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Abstract: Natural phenomena such as insect migration and the thermal soaring of birds in turbulent
environments demonstrate animals’ abilities to exploit complex flow structures without knowledge
of global velocity profiles. Similar energy-harvesting features can be observed in other natural
phenomena such as particle transport in turbulent fluids. This paper presents a new feedback control
approach inspired by experimental studies on particle transport that have recently illuminated
particles’ ability to traverse homogeneous turbulence through the so-called fast-tracking effect. While
in nature fast tracking is observed only in particles with inertial characteristics that match the
flow parameters, the new fast-tracking feedback control approach presented in this paper employs
available propulsion and actuation to allow the vehicle to respond to the surrounding flow in the
same manner as ideal fast-tracking particles would. The resulting fast-tracking closed-loop controlled
vehicle is then able to leverage homogeneous turbulent flow structures, such as sweeping eddies, to
reduce travel time and energy consumption. The fast-tracking approach is shown to significantly
outperform existing optimal control solutions, such as linear quadratic regulator and bang-bang
control, and to be robust to changes in the vehicle characteristics and/or turbulent flow parameters.

Keywords: flight control; turbulent flow; fast-tracking effect

1. Introduction

Animals such as soaring birds, migrating insects, and swimming fish can traverse
turbulent flows efficiently by taking advantage of approximately stationary flow struc-
tures [1–6]. Birds such as eagles and storks with large wing spans and surface areas are able
to detect and exploit rising thermals or shear flows to generate lift and therefore save energy
for long-distance flight [7–9]. Migrating insects can adaptively change their headings to
harvest energy from atmospheric structures and motions based on their real-time mea-
surements from wind-sensitive hairs and antennas [10–13]. Fish are found to be capable
of detecting their surrounding flow features using the lateral line flow sensory system,
and learn to adjust their swimming speed and body undulation while traversing turbulent
water currents [14–17]. Many of these energy-harvesting features discovered in animal
flyers and swimmers have also been observed in the characteristic motions of particles
and bubbles carried by turbulent flows [18–21], which have inspired the new flow-aided
air-vehicle feedback control design presented in this paper.

There is significant precedent for tackling air-vehicle navigation and control problems
in strong but constant winds [22–24] and thermals [25]. Despite the prevalence of turbu-
lence, its impact on locomotion, and the potential inherent in its energetic yet organized
internal structure [20,26], most existing approaches either treat wind effects as disturbances
to be rejected or require global knowledge of the entire wind velocity field [27,28]. This
global knowledge may be acquired through learning [29–32] or with environmental pre-
diction, modeling, and forecasting [33]. For instance, in [25] global knowledge is acquired
by simulating turbulent thermals similar to those arising in the atmospheric boundary
layer, and by using model-free reinforcement-learning algorithms to train gliders to soar.
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Besides requiring prior training, this approach generates more conservative policies than
those observed in piloted gliders, and requires gathering information about the fluctuat-
ing flow while simultaneously ascending in it. Another approach is to exploit globally
known flow structures produced by environmental prediction and forecasting algorithms
to generate optimal vehicle trajectories using methods such as mathematical programming,
differential evolution, or Lagrangian coherent structures (LCSs) [33–35]. While this ap-
proach is useful for underwater vehicles because ocean currents may be predicted to some
extent using oceanographic modeling and prediction tools [36–41], it is less suited to air
vehicles that must navigate rapidly changing winds without knowledge of global turbulent
structures [42–44].

The process of particle transport in turbulence demonstrates that under certain con-
ditions inertial particulates and droplets move quickly through turbulent flows such as
turbulent air, water, or flames, without global knowledge of the velocity field [21,45–47].
The fast-tracking effect is the phenomenon by which inertial particles in turbulent flows
exhibit an average settling velocity that is larger in turbulence than in still air [18,48].
Fast tracking of particles and droplets has been observed and verified in both physical
experiments [48,49], and direct numerical simulations (DNS) of the gravitational settling of
inertial particles in complex flow fields, including cellular flow fields [18], Gaussian random
flow fields [50], and homogeneous isotropic turbulence [49,51]. Toward the exploitation of
this phenomenon, Ref. [21] analyzes theoretically the energetics of idealized fast-tracking
flight vehicles that make only local, instantaneous measurements, revealing an extended
parameter regime in which turbulence can decrease flight time or energy consumption
in principle.

