or accident risk has shown
mixed results, with some studies indicating an increased risk due to clock changing and
other studies showing no association [13,51–53]. The risk of fatigue due solely to the bi-
annual clock change may be negligible under ideal conditions, such as fixed schedules that
consistently allow for a sufficient amount of sleep, but could interact with other factors to
produce higher risk in real-life situations.

Deficits in alertness due to the clock change may reasonably be compounded by in-
dividual differences in sleep behavior, work schedules, or resilience to fatigue that could
be variable across populations. These differences could potentially account for the mixed
findings with respect to the impact of time changes on accident risk seen in real-world data
analyses. The AutoSleep algorithm predicts sleep as a function of time available between
work events and will assume an 8 h, overnight sleep opportunity unless time is constrained
by the work schedule. The schedules modeled in this analysis may be considered represen-
tative of ideal sleep and working conditions. Individual differences in sleep behavior or
cognitive alertness, including behavior related to time change arrangements rather than
potential daylight exposure, cannot be predicted using generic fixed schedules and the
AutoSleep function in SAFTE-FAST. Furthermore, AutoSleep has not been evaluated for
sleep prediction in student populations. The use of a sleep prediction algorithm rather
than actual measures of sleep behavior under different time change conditions constitutes
a limitation for the interpretability of the presented results. It is possible to model objective
measures of sleep in SAFTE-FAST to produce a more specific prediction of Effectiveness.
However, since it is not possible to collect ecologically valid sleep data across seasons in
the future (years 2023–2024) in multiple cities simultaneously under three different time
change conditions, AutoSleep provides an adequate exploratory proxy for real-world sleep
in this analysis.
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Setting the clocks forward in the spring has been shown to disrupt sleep and impair
cognitive performance, as well as shift the amount of light available during morning
commutes compared with evening commutes [13,14,17,51–53]. Decreasing the amount of
darkness during evening rush hour to reduce crash risk is an argument for the adoption of
permanent DST [14,17]. As expected, the percent darkness during morning rush hour in
this study was greater under permanent DST conditions compared with CTA or permanent
ST (16% vs. 7%; see Table 4), while the percent darkness during evening rush hour was
lower under permanent DST conditions compared with the other conditions (0% vs. 7%; see
Table 4). However, Effectiveness during morning rush hour was lower than Effectiveness
during evening rush hour (see Table 4). This difference can be attributed to the inclusion of
shiftwork schedule commute data. Morning rush hour coincided with commute-home data
from night schedules when workers are assumed to have lower Effectiveness following a
full 8 h of work, whereas evening rush hour included commute-to-work data from evening
schedules, when workers are assumed to be well-rested.

Shift workers are rarely considered in the discussion of the impact of time change
arrangements on highway safety. Our simulated dataset suggests that more individuals
would be on the road during morning rush hour than evening rush and that fatigue risk
would be greater due to shift workers returning home. Increased morning darkness in
Permanent DST could exacerbate fatigue in shift workers [26,27]. Since darkness is known
to contribute to crash risk [13,14,54], ensuring ambient light conditions during the morning
rush hour would be the safest option to prevent risk at a time when there are not only
daytime workers on the road but also fatigued shift workers returning home, student
drivers, and buses full of school children. Work and school schedules could be modified to
avoid dark morning commutes under any time change arrangements but are most closely
aligned to this goal under CTA or permanent ST conditions.

This increase in darkness around the time of morning awakening is a strong argument
against permanent DST [4–6]. In the absence of schedule constraints or artificial light,
humans naturally awake around or after sunrise [18]. A mismatch between the timing
of sleep due to schedule constraints and a human’s natural circadian rhythmicity can
result in recurrent symptoms of fatigue known as “social jet lag” [55,56]. Adolescents
may be affected in particular due to a natural propensity towards later waketimes [57,58].
Early school start times have been known to disrupt student sleep and impair health and
performance. Many states have introduced legislation to limit how early schools may start
in the morning to curb this negative health effect [20,22,59]. Permanent DST would, in
effect, undo the benefits of these efforts [60]. SAFTE-FAST takes potential daylight exposure,
circadian misalignment, and sleep inertia into account to estimate Effectiveness, but the
model has not been examined in the context of social jet lag. This constitutes a limitation
for the current analyses and an interesting follow-up study to test in future investigations.

