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Abstract: This manuscript presents a study on the spatial relationships between bike accidents,
the built environment, land use, and transportation network characteristics in Budapest, Hungary
using geographic weighted regression (GWR). The sample period includes bike crash data between
2017 and 2022. The findings provide insights into the spatial distribution of bike crashes and their
severity, which can be useful for designing targeted interventions to improve bike safety in Budapest
and be useful for policymakers and city planners in developing effective strategies to reduce the
severity of bike crashes in urban areas. The study reveals that built environment features, such as
traffic signals, road crossings, and bus stops, are positively correlated with the bike crash index,
particularly in the inner areas of the city. However, traffic signals have a negative correlation with the
bike crash index in the suburbs, where they may contribute to making roads safer for cyclists. The
study also shows that commercial activity and PT stops have a higher impact on bike crashes in the
northern and western districts. GWR analysis further suggests that one-way roads and higher speed
limits are associated with more severe bike crashes, while green and recreational areas are generally
safer for cyclists. Future research should be focused on the traffic volume and bike trips’ effects on
the severity index.
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1. Introduction

Due to its many positive effects on individual, public, and environmental health [1],
cycling has become a common form of urban transportation in many cities around the
globe [2,3]. However, cycling can also be risky, especially in congested urban areas where
collisions with cars are frequent. City planners and policymakers can design safer trans-
portation systems that prioritize the safety of all road users [4]. This requires a deeper
understanding of the factors affecting cycling crashes [5].

Many factors, including the built environment, land use, and transportation net-
work characteristics, influence cycling accidents [6–8]. Cyclists are at a higher risk of
injury or death on roads with higher speed limits, wider lanes, and heavier traffic [9,10].
Roundabouts, intersections, and bike lanes may affect the frequency of accidents involv-
ing cyclists [11,12]. When there are no bike lanes at an intersection, for instance, cyclists
must weave in and out of traffic to make turns, which can be dangerous. Land use also
significantly influences cyclists’ safety; bicycle accidents are more likely to happen in areas
with a high population density, a variety of land uses, and lots of pedestrian traffic [13,14].
Furthermore, areas with high concentrations of cyclists and motorists can result in con-
flicts that lead to accidents [15,16]. Considering these threats when planning cities and
neighborhoods helps to lessen the negative impact of cycling. Cities can encourage healthy
and sustainable lifestyles by prioritizing cycling infrastructure and land-use patterns that
support active transportation and reduce the number of accidents involving cyclists.
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The main contribution of this research is the definition of the spatial relationships
between the bike crashes and the built environment, land use, and transportation network
characteristics, which can have significant impacts on frequency and severity. The novelty
of this study is that bike crashes have not been spatially studied using geographic weighted
regression (GWR) in aspects of land-use patterns, speed limits, road classification, and rail
network densities in urbanized area. GWR can provide insights into the spatial patterns
of bicycle crashes and help policymakers identify high-risk areas and develop targeted
interventions to reduce the severity of crashes.

2. Literature Review

In recent years, there has been a growing recognition of cycling safety [17], as well
as the crucial role that spatial analysis plays in understanding and addressing this is-
sue [18]. It is a pressing concern within the broader context of urban transportation and
road infrastructure.

Several studies have identified various factors that contribute to cycling crashes,
including individual factors such as age, gender, and experience level [19–21] and environ-
mental factors such as road conditions and traffic volume [22,23]. Some studies found that
elderly people had a higher risk of severe injuries in cycling crashes [24–26]. Other studies
identified road design and infrastructure as critical factors in cycling crashes, including the
presence of dedicated cycling lanes and intersections [27–29].

Focusing on cycling crashes in intersections, Pulvirenti et al. [30] highlighted the uncer-
tainties surrounding roundabout impacts on bicyclists’ safety, emphasizing the complexities
of interactions between bicyclists and vehicles. Additionally, studies [31,32] underscored
the significance of intersection safety for cyclists, offering methodologies like the Bicycle
Intersection Safety Index (Bike ISI) to proactively prioritize safety improvements. Further-
more, the insights of Daniels et al. [33] into roundabout conversions emphasized the role of
well-designed cycling infrastructure.