This paper presents a new feedback control approach inspired by turbulent particle
transport theory [21] that is able to reproduce fast tracking in air vehicles traversing turbu-
lent flow fields. By viewing the particle dynamics as the ideal response to the surrounding
flow, implicit model following (IMF) can be used to design a fast-tracking control (FTC) sys-
tem that, by virtue of the onboard propulsion and actuation, induces the vehicle to behave
like a particle in the closed loop. As a result, the vehicle flies within advantageous tailwinds
more often than with existing control methods. The vehicle also avoids adverse headwinds
automatically, thereby reducing the energy and time required to traverse a turbulent flow,
and it does so without access to global flow information. The energy-harvesting potential of
the new FTC control approach is demonstrated through two benchmark control problems
known as the minimum-energy and minimum-time problems. The FTC-controlled vehicle
performance is compared to two optimal control solutions obtained using linear-quadratic
regulator (LQR) and bang-bang control (BBC) theories. The LQR solution to the minimum-
energy problem is derived by using information about the flow field to make the vehicle
reach and maintain a desired steady-state velocity using minimum control effort. The BBC
solution to the minimum-time problem is derived by making the vehicle reach the final
desired position in minimum time in still fluid.

Although the FTC approach only requires instantaneous knowledge of vehicle state
and local flow, which are easily obtained onboard, it significantly outperforms both LQR
and BBC designs. This general approach to flow-aided feedback control can also be applied
to other vehicles including fixed- or flapping-wing aircraft [52,53], rotorcraft, and neutrally
buoyant vehicles such as submarines or balloons, and to non-stationary flow structures
such as thermal updrafts or mean shear [1,54]. The primary advantage of the fast-tracking
approach over existing methods is that unsteady turbulent structures can be leveraged
without relying on any prediction of the velocity field. In fact, by drawing inspiration from
nature, the FTC design only requires approximate knowledge of a few key flow parameters,
such as the mean velocity, the typical vortex length scale, and the typical vortex timescale,
which can be easily estimated onboard, as shown in [55]. Extensive numerical simulations
show that an air vehicle using FTC follows the ideal response of the fast-tracking particle
with zero tracking error, regardless of its true inertial characteristics. As a result, the FTC
system increases the average horizontal velocity of the vehicle, maintains the desired
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steady-state velocity with less control effort than the LQR solution, and reaches a desired
horizontal position before the BBC solution.

This paper is organized as follows. Section 2 reviews relevant background from
transport theory on the fast-tracking effect and cellular flows used here for illustrative
purposes. The fast-tracking feedback-control design problem is formulated in Section 3,
along with its basic assumptions. The FTC control design solution derived using implicit
model following is presented in Section 4. In Section 5, the FTC energy-harvesting ability
is demonstrated by comparing its performance to that of the optimal LQR solution on a
benchmark minimum-energy control problem. In Section 6, the FTC time-saving ability
is demonstrated by comparing its performance to that of the optimal BBC solution on a
benchmark minimum-time control problem. Finally, the FTC performance robustness with
respect to the vehicle inertial characteristics and turbulent flow parameters is demonstrated
through dozens of representative case studies in Sections 5 and 6.

2. Background on Transport Theory and the Fast-Tracking Effect

Natural phenomena such as soaring birds exploiting thermal convection [2] and
particles or bubbles in steady vortices [19] demonstrate that turbulent air flows can be
traversed rapidly and efficiently by leveraging local knowledge of approximately stationary
flow structures. In particular, the mechanism known as the “fast-tracking effect” has been
shown to govern the fast and intelligent motion of inertial particles in homogeneous
turbulence [2,49,50,56]. This paper presents an approach for using the fast-tracking particle
dynamic model, known from transport theory, in order to develop high-performance
feedback control laws that can be implemented on autonomous vehicles in turbulent flow
using local wind measurements and classic state estimation algorithms. The approach is
demonstrated for a cellular-flow homogeneous-turbulence model, described in Section 2.2,
which has been shown effective at capturing vortical structures in natural flows relevant to
autonomous vehicles, such as atmospheric circulation [57] and ocean currents [58,59].

