Next Issue
Volume 2, March
 
 
From the start of 2016, the journal uses article numbers instead of page numbers to identify articles. If you are required to add page numbers to a citation, you can do with using a colon in the format [article number]:1–[last page], e.g. 10:1–20.

Biomimetics, Volume 1, Issue 1 (December 2016) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
724 KiB  
Article
A Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces
by Carmine Putignano, Wolf B. Dapp and Martin H. Müser
Biomimetics 2016, 1(1), 7; https://doi.org/10.3390/biomimetics1010007 - 27 Oct 2016
Cited by 3 | Viewed by 4627
Abstract
Adhesion of biological systems is often made possible through thin elastic layers, such as human skin. To address the question of when a layer is sufficiently thin to become adhesive, we extended Green’s function molecular dynamics (GFMD) to account for the finite thickness [...] Read more.
Adhesion of biological systems is often made possible through thin elastic layers, such as human skin. To address the question of when a layer is sufficiently thin to become adhesive, we extended Green’s function molecular dynamics (GFMD) to account for the finite thickness of an elastic body that is supported by a fluid foundation. We observed that thin layers can much better accommodate rough counterfaces than thick structures. As a result, the contact area is enlarged, in particular, when the width of the layer w approaches or even falls below the short-wavelength cutoff λ s of the surface spectra. In the latter case, the proportionality coefficient between area and load scales is ( w / λ s ) 3 , which is consistent with Persson’s contact mechanics theory. Full article
(This article belongs to the Special Issue Micro- and Nano-Structured Bio-Inspired Surfaces)
Show Figures

Figure 1

852 KiB  
Communication
Mimicking Dolphins to Produce Ring Bubbles in Water
by Philippe Lesage, Mohammed Kemiha, Souhila Poncin, Noël Midoux and Huai Z. Li
Biomimetics 2016, 1(1), 6; https://doi.org/10.3390/biomimetics1010006 - 07 Sep 2016
Cited by 2 | Viewed by 6772
Abstract
Several studies report that dolphins, either captive or wild, can expel air from their blowhole to form ring bubbles. By means of an experimental setup consisting of an orifice coupled to a computer-controlled solenoid valve to simulate the dolphin’s blowhole and a vessel [...] Read more.
Several studies report that dolphins, either captive or wild, can expel air from their blowhole to form ring bubbles. By means of an experimental setup consisting of an orifice coupled to a computer-controlled solenoid valve to simulate the dolphin’s blowhole and a vessel as the lungs, we examined the formation mechanism of a ring bubble under varying experimental conditions. With a better record than the most talented dolphin, we show that two aspects were demonstrated as essential to the successful generation of a ring bubble in water: the valve’s opening duration, and the pressure inside the vessel. The present findings suggest that during ring bubble production, dolphins are likely to anticipate their action by both adjusting a suitable air pressure inside their lungs and controlling their muscular flap for an adequate opening timing of their blowhole. This could provide some evidence in favour of suggested cetaceans’ self-control capacities. Full article
Show Figures

Figure 1

4250 KiB  
Article
Emergent Behaviors in a Bio-Inspired Platform Controlled by a Physical Cellular Automata Cluster
by Tareq Assaf, Richard Mayne, Andrew Adamatzky and Chris Melhuish
Biomimetics 2016, 1(1), 5; https://doi.org/10.3390/biomimetics1010005 - 31 Aug 2016
Cited by 6 | Viewed by 4128
Abstract
This work illustrates behavior patterns and trajectories of a bio-inspired artificial platform induced by a cellular automata (CA)-based control strategy. The platform embeds both CA control as physical electronic architecture and a distributed hardware layer as effectors. In this work, we test both [...] Read more.
This work illustrates behavior patterns and trajectories of a bio-inspired artificial platform induced by a cellular automata (CA)-based control strategy. The platform embeds both CA control as physical electronic architecture and a distributed hardware layer as effectors. In this work, we test both the functionality of the novel hardware’s components as well as the device’s capabilities in locomotion tasks. We also observe the trajectories and patterns emerging from different initial states of the CA excitation and hardware configurations. Two main result sets emerge from this study: the first set illustrates different trajectories according to different initial excitation of the physical CA controller layer. The second set suggests the potential of the developed platform for generating complex patterns of control, as well as indicating emergent characteristics similar to those common to morphological computation approaches in generating localized perturbations without affecting or notifying the central controller. Full article
Show Figures