Traffic-calming measures and adequate lighting can significantly reduce the risk of
cycling crashes [34–36]. On the other hand, poor road conditions, such as potholes, uneven
surfaces, and inadequate signage, can increase the risk of cycling crashes [37–39]. In
addition, the presence of barriers, such as high curbs or fences, can make it difficult for
cyclists to navigate the road safely [40,41]. Designing cycling infrastructure that prioritizes
the safety and needs of cyclists can reduce the risk of cycling crashes and make cycling a
more accessible and attractive transportation mode.

Other important factor affecting cycling crashes is the behavior of cyclists and drivers.
Several studies have found that risky behaviors, such as cycling at high speed, running red
lights, and lack of protective gear, can increase the likelihood of cycling crash severity [42–
45]. In addition, drivers who are distracted, speeding, or under the influence of drugs or
alcohol pose a significant risk to cyclists on the road [46–48]. Education and awareness
campaigns aimed at promoting safe cycling and driving behaviors can reduce the risk of
cycling accidents [49,50].

Spatial factors also play a crucial role in cycling crashes. Some studies found that the
risk of cycling crashes increased in areas with high traffic volume and high speed limits,
particularly in urban areas [51]. Other studies also found that areas with high population
density and high levels of economic activity were more likely to have cycling crashes,
indicating a need for better urban planning and transportation policies [52,53].

Geographically weighted regression (GWR) is a statistical technique that has been
increasingly used in transportation research to analyze the spatial patterns of transportation-
related phenomena [54–56], including crash-severity analysis. To focus on the cycling-
crash-severity analysis based on GWR, we present a summary of the literature discussing
this issue.

Previous studies, as shown in in Table 1, demonstrate the utility of GWR in modeling
the severity of bicycle crashes. Clear gaps are extracted from the literature, such as specific
land-use patterns as the industrial, water, commercial, recreational, and green areas, as
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well as the speed limit and the density of road and railway networks, which are the main
novelties of our research.

Table 1. Related literature review on bike crash analysis using GWR.

Ref. Spatial-Related Results Gaps

[57]
1. Bus stop density is associated with cyclist crashes
2. Car–cyclist crashes occur in stop-sign-controlled intersections
3. More signalized intersections lead to more crashes

Focused only on car–cyclist crashes
Did not consider the land-use patterns
Did not consider the road speed limits
Did not consider the railway network

[58]

1. The more central a network, the safer it is for bicyclists
2. Bicycling is safer on major roads than on local roads
3. Commercial area properties tend to experience a greater
number of bicyclist-involved crashes
4. Bus stop density is associated with cyclist crashes

Cyclist facilities, such as bike lots and bike lanes,
are not taken into consideration
Did not consider the road speed limits
Did not consider the railway network

[59]

1. The agricultural area has a significant negative correlation
with bicycle crashes
2. Collector roads were significant and positively associated
with bicycle crashes

Land-use patterns are limited
Did not consider the road speed limits
Did not consider the railway network
Did not consider the road classification

[60]

1. Significant associations between bicycle crashes and bicycle
lane intersection density
2. Sidewalk density and commercial areas are positively
associated with bicycle crashes
3. The effect of residential road density, percentage of
single-family areas, and percentage of multiple-family areas
positively vary across the space

Did not consider the road speed limits
Did not considered the railway network
Did not consider the road classification

3. Methodology
3.1. Framework

GWR is a local regression model that accounts for spatial heterogeneity in the rela-
tionship between the dependent variable and the independent variables. The technique
involves estimating a separate regression model for each location or point in space, in which
the coefficients of the independent variables are allowed to vary spatially. The resulting
local models can then be used to explore spatial variation in the relationship between the
dependent and independent variables [54,61] and help to identify any spatial heterogeneity
in the relationships that may be missed by a global regression model [56,60,62–64]. The
framework is summarized as follows:

1. The data should be converted to georeferenced data;
2. An appropriate model is selected, such as linear regression, logistic regression, or

Poisson regression;
3. To determine the influence of nearby data points on the regression estimation at a

given location, the kernel function is used, which is a weighting function. The most
used kernel functions are Gaussian, bi-square, and exponential;

4. The optimal bandwidth parameter for the GWR model should be selected to determine
the size of the local neighborhood that is used to estimate the regression coefficients.
This is to consider the extent of the spatial autocorrelation and to avoid overfitting or
underfitting the model;

5. The GWR model is fitted using the selected model and bandwidth parameters. This
involves estimating the regression coefficients for each location in the study area.
This is carried out by applying the kernel function to each data point within the local
neighborhood and solving the resulting weighted least-squares regression problem;

6. Model validation, such as cross-validation, residual analysis, or goodness-of-fit statis-
tics, is carried out;

7. The GWR coefficients’ maps are created to visualize spatial patterns.

Overall, GWR is a powerful technique for analyzing spatial data that can provide
valuable insights into the spatial variation in the relationships between variables. It is
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important to carefully select the appropriate model and bandwidth parameters, validate
the model, and interpret the results in the context of the study area.