2.1. Fast-Tracking Effect

Experimental studies have shown that fast-tracking particles in a turbulent flow field
are preferably thrown out of vortices, toward their downward-sweeping sides (Figure 1a),
through a mechanism that increases the average speed of particles toward the bottom of
the flow [49]. More precisely, the fast-tracking effect causes the mean settling velocity of an
inertial particle traversing a turbulent flow to be increased with respect to the still-fluid
settling velocity [49]. The particle’s mean settling velocity, denoted by v, is the average
falling speed of particles subject to drag and gravitational forces when reaching an average
force balance in a turbulent flow, or,

v =
1

t f − ts

∫ t f

ts
vp(t) dt, (1)

where vp is the particle’s instantaneous velocity, ts is the settling time required for the
velocity to reach and remain within a given error band, and t f is the terminal time [60].
The still-fluid settling velocity, denoted by vg, is the terminal falling speed of a particle
through a still fluid. Therefore, when fast tracking prevails, it can be observed that v > vg.

As shown in [49], fast-tracking particles are characterized by physical characteristics,
such as response time and settling velocity, that “resonate” with those of the turbulent flow,
as reviewed in the remainder of this subsection. Let m and D denote the mass and diameter
of the particle, respectively. Then, when the particle is surrounded by a fluid with dynamic
viscosity µ, its motion is characterized by the inertial response time,

τ , m
3πDµ

(2)
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as shown in [61]. In particular, the inertial response time represents the time required to
reach equilibrium in response to perturbations in surrounding flows. The nature of the
interaction between the particle and the flow depends on τ as well as on the characteristics
of the turbulent flow, namely, the root-mean-square fluid velocity u′, the vortex length scale
l, and the vortex time scale τw ≡ l/u′ [49]. The root-mean-square velocity, u′, is defined as
the standard deviation of the instantaneous flow velocity, u, such that [62]

u′ =

√
1
T

∫ T

0
[u(t)− ū]2 dt, (3)

where ū is the mean flow velocity over the time interval T.
When the particle’s inertial response time (τ) and the still-fluid settling velocity (vg)

approach the turbulent flow’s vortex time scale (τw) and the root-mean-square velocity
(u′), respectively, the particle’s settling velocity is significantly increased compared to its
still-fluid settling velocity. Recently, this fast-tracking effect has been demonstrated experi-
mentally by co-author Bewley using water droplets settling in air turbulence, as shown by
the data plotted in Figure 1b and taken from [49]. In particular, this study showed that the
(normalized) increase in settling velocity,

4 v̂ , (v− vg)/u′ (4)

is positive whenever the particle undergoes the fast-tracking effect.
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(a) (b) 
Figure 1. (a) Particles are swept and, thus, readily accelerated into the downward sweeping sides of 
eddies (blue trajectory) rather than falling straight through turbulence (red trajectory). As a result,
(b) water droplets in turbulent air experience increased settling velocity (4v̂) when the particle 
settling parameter (ηv) is of order one (experimental data taken from [49]).

Consider the dimensionless particle-settling parameter, ηv , vg/u′, which governs 
the onset of fast-tracking observed when ηv is of order one. When ηv << 1 or ηv >> 1, the 
particle’s mean turbulent settling velocity (v) is not enhanced compared to vg. In fact, a 
sharp decline of the settling velocity is observed for large particle settling parameter, ηv, 
due to the development of nonlinearity in drag forces on quickly settling particles. 
Importantly, the normalized increase in settling velocity, 4v̂, is maximum when ηv is of
order one and, therefore, this parameter value can be used as a guiding principle in the
development of a feedback controller that leverages turbulent flow to accelerate the vehicle
similarly to the fast-tracking particle in Figure 1a.

This paper develops a new control approach by viewing the autonomous air vehicle
in a turbulent flow as an inertial point-mass particle driven by a constant horizontal thrust
that can be adjusted so as to match the desired fast-tracking characteristics of the given
turbulent flow. There is considerable precedence for treating vehicles as point masses
for navigation and control purposes, whenever their size is small relative to the vortex
length scale [44,63–69]. Hence, our hypothesis is that by producing a controlled thrust that
modifies the vehicle’s inertial response time to match the vortex time scale, the vehicle may

Figure 1. (a) Particles are swept and, thus, readily accelerated into the downward sweeping sides of
eddies (blue trajectory) rather than falling straight through turbulence (red trajectory). As a result,
(b) water droplets in turbulent air experience increased settling velocity (4v̂) when the particle
settling parameter (ηv) is of order one (experimental data taken from [49]).