Figure 1

1622 KiB  
Review
Vibrations and Spatial Patterns Change Effective Wetting Properties of Superhydrophobic and Regular Membranes
by Rahul Ramachandran and Michael Nosonovsky
Biomimetics 2016, 1(1), 4; https://doi.org/10.3390/biomimetics1010004 - 04 Aug 2016
Cited by 6 | Viewed by 5390
Abstract
Small-amplitude fast vibrations and small surface micropatterns affect properties of various systems involving wetting, such as superhydrophobic surfaces and membranes. We review a mathematical method of averaging the effect of small spatial and temporal patterns. For small fast vibrations, this method is known [...] Read more.
Small-amplitude fast vibrations and small surface micropatterns affect properties of various systems involving wetting, such as superhydrophobic surfaces and membranes. We review a mathematical method of averaging the effect of small spatial and temporal patterns. For small fast vibrations, this method is known as the method of separation of motions. The vibrations are substituted by effective force or energy terms, leading to vibration-induced phase control. A similar averaging method can be applied to surface micropatterns leading surface texture-induced phase control. We argue that the method provides a framework that allows studying such effects typical to biomimetic surfaces, such as superhydrophobicity, membrane penetration and others. Patterns and vibration can effectively jam holes and pores in vessels with liquid, separate multi-phase flow, change membrane properties, result in propulsion, and lead to many other multiscale, non-linear effects. Here, we discuss the potential application of these effects to novel superhydrophobic membranes. Full article
(This article belongs to the Special Issue Micro- and Nano-Structured Bio-Inspired Surfaces)
Show Figures

Graphical abstract

851 KiB  
Article
A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes
by Luciano Afferante, Lars Heepe, Kirstin Casdorff, Stanislav N. Gorb and Giuseppe Carbone
Biomimetics 2016, 1(1), 3; https://doi.org/10.3390/biomimetics1010003 - 19 Apr 2016
Cited by 7 | Viewed by 4749
Abstract
Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be [...] Read more.
Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive for the development of devices with controllable adhesive properties. In this paper, we present a theory describing the adhesive behavior of an artificial system consisting of an inflatable membrane clamped to a metallic cylinder and filled with air. In such a system, by controlling the internal pressure acting on the membrane, it is possible to modulate the adhesive strength. In particular, an increase of the internal pressure and, hence, the curvature of the membrane, results in a decrease of the pull-off force. Results predicted by the theoretical model are in good agreement with experimental data. The model explains the apparent contradictory results observed for the thick membrane with zero curvature. In fact, in this case, large pull-off forces should be expected, but zero values are measured due to an initial small misalignment between indenter and membrane, which is not possible to control with precision during the experiments. The present model might help to achieve a better understanding of the adhesion behavior of biological systems and of the fingertips that, in a broad sense, may be regarded as shell-like structures. Full article
(This article belongs to the Special Issue Micro- and Nano-Structured Bio-Inspired Surfaces)
Show Figures

Graphical abstract

1817 KiB  
Article
Switchable Adhesion Surfaces with Enhanced Performance Against Rough Counterfaces
by Lizbeth O. Prieto-López and John A. Williams
Biomimetics 2016, 1(1), 2; https://doi.org/10.3390/biomimetics1010002 - 25 Feb 2016
Cited by 7 | Viewed by 4646
Abstract
In a recent study, we demonstrated that the pressurization of micro-fluidic features introduced in the subsurface of a soft polymer can be used to actively modify the magnitude of the adhesion to a harder counterface by changing its waviness or long wavelength undulations. [...] Read more.
In a recent study, we demonstrated that the pressurization of micro-fluidic features introduced in the subsurface of a soft polymer can be used to actively modify the magnitude of the adhesion to a harder counterface by changing its waviness or long wavelength undulations. In that case, both contacting surfaces had very smooth finishes with root-mean-square roughnesses of less than 20 nm. These values are far from those of many engineering surfaces, which usually have a naturally occurring roughness of between ten and a hundred times this value. In this work, we demonstrate that appropriate surface features, specifically relatively slender “fibrils”, can enhance the ability of a such a soft surface to adhere to a hard, but macroscopically rough, counterface, while still maintaining the possibility of switching the adhesion force from one level to another. Conversely, stiffer more conical surface features can suppress adhesion even against a smooth counterface. Examples of each form of topography can be found in the natural world. Full article
(This article belongs to the Special Issue Micro- and Nano-Structured Bio-Inspired Surfaces)
Show Figures

Graphical abstract

139 KiB  
Editorial
Welcome to the New Journal Biomimetics
by Franck Vazquez
Biomimetics 2016, 1(1), 1; https://doi.org/10.3390/biomimetics1010001 - 25 Feb 2016
Cited by 1 | Viewed by 3210
Abstract
Over geological time and through natural selection, living organisms have evolved specific organs, structures and materials to perform specific functions and allow them to survive and thrive in their environment.[...] Full article
Next Issue
Back to TopTop