3.2. Data Source and Study Area

Budapest, Hungary is an urban area with a population density of more than 3000 peo-
ple per square kilometer. The river Danube separates Budapest into east and west sides.
All variables of the study area were cataloged in a geographic information system (GIS)
database alongside crash incidents. The database includes bike crash data between
2017 and 2022 provided by the Centre for Budapest Transport (Budapesti Közlekedési
Központ; BKK). The datasheet has 2682 crashes (2796 injuries), including 9 fatalities (0.32%),
736 serious injuries (26.32%), and 2051 slight injuries (73.36%). Each crash has its geographic
position in latitude and longitude coordinates. The dataset consists only of the location and
the severity of the crashes. The other geographic information about road network, railway
network, facilities, stops, road classification, speed limit, intersections, signals, and land
use within the study area were obtained from OpenStreetMap. A 1 × 1 km square grid cell
was used because it provides a greater resolution of data than sub-districts and because it
is recommended in the literature [54,65,66]. These cells are referred to in the manuscript as
“zones”. The total number of cells/zones is 1274. The collected data were assigned to the
appropriate cells.

4. Data and Model Preparation
4.1. Variables

This study uses the bike-crash-severity index as a dependent variable. Three severity
categories were distinguished, and 1, 3, and 5 points were assigned to slight, serious, and
fatal injuries, respectively. For each zone, the severity index values were summarized (1).
Thus, the higher the bike-crash-severity index is, the riskier the zone is. The rationale
behind our use of the bike-crash-severity index lies in its ability to succinctly capture
the varying degrees of injuries resulting from bike crashes, providing a comprehensive
measure of the overall impact on cyclist safety within each zone. The assignment of 1, 3,
and 5 points to slight, serious, and fatal injuries, respectively, has been established with
careful consideration of the relative impact of these injury categories on cyclist safety.
Although there are some alternative weighting approaches [67,68], our intention is to create
a simplified yet meaningful severity index that aligns with the objective of identifying
zones with higher risk levels.

i = nslight + 3nserious + 5n f atal (1)

where nslight, nserious, and n f atal are the number of injuries in the severity categories. The
descriptive statistics of variables are shown in Table 2. The data show that the bike crash
index is between 0 and 109.

4.2. Data Cleaning and Model Characteristics

Multicollinearity among variables, such as unstable coefficients and inflated standard
errors, can cause problems in the model and should be removed. One way to detect
multicollinearity is to use the variance inflation factor (VIF), which measures the extent
to which the variance of the estimated regression coefficient for a predictor variable is
increased due to multicollinearity with the other predictor variables in the model. VIF
values greater than 7.5 indicate problematic levels of multicollinearity [64]. Table 3 shows
the VIF values for all variables. Residential areas, two-way roads, and roads with a
speed limit > 100 km/h variables have VIF values greater than 7.5 and are eliminated from
the GWR model.
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Table 2. Descriptive statistics of the variables.

Category Variable Average Minimum Maximum

Built Environment and
Transportation Facilities

(number/zone)

Touristic Points 2.01 0 81
Crossings 6.54 0 96

Traffic Signals 1.89 0 41
Rail Stops 0.60 0 11
Bus Stops 3.56 0 36
Bike Lots 1.11 0 45

Road Speed Limit and
Regulations (km/zone)

One-way 1.47 0 12.45
Two-way 9.83 0 38.91

Speed Limit ≤ 30 km/h 1.86 0 11.37
Speed Limit 31–50 km/h 1.06 0 12.38
Speed Limit 51–100 km/h 0.29 0 4.27
Speed Limit > 100 km/h 0.07 0 2.63

Road Functions
(km/zone)

Bike Road 0.52 0 9.90
Pedestrian Street 2.01 0 24.32

Highway 0.14 0 8.49
Residential Road 3.54 0 12.44

Main Road 0.67 0 7.71
Service Road 2.00 0 16.19

Railway service
(km/zone)

Tram 0.38 0 11.06
Train 0.99 0 42.71

Light Rail 0.11 0 7.65
Subway 0.12 0 16.86

Land Use (%/zone)

Commercial 1.93% 0 97%
Industrial 9.64% 0 100%

Water 3.76% 0 100%
Green 37.87% 0 100%

Recreation 0.21% 0 64%
Residential 44.67% 0 100%

Crashes Severity index 3.32 0 109

Table 3. VIF values of the variables.