Consider the dimensionless particle-settling parameter, ηv , vg/u′, which governs
the onset of fast-tracking observed when ηv is of order one. When ηv << 1 or ηv >> 1,
the particle’s mean turbulent settling velocity (v) is not enhanced compared to vg. In fact,
a sharp decline of the settling velocity is observed for large particle settling parameter,
ηv, due to the development of nonlinearity in drag forces on quickly settling particles.
Importantly, the normalized increase in settling velocity,4v̂, is maximum when ηv is of
order one and, therefore, this parameter value can be used as a guiding principle in the
development of a feedback controller that leverages turbulent flow to accelerate the vehicle
similarly to the fast-tracking particle in Figure 1a.

This paper develops a new control approach by viewing the autonomous air vehicle
in a turbulent flow as an inertial point-mass particle driven by a constant horizontal thrust
that can be adjusted so as to match the desired fast-tracking characteristics of the given
turbulent flow. There is considerable precedence for treating vehicles as point masses
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for navigation and control purposes, whenever their size is small relative to the vortex
length scale [44,63–69]. Hence, our hypothesis is that by producing a controlled thrust that
modifies the vehicle’s inertial response time to match the vortex time scale, the vehicle may
be accelerated through the turbulent flow similarly to the fast-tracking effect (Figure 1a).
Under these conditions, we expect the vehicle to be preferentially swept toward the sides
of vortices pushing in the direction of motion, and to be accelerated along a fast-tracking
trajectory, as shown by the simulated comparison in next section. By taking advantage of
beneficial flow structures, the vehicle may achieve a larger average terminal horizontal
velocity and travel a longer distance over the same amount of time when compared to
other (inefficient) trajectories.

2.2. Cellular Flow Fields

For illustration purposes, the control approach presented in this paper is demonstrated
for vehicles traversing a two-dimensional cellular flow field with known characteristic
parameters. However, the approach can be extended to other flow structures for which
fast-tracking results are also available [49–51]. Cellular flow is an idealized model of
homogeneous turbulent flow that contains a periodic array of eddies described by the
vortex length scale [18]. As shown in Figure 2, vortices located in adjacent cells swirl in
opposite directions. The cellular flow field is chosen here because it captures essential
features of fast-tracking phenomena observed in fully turbulent flows, with some important
exceptions described in [21,49,50]. Furthermore, cellular flow represents the best-case
scenario for a vehicle in turbulence in the sense that there exist paths for which the flow
always provides a tailwind and never a headwind. Finally, by demonstrating the novel
fast-tracking control approach in cellular flow, the results may be applicable to a broad
range of natural flow phenomena, including but not limited to Langmuir cells in water
bodies [58,59] and convective cellular motions in clouds [57].

Figure 2. The trajectories of two particles with different inertial response times (τ) are compared by
allowing them to travel for the same amount of time through a cellular flow field with vortex time
scale (τw) after they are both released at the dashed black line (see [70] for animation).

Given a characteristic flow velocity U0, the horizontal and vertical components of the
two-dimensional cellular flow velocity (yellow vectors in Figure 2) can be modeled as,

wx = U0 sin(
πx
Lw

) cos(
πy
Lw

) (5a)

wy = −U0 cos(
πx
Lw

) sin(
πy
Lw

) (5b)

respectively, where x and y are the coordinates in the plane, and Lw is a characteristic
parameter that represents the distance between two adjacent vortices and is known as the
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vortex length scale. Together with the U0, the vortex length scale, Lw, determines the vortex
time scale,

τw ≡
Lw

U0
. (6)

which represents the vortex turnover time.
According to the fast-tracking phenomenon, a particle traversing a cellular flow field

makes use of the flow structure to travel faster through it when its inertial response time,
τ, is approximately equal to the vortex time scale defined in (6). As illustrated by the
simulated blue trajectory in Figure 2, a fast-tracking particle reaches a higher mean settling
velocity. Hence, when compared to particles characterized by very different mass and
diameter (e.g., red dashed line in Figure 2), a fast-tracking particle travels a much greater
(horizontal) distance over the same period of time.