As expected, the effects of time change conditions on exposure to light differed by
city location, season, and shift, as depicted in Figure 2 and shown in Supplementary
Data Table S1. A limitation of this analysis is that we compare averages for Effectiveness
and potential daylight exposure based on data from generic, hypothetical schedules and
algorithmic predictions of sleep. This type of analysis cannot account for individual
differences, rotating shift schedules, or behaviors specific to a certain population. The
relationship between city selection criteria such as population, highway fatality rate, or
distance relative to the start of the time zone on Effectiveness or sunlight could also not
be examined in these analyses because the datasets are generic and hypothetical. The
model-generated dataset also contains less variance than is expected from real-world data,
which limits the interpretability of statistical significance. Differences between conditions
were compared using the ANOVA F test, which is generally robust to violations of variance
when sample sizes are equal [61], but the p-values should be examined in the context
of group means, standard deviation, effect size, and ecological significance. Moreover,
while longitude position relative to the time zone has recently been shown to impact traffic
risk and social jet lag [62], the SAFTE-FAST model has not been developed or evaluated
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for its ability to detect risk related to longitude position alone. An interesting follow-up
study would be to evaluate the ability of SAFTE-FAST to model Effectiveness in cities with
similar longitude positions but different time zones, such as Chicago and Indianapolis.
In light of these limitations, it is important to note that if the Sunshine Protection Act is
enacted, it will affect all people living in U.S. locations across the entire year regardless of
their location, schedule, or individual differences. In this way, using hypothetical generic
schedules may be a useful tool to evaluate the base level of risk associated with any time
change arrangement.

Biomathematical models are frequently used in industry to prospectively investigate
work schedules in order to avoid working during periods of high fatigue risk. Schedule
adaptation has also been suggested for avoiding fatigue risk or circadian misalignment
related to either permanent DST or ST [5,15]. Our findings suggest that the changes in
light exposure or Effectiveness under permanent ST are more similar to CTA, particularly
in student populations since school is traditionally not in attendance over the summer.
Logistically speaking, permanent ST may require fewer schedule changes than DST and,
therefore, make for an easier adjustment. An alternative interpretation is that neither
permanent DST nor permanent ST offers a significant advantage over CTA. Adopting
permanent ST would require fewer schedule changes than adopting permanent DST,
but continuing to use CTA would require no schedule changes since the U.S. already
uses this time change arrangement. According to a poll by The Associated Press-NORC
Center for Public Affairs Research, only 25% of Americans support continuing the use of
CTA [63]. Despite mixed evidence or a lack of direct evidence that adopting permanent
time arrangements in either direction would improve traffic safety, energy use, daylight
exposure, or health outcomes, Americans do not seem to prefer CTA. If American voters
want to stop the bi-annual clock changes, the least disruptive permanent time option would
appear to be permanent ST.

5. Conclusions

The effect of permanent DST on Effectiveness and potential daylight exposure relative
to CTA or permanent ST were compared using a biomathematical model of fatigue (SAFTE-
FAST). Controlling for U.S. location, season, and shift type, permanent DST would result in
greater morning darkness than CTA or ST with only nominal differences in Effectiveness.
Under permanent DST, morning rush hour would have a greater percentage of darkness
that could increase risk during a time period of reduced commuter Effectiveness due to
night shift workers returning home and greater traffic congestion, given the overlap be-
tween day workers and students commuting to school and night shift workers commuting
home. Permanent DST would require greater adaptation to new schedules and result in
less exposure to daylight in the morning and across the day. Permanent DST does not
demonstrate any benefits with regard to traffic safety, fatigue risk, or light exposure for
students, shift workers, or the general day-working public.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/safety9030059/s1, Table S1: Percent Darkness During Total Waking
Day and During Sleep by City, Season, and Shift by Time Change Condition; Table S2: Average
Effectiveness During Work Day and Commutes by City, Season, and Shift by Time Change Condition;
Table S3: Average Effectiveness and Percent Darkness During Morning Rush Hour by City, Season,
and Time Change Condition; Table S4: Average Effectiveness and Percent Darkness During Evening
Rush Hour by City, Season, and Time Change Condition.
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