Variable VIF Variable VIF Variable VIF

Touristic Points 2.62 Water Area 1.36 Cycling Road 1.38
Crossings 4.39 Green Area 3.65 Pedestrian Road 2.51

Traffic Signals 4.21 Recreation Area 1.02 Highway 1.79
Rails Stops 4.40 Residential Area 8.36 * Residential Road 4.49
Bus Stops 2.60 Two-way 10.4 * Main Road 3.42
Bike Lots 3.38 One-way 5.00 Service Road 1.96

Commercial Area 1.22 Speed Limit ≤ 30 km/h 1.97 Tram way 3.76
Industrial Area 1.92 Speed Limit 31–50 km/h 2.02 Rail way 1.28

Speed Limit 51–100 km/h 2.32 Light rail way 1.14
Speed Limit > 100 km/h 7.93 * Subway 1.24

* VIF values are greater than 7.5 and eliminated from the GWR model.

GWR relies on a kernel function with a specific bandwidth. There are two kinds
of kernels that can be used with GWR: the fixed kernel chooses neighbors on a distance
threshold and the adaptive kernel chooses neighbors based on predetermined number of
neighbors. Since the size of the block groups is constant throughout this investigation,
the fixed kernel is selected. In GWR, the selection occurs from one of these methods:
Akaike information criterion (AICc), cross-validation (CV), or bandwidth parameter. In
this research, we use the cross-validation technique to implement the GWR model. Cross-
validation (CV) employs a bandwidth to identify a model that minimizes the difference
between the observed and fitted values. For the GWR analysis, the optimal distance is
determined by two factors: the randomness of the GWR residuals and a lower AICc value
compared to the other bandwidth models. ArcMap’s best model can be obtained through
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an automated function. The adjusted R-squared values show that 78.6% of the variation in
the bike crash index is explained by independent variables, which is significantly higher
than the 57.2% explained by the ordinary least-squares method. With an AICc of 7488.25,
the best-applied bandwidth is 8027 m.

As a summary, the model development steps are as follows: the methodology aim is
to comprehensively address the spatial aspects of cyclist safety at road intersections. We ini-
tiated the process by defining the research objectives, aiming to investigate safety patterns
and risks. Data collection involved sourcing infrastructure details from OpenStreetMap and
bike crash data from the Centre for Budapest Transport. To quantify bike crash severity, we
introduced a bike-crash-severity index, categorizing injuries into slight, serious, and fatal
categories and assigning corresponding points. Geographic information systems (GISs)
are pivotal in our analysis, enabling us to overlay infrastructure data and severity indices,
thereby identifying high-risk zones and visualizing spatial patterns. Employing geographi-
cally weighted regression, we explore the localized relationships between infrastructure
variables and bike crash severity.

5. Results and Discussion

Figures 1–5 depict the model’s contribution to the coefficients of statistically significant
variables, with dark red denoting the highest values and light red indicating the lowest.
It should be noted that the term “positive” means positive sign of the coefficients, which
indicates more crashes in the zone, while “negative” means the opposite.

5.1. Built Environment and Public Transportation Stops

As shown in Figure 1a, almost all the zones have positive coefficients, which means
that the more point of interest a zone contains, the higher the severity of bike crashes.
Areas with a higher POI density may attract more cyclists, which can also contribute to
the severity of bike crashes, which is similar to the findings of Hologa and Riach [69].
Regarding the traffic signals, it is noticed that the bike crash index is correlated positively in
the inner areas of the city and correlated negatively in the suburbs, as shown in Figure 1b.
Inner city areas may have higher traffic volumes and more complex road networks, which
could lead to a higher incidence of bike crashes. In these areas, traffic signals may be more
prevalent and may contribute to a higher number of bike crashes due to factors such as
increased congestion and longer wait times at traffic signals. On the other hand, a negative
correlation between bike crashes and traffic signals in the suburbs could indicate that the
presence of traffic signals may be mitigating bike crashes in these areas. For example,
traffic signals may be used to manage traffic flow and reduce speeds, which could make
suburban roads safer for cyclists. These outcomes were also highlighted in Chen’s (2015) [7]
research. Similarly, as shown in Figure 1c, the relationship between bike crash index and
road crossings is alike the traffic signals, which could be explained with the same approach.
It should be noted that in all figures, the outputs are classified into four grades. We adopted
the quantiles method from ArcGIS to grade the values.