Inspired by these natural phenomenon, this paper develops a feedback control ap-
proach devised to allow air vehicles to make use of the eddies to traverse the cellular
flow efficiently. By using an implicit model following approach, knowledge of the vortex
time scale is used to develop a feedback control law that leverages the fast-tracking effect,
irrespective of the vehicle’s mass and size. In the proposed approach, the gravitational
force acting on the particle is replaced by a controllable horizontal thrust force (Figure 2)
acting on the vehicle by virtue of an onboard propulsion mechanism, such as a propeller or
jet engine.

3. Problem Formulation and Assumptions

Although the problems of guidance and control in turbulence have been investigated
extensively to date [71–77], previous approaches have focused on attenuating the influ-
ence of external wind forces and moments by methods known as disturbance rejection.
Besides being applicable only for small disturbances with known and well-posed statistics,
such as zero mean and Gaussian characteristics, previous approaches sought to eliminate
wind effects, rather than to exploit them as do natural flyers [1,2,19]. As in the extensive
literature on trajectory planning for fixed-wing aircraft [44,66,67] and quadcopters [68,69],
let the air vehicle be approximated by a point mass and denote its mass by mv and its diam-
eter by Dv. The point-mass assumption is effective in practice when the vehicle geometry
can be ignored in obstacle avoidance problems, and the vehicle size is much smaller than
the vortex length scale, or Dv << Lw. Typically, the size of small unmanned aerial vehicles
(UAVs) spans from around 15 cm to 2 m, and the length scale of the energetic turbulent
eddies in the atmosphere is about 100 m [62,78,79]. Furthermore, as illustrated in Figure 2,
the vehicle propelled by a thrust force must traverse a cellular-flow wind field with vortex
length scale, Lw, and time scale, τw. For simplicity, the lift force is assumed appropriate
for maintaining the vehicle aloft or, alternatively, the vehicle may be assumed neutrally
buoyant [21]. Additionally, it is assumed by the same rationale that the effects of the vehicle
on the surrounding flow are negligible.

Because the vehicle may encounter different flow fields during its operations and its
physical characteristics (mass and diameter) are fixed a priori, its inertial response time, τv,
may not always be approximately equal to τw. Therefore, in general, the vehicle may not
experience the fast-tracking effect. The problem considered in this paper is to develop a
feedback control law that modifies the vehicle’s inertial response time in the closed loop,
so as to achieve fast tracking by virtue of the controllable thrust forces. It is assumed
that the fluid flow dynamic viscosity, µ, and time scale, τw, are either known a priori or
estimated from wind measurements online, for example, using the sparse identification of
nonlinear dynamics (SINDy) [55,80]. The vehicle physical parameters are lumped into a
constant vector, θ = [mv Dv]T , and the onboard propulsion produces a constant horizontal
thrust, Tx = mvax, as well as acceleration-based control inputs, u = [ux uy]T . The vehicle
acceleration produced by the constant horizontal thrust is denoted by a = [ax 0]T . Then,
from transport theory [50], the two-dimensional vehicle dynamics subject to a cellular flow
can be modeled by a linear parameter-dependent system,
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ẋ(t) = A(θ, µ)x(t) + B(θ, µ)u(t) + L(θ, µ)w(t) + a, x(t0) = x0, (7)

where the state vector, x = [vx vy]T , consists of the x- and y-components of the vehicle
velocity in inertial frame, and the wind flow velocity vector, denoted by w = [wx wy]T , is
assumed known from onboard measurements. The initial conditions, x0, are known from
the vehicle. The state-space matrices are given by,

A(θ, µ) =

[
− 3πDvµ

mv
0

0 − 3πDvµ
mv

]
; B(θ, µ) = I2×2; L(θ, µ) =

[
3πDvµ

mv
0

0 3πDvµ
mv

]
(8)

where it is assumed that the vehicle is subject to a linear Stokes drag force [81]. This assump-
tion is justified when the flow is incompressible and Dv << Lw, and holds approximately
for air vehicles such as fixed-wing aircraft and rotorcraft in high Reynolds number regimes
under certain conditions [20,82–84]. A state-feedback controller is developed, assuming
that the vehicle state is fully observable and estimated with zero error for simplicity [85].
Furthermore, a constant horizontal thrust is provided to obey (2), such that