Additionally, the results suggest that there is a spatially varying relationship between
public transportation stops and bike crashes in the study area. Specifically, bus stops are
more positively correlated with the bike crash index than railway/tram stops, as shown in
Figure 1d. The bus stops are more numerous and more widely dispersed throughout the
city than railway/tram stops, which could increase the likelihood of bike crashes occurring
in their vicinity. The analysis has also revealed that the western and northern sides of
the city are more highly influenced by bike crashes, due in part to the higher number of
bus lines and stops in these areas. This suggests that there may be a need for targeted
interventions to improve bike safety in these areas, such as the installation of dedicated
bike lanes or the implementation of traffic-calming measures. For railway/tram stops,
analysis has revealed that they are highly influenced by bike crashes in the southern side
of the city as shown in Figure 1e. This may be due to the presence of rail/tram lines and
stops in this area. In general, public transportation stops could be more frequently used
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by cyclists as transfer points or as starting and ending points for bike trips, which could
increase the risk of collisions with other vehicles or pedestrians. The results obtained in this
research are alike the findings of Jaber and Csonka [54]. Finally, as shown in Figure 1f, bike
lots are associated positively with the bike crash index. It was noted that the coefficient is
especially high on the eastern side.
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5.2. Land Use

In Figure 2a, it is noticed that green areas have a low impact on the bike crash index
as the coefficients are near to zero. This is an indication that the green areas are a safe
environment for cyclists, which is stated in Panagopoulos et al.’s work [70]. Margit Island
and the surroundings zones are the only zones that need attention because it is a very
popular recreational area of the city. For the commercial areas (Figure 2b), it is clearly
observed that the northern–western side of the city has the most impact on bike crashes
as it also contains the main commercial activities in the city. For the recreational land-use
areas, Figure 2c shows a negative correlation between land use and the bike crash index.
This is aside from the green areas, which indicate a safe environment for cyclists in these
zones. The only exception is the eastern side, as mentioned earlier, which has difficult
topography that may affect severity. In aspects of the water area (Figure 2d), the bike crash
index is correlated positively in Margit Island and the surrounding zone. Accordingly, this
area needs some policies to mitigate bike crashes as far as possible. It is observed that water
areas attract cyclists and pedestrians, which could increase the interaction between them
and lead to more crashes. We are aware that there are few areas that are fully covered by
water. These zones are taken into consideration by applying the bandwidth. Finally, as
shown in Figure 2e, the industrial areas are shaped in a circular form towards the outside
of the inner city.
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5.3. Speed Limits and Road Direction

GWR analysis provided insights into the relationship between bike-crash-severity
index and road characteristics, such as one-way roads and speed limits. Specifically, the
analysis has shown that the more one-way roads an area has, the more severe bike crashes
tend to be. One-way roads can increase the speed of vehicles and make it more difficult for
cyclists to navigate; drivers also do not expect cyclists from both directions on a one-way
road (many one-way roads are bidirectional for cyclists), which could contribute to the
severity of bike crashes in these areas. These conclusions are partially on the contrary to of
Raihan et al.’s (2019) [71] results, which showed a decreased number of crashes on one-way
roads. In our research, the concentration of the coefficients is located in the center of the
city as shown in Figure 3a, which is not fading towards outside. Moreover, the analysis has
revealed that bike crashes in zones with speed limits of 30 km/h or lower are generally
low, but they decrease towards the outer zones from the inner city as shown in Figure 3b.
This could be due to factors such as lower traffic volumes and simpler road networks in
the inner city, which could make it safer for cyclists to navigate. However, as cyclists move
towards the outskirts of the city, traffic volumes and complexity of the road network may
increase, which could increase the risk of bike crashes. Finally, the analysis has shown that
areas with higher speed limits, particularly in suburban areas, are associated with a higher
incidence of bike crashes, as shown in Figure 3c,d. These outcomes are similarly drawn in
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Chen’s (2015) [7] work. In Budapest, high speed limits are primarily found in outer zones,
especially on the western side where the airport and regional roads are located.

5.4. Road Network Classification

GWR analysis also shed light on the relationship between bike crashes and various
types of roads in Budapest. The results showed that the more of these roads there are, the
more severe the bike crashes are, with the exception of pedestrian roads. Residential roads,
main roads, and cycling roads all showed positive coefficients, indicating that they are
correlated with higher severity of bike crashes as shown in Figure 4b, 4c, and 4e, respectively.
This could be due to factors such as higher traffic volumes, more complex road networks,
and faster speeds on these roads. In terms of residential roads, the GWR coefficients were
concentrated in the inner and central zones of Budapest, suggesting that these areas may
have a higher incidence of bike crashes on these types of roads. Similarly, the concentration
of main roads in the inner and central zones also showed a positive correlation with bike
crash severity. These results indicate that interventions may be needed to improve safety
for cyclists on these types of roads, such as the creation of dedicated bike lanes or reducing
speed limits.

Interestingly, the GWR coefficients for highway roads in the city center were negative,
as shown in Figure 4a, indicating that there is almost no correlation between these types
of roads and bike crashes in the inner city. This is likely due to the fact that there are very
few highways in the city center, which could actually make it safer for cyclists. However,
the results also showed that suburban areas with higher speed limits, particularly on the
western side where several regional roads are located, had a higher incidence of bike
crashes on highway roads. This suggests that further attention may be needed to improve
bike safety on these roads outside the city center. For service roads, the coefficients vary
spatially in negative and positive manners, as shown in Figure 4d. Finally, GWR analysis
showed that pedestrian roads had a negative coefficient, as shown in Figure 4f, indicating
that they are correlated with a lower severity of bike crashes. This is likely due to the fact
that these roads are designed primarily for pedestrians and have lower traffic volumes,
making them safer for cyclists as well. Overall, the findings suggest that interventions to
improve bike safety should be tailored to the specific types of roads and areas where bike
crashes are most severe.

5.5. Rail Network Classification

The findings suggest that the location of rail and light rail lines plays a significant role
in the severity of bike crashes in Budapest. Even though railway services do not cover
all the city, the coefficient maps cover the whole area, and due to that, these zones have
been estimated by the bandwidth using the regression coefficients to consider the extent of
the spatial autocorrelation. The coefficients of these factors are concentrated in the north
and west side of the city as shown in Figure 5a,b, which is where the main rail stations are
located. This could be attributed to the fact that the areas around the rail stations are usually
busy with high traffic volumes, leading to a higher risk of bike crashes. Additionally, rail
and light rail stations may attract a significant number of cyclists, who are more vulnerable
to accidents in busy areas. On the other hand, the coefficients for tram lines and subways
are distributed throughout the city, as shown in Figure 5c,d, reflecting the widespread
distribution of these transportation modes in Budapest. This highlights the relationship
between bike crashes and these transportation modes, as areas with a higher density of
tram lines and subways may have more traffic and congestion, leading to an increased risk
of bike crashes. However, the distribution of coefficients for these factors also suggests that
bike crashes in proximity to tram lines and subways are not limited to specific areas, but
rather occur throughout the city. Overall, the findings suggest that the relationship between
transportation modes and bike crashes is complex and multifaceted, with different factors
playing different roles in different areas of the city. Understanding these relationships can
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help inform urban planning and transportation policies to reduce the risk of bike crashes
and promote safe cycling.

An aggregation map showing the predicted values of GWR coefficients of the bike
crash index can provide valuable insights into the factors that contribute to bike crashes in
a particular area (Figure 6). This model output can help identify areas that are at higher
risk of increased bike crash severity based on the factors described in the research. By
comparing the aggregation map with the coefficient maps of each variable, we can identify
which variables are the most significant contributors to bike crashes in that area. In this
regard, the high-risk zones in inner areas of the city and the northern part are consistent
with the coefficient maps of the light rail network, main roads, cycling roads, and one-way
roads with approximate values of 1.37, 1.36, 0.94, and 0.91, respectively. However, the
most influencing factors in the eastern–southern area are the trams network bike lots,
recreational areas, and highway roads side with approximate coefficients of 2.21, 1.17, 0.77,
and 0.30, respectively.
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When comparing the observed bike crash index with our model, it is noticed that the
GWR coefficients of the index are spatially almost similar, explaining 78.6% of the variation
in the bike crash index by the independent variables.