Tx = mvax = 3πµDvτvax (9)

This paper seeks to develop a feedback control system inspired by the natural transport
phenomena described in Section 2.1, such that, in the closed loop, the vehicle behaves like
a particle undergoing the fast-tracking effect. The desired automatic feedback control law
must provide the vehicle inputs u(t), in (7), continuously over time, so as to exploit the
energy and organized structure of the eddies in the cellular flow field. This novel control
approach is demonstrated by solving the following benchmark control problems:

(1) Minimum-energy problem: determine control inputs, u(t), so as to reach and main-
tain a desired steady-state velocity through the cellular flow with minimum control effort.

(2) Minimum-time problem: determine control inputs, u(t), so as to travel a desired
distance in the horizontal direction through the cellular flow in minimum time.

The new FTC control approach is derived using implicit model following in the next
section. Subsequently, its performance is demonstrated in Sections 5 and 6, and compared
to two classic optimal solutions obtained via linear quadratic regulation and bang-bang
control, respectively. Although the approach is demonstrated on the simplified air vehicle
model in (7), the methods proposed in this paper can be easily extended to more detailed
vehicle dynamic models, provided they too may be approximated by linear parameter
dependent systems.

4. FTC Control Design via Implicit Model Following (IMF)

The FTC feedback control design is developed by specifying an implicit model based
on the ideal response of an efficient fast-tracking particle in the loop. While most of the
existing control methods seek to compensate for or reject wind effects, the FTC control
approach seeks to make use of organized cellular flow structures in order to benefit from
them in terms of speed and energy consumption. Because the real geometry and location of
the eddies are unknown to the vehicle, they may not be utilized for trajectory optimization.
Rather, in an effort to mimic natural transport phenomena, the dynamic model of an ideal
fast-tracking particle is first obtained from the known parameters of the cellular flow (Lw
and τw), as described in Section 2.2. Subsequently, a state-feedback control law is obtained
using implicit model following (IMF) [86], such that the closed-loop vehicle dynamics may
follow the ideal fast-tracking particle model as closely as possible.
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The IMF approach, originally proposed in [86], leverages an implicit dynamic model
to obtain a control system that conforms to an ideal behavior. Once an ideal dynamic model
with state, xm ∈ Rn, is formulated, the IMF control law is obtained by minimizing the error
between the time derivatives of the vehicle state, x ∈ Rn, and those of the model, i.e.:

J =
1
2

∫ t f

t0

[ẋ(t)− ẋm(t)]TQm[ẋ(t)− ẋm(t)] dt, (10)

where the subscript m refers to “model”. The positive definite weighting matrix Qm ∈ Rn×n

can be utilized to specify a desired trade-off between state variables, for example, in order
to account for states’ range and units. The IMF equations and control law are derived in
Section 4.2, based on the fast-tracking particle model presented in the next section.

4.1. Ideal Fast-Tracking Particle Model

As a first step, let us reinterpret the gravitational force acting on an inertial particle as
a constant thrust in the horizontal direction, Txm . With a simple coordinate transformation,
assuming the air flow is incompressible and the particle diameter, Dm, is significantly
smaller than the vortex length scale, Lw, the two-dimensional governing equation for a
spherical inertial particle of mass m subject to a drag force Fd and traveling in a cellular
flow field is

mẋm = Fd + Tm (11)

where xm = [vxm vym ]
T contains the particle velocity in inertial frame, and Tm = [Txm 0]T

denotes constant external thrust. In this ideal model, the inertial particle is subject to a
linear Stokes drag force,

Fd = −3πDmµ(xm −wm) (12)

where wm = [wxm wym ]
T is the flow velocity in inertial frame [81,87]. As explained in

Section 3, the above assumption holds, once again, because it can be assumed that the flow
is incompressible and Dm << Lw [20,82–84]. In spite of all these assumptions, the ideal
particle model presented in this section can well explain many natural particle transport
phenomena, such as water droplets settling in air turbulence [88] and soot formation in
turbulent flames [89].