In line with the growing recognition of streets as integral public spaces with significant
impacts on urban livability and sustainability, our study finds resonance with the concept
of “complete streets”. As discussed by Montella et al. [72], this concept advocates for streets
that cater to the needs of all users within a sustainable framework. Our research further
aligns with the concept by introducing a bike-crash-severity index as a key component
in understanding and enhancing cyclist safety. We draw inspiration from the sustainable
complete streets design criteria presented in the mentioned source, which emphasizes the
integration of socio-environmental design criteria related to aesthetics, environment, livabil-
ity, and safety. While our study predominantly centers spatial analysis and risk assessment,
we recognize the relevance of creating safe and sustainable urban environments for cyclists
and all road users. This synergy underscores the significance of addressing cyclist safety
within the larger context of urban development and sustainable transportation systems.

6. Conclusions

This study applied the geographic weighted regression (GWR) technique to investi-
gate the spatial relationships between bike crashes and the built environment, land-use
patterns, and transportation networks in Budapest, Hungary. The results showed that
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certain variables, such as the presence of points of interest (POI) and traffic signals, have
a significant impact on the frequency and severity of bike crashes in the city. The density
of points of interest (POI) in a zone is positively correlated with bike crash severity. The
relationship between bike crashes and traffic signals and road crossings is positive in inner
areas of the city and negative in the suburbs. This may be due to the complexity of road
networks and higher traffic volumes in inner areas, which could lead to more crashes.
Bus stops are more positively correlated with bike crashes than railway/tram stops. The
western and northern sides of the city are more influenced by bike crashes due to the higher
number of bus lines and stops in these areas. Due to rail/tram lines and stops in the south,
bike crashes are highly influenced. Green areas have a low impact on bike crash severity,
indicating that they are safe environments for cyclists. Commercial areas have the most
impact on bike crash severity in the northwestern side of the city. The more one-way roads
an area has, the more severe bike crashes tend to be. Speed limits of 30 km/h or lower are
associated with a lower severity of bike crashes. Bike lots are positively associated with bike
crash severity, with a higher impact on the eastern side of the city. Additionally, the GWR
approach allowed us to identify spatial heterogeneity in the relationships between these
variables and bike crashes, which would have been missed by a global regression model.
This information can be used to inform targeted interventions in areas with higher bike
crash risk and to improve bike safety. The results of this study suggest that urban planners
and policymakers should consider the spatial relationships between bike crashes and the
built environment, land use, and transportation networks when developing strategies to
improve bike safety and promote cycling.

This study suggests several bike-crash-prevention policies for Budapest. First, targeted
interventions should be implemented in areas with a high bike-crash-severity index, such
as the western–northern side of the city which are highly influenced by bike crashes due to
the higher number of bus lines and stops in these areas. Traffic calming or bike lanes could
reduce bike crashes in these areas. Additionally, Margit Island and surrounding zones,
which are popular attraction areas of the city and have a high bike-crash-severity index,
need policies to mitigate bike crashes as far as possible. For example, the installation of
dedicated bike lanes or the implementation of speed limits could reduce the likelihood
of bike crashes occurring in these areas. It is important to note that the coefficients of
the statistically significant variables in the study exhibit heterogeneity, meaning that the
relationships between the variables and bike-crash-severity index vary across the study
area. For example, the relationship between traffic signals and bike crashes is positive
in the inner areas of the city and negative in the suburbs (eastern–southern side). More
consideration should be given to this side regarding the tram network and recreational
areas. Therefore, it is necessary to take into account the spatial variability of the coefficients
when developing policies to improve bike safety in the study area. Thus, the interventions
should be implemented in areas with a high bike-crash-severity index and with a positive
relationship between the variable and bike crashes, while areas with a negative relationship
may need policies that maintain the existing infrastructure or expand it, with caution.
The main limitation of our study is that we did not consider bike traffic volume or road
intersections characteristics due to the lack of such data availability.

Author Contributions: Conceptualization, A.J. and B.C.; methodology, A.J.; software, A.J.; validation,
A.J. and B.C.; formal analysis, A.J.; writing—original draft preparation, A.J.; writing—review and
editing, A.J. and B.C.; visualization, A.J.; supervision, B.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.



Safety 2023, 9, 60 15 of 17

Institutional Review Board Statement: Ethical review and approval were waived for this study
by the Vice Dean of the Transportation and Vehicle Engineering Faculty, the Discipline Committee
of Budapest University of Technology and Economics, the Ethics Committee of Szeged University,
and the Hungarian Medical Research Council that the research falls within a category where it was
deemed exempt from requiring ethical approval. The study was conducted in accordance with the
Declaration of Helsinki. Furthermore, and ethical approval for this study is not required in Hungary
based on CLIVth Health Act of 1997—Chapter VIII, Section 157 since participants were neither
subjected to interventions nor were they imposed by a code of conduct which would be protected by
the Hungarian Medical Research Council. Data are treated confidentially, and individuals could not
be identified from published data.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank BKK for providing the data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Heinen, E.; Buehler, R. Bicycle parking: A systematic review of scientific literature on parking behaviour, parking preferences,

and their influence on cycling and travel behaviour. Transp. Rev. 2019, 39, 630–656. [CrossRef]
2. Clayton, W.; Musselwhite, C. Exploring changes to cycle infrastructure to improve the experience of cycling for families. J. Transp.

Geogr. 2013, 33, 54–61. [CrossRef]
3. Jaber, A.; Csonka, B. Investigating the temporal differences among bike-sharing users through comparative analysis based on

count, time series, and data mining models. Alex. Eng. J. 2023, 77, 1–13. [CrossRef]
4. Jaber, A.; Al-Sahili, K. Severity of Pedestrian Crashes in Developing Countries: Analysis and Comparisons Using Decision Tree

Techniques. SAE Int. J. Transp. Saf. 2023, 11, 1–14. [CrossRef]
5. Abbasi, E.; Li, Y. A Comprehensive Review of Driver’s Attention and the Evaluation Methods. CRPASE Trans. Ind. Eng. 2021,

7, 2392. [CrossRef]
6. Zahabi, S.A.; Strauss, J.; Manaugh, K.; Miranda-Moreno, L.F. Estimating Potential Effect of Speed Limits, Built Environment, and

Other Factors on Severity of Pedestrian and Cyclist Injuries in Crashes. Transp. Res. Rec. J. Transp. Res. Board 2011, 2247, 81–90.
[CrossRef]

7. Chen, P. Built environment factors in explaining the automobile-involved bicycle crash frequencies: A spatial statistic approach.
Saf. Sci. 2015, 79, 336–343. [CrossRef]

8. Cho, G.; Rodríguez, D.A.; Khattak, A.J. The role of the built environment in explaining relationships between perceived and
actual pedestrian and bicyclist safety. Accid. Anal. Prev. 2009, 41, 692–702. [CrossRef]

9. Aldred, R.; Goodman, A.; Gulliver, J.; Woodcock, J. Cycling injury risk in London: A case-control study exploring the impact
of cycle volumes, motor vehicle volumes, and road characteristics including speed limits. Accid. Anal. Prev. 2018, 117, 75–84.
[CrossRef]

10. Kim, J.-K.; Kim, S.; Ulfarsson, G.F.; Porrello, L.A. Bicyclist injury severities in bicycle–motor vehicle accidents. Accid. Anal. Prev.
2007, 39, 238–251. [CrossRef]

11. Jaber, A.; Juhász, J.; Csonka, B. An Analysis of Factors Affecting the Severity of Cycling Crashes using Binary Regression Model.
Sustainability 2021, 13, 6945. [CrossRef]

12. Medeiros, R.M.; Bojic, I.; Jammot-Paillet, Q. Spatiotemporal Variation in Bicycle Road Crashes and Traffic Volume in Berlin:
Implications for Future Research, Planning, and Network Design. Future Transp. 2021, 1, 686–706. [CrossRef]

13. Chen, Y.; He, K.; Deveci, M.; Coffman, D. Health impacts of bike sharing system—A case study of Shanghai. J. Transp. Health
2023, 30, 101611. [CrossRef]

14. Feizizadeh, B.; Omarzadeh, D.; Sharifi, A.; Rahmani, A.; Lakes, T.; Blaschke, T. A GIS-Based Spatiotemporal Modelling of Urban
Traffic Accidents in Tabriz City during the COVID-19 Pandemic. Sustainability 2022, 14, 7468. [CrossRef]
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