When the inertial response time of the ideal particle, τm, is approximately equal to
τw, the particle exhibits the fast-tracking effect and naturally follows the most efficient
trajectories inside the cellular flow. From the equations of the particle’s inertial response
time (2) and the particle model (11), the particle dynamics can be expressed as a linear
parameter-dependent system,

ẋm(t) = Am(τm)xm(t) + Lm(τm)wm(t) + am, xm(t0) = x0m , (13)

where am = 1
m Tm = [axm 0]T is the particle acceleration produced by the constant horizontal

thrust, x0m are the particle’s initial conditions, and model state-space matrices, Am and Lm,
depend only on the ideal particle’s inertial response time, τm, which is chosen to match the
vortex time scale. The state-space matrices are given by

Am(τm) =

[
− 1

τm
0

0 − 1
τm

]
; Lm(τm) =

[
1

τm
0

0 1
τm

]
(14)

4.2. Fast-Tracking Controller (FTC) Design

Unlike the ideal particle described in the previous section, in general, the vehicle has
an inertial response time that is not approximately equal to the vortex time scale. Therefore,
a feedback control law can be derived to change the vehicle response in the closed loop
and make it follow the behavior of the ideal particle model, which is implicit in the law
itself. Choose w = wm, and construct a quadratic cost function in the form (10),
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J =
1
2

∫ t f

t0

[ẋ(t)− ẋm(t)]TQm[ẋ(t)− ẋm(t)] dt

=
1
2

∫ t f

t0

[xT(t)Qx(t) + 2xT(t)Mũ(t) + ũT(t)Rũ(t)] dt,
(15)

where ũ = u + ( 1
τv
− 1

τm
)w + a− am, Qm = I2×2, and the weighing matrices are designed

as follows,

Q = (A−Am)
TQm(A−Am)

M = (A−Am)
TQmB

R = BTQmB

(16)

in order to minimize (15).
For the vehicle model shown in Section 3, perfect model following can be achieved

(with zero state error) because the following perfect-model-following criterion is satisfied,

(BBL − In)(A−Am) = 0, (17)

where BL = (BTB)−1BT is the left pseudo-inverse [86]. When the FTC approach is extended
to other vehicle dynamics, the above criterion may not be always satisfied and, hence,
the optimal IMF control law described in [90] can be adopted to minimize the model-
following error. In particular, letting t f approach infinity in (15), the optimal control law
can be obtained in terms of a steady-state gain matrix C(0) such that,

ũ(t) = −C(0)x(t) = −R−1[BTS(0) + MT ]x(t) (18)

where S(0) is the solution of the algebraic Riccati equation (ARE),

[S(0)B + M]R−1[BTS(0) + MT ]−ATS(0)− S(0)A−Q = 0 (19)

In this case, the Riccati matrix solution that guarantees closed-loop asymptotic stability
is S(0) = 02×2, and the corresponding steady-state gain matrix is

C(0) = R−1[BTS(0) + MT ] =

(
1

τm
− 1

τv

)
I2×2 (20)

Hence, under the aforementioned assumptions, the FTC IMF feedback control law is

ũ(t) = −C(0)x(t) = −
(

1
τm
− 1

τv

)
x(t) (21)

which is implemented as the following acceleration-based control inputs onboard the air vehicle,

u(t) = ũ(t)−
(

1
τv
− 1

τm

)
w(t)− a + am =

(
1
τv
− 1

τm

)
[x(t)−w(t)]− a + am (22)

It can be seen that the FTC control law requires only online measurements of the
vehicle state, x, and of the local wind flow field, w, both of which may be estimated
with excellent accuracy onboard many vehicles. As a result, without knowledge of the
global wind profile (or of the precise eddies’ positions and geometries), the FTC-controlled
vehicle finds the most efficient trajectories achievable by the vehicle based on its dynamic
constraints (7).
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5. Minimum-Energy Solutions and Results

The utilization of aerial vehicles, especially small ones, is often limited by the allowed
on-board battery capacity and duration of flight, particularly during rapid and aggressive
maneuvers in extreme windy conditions [21,91,92]. Therefore, energy consumption has
become an essential performance metric for small UAV control design. In this benchmark
minimum-energy control problem, a feedback control law is desired to make the vehicle
reach and maintain a desired steady-state velocity, xr = [vxr vyr ]

T , through the cellular
flow with minimum control effort. For comparison, the desired steady-state velocity xr
is chosen to be the mean settling velocity of the ideal fast-tracking particle. The classic
optimal solution to this problem obtained by linear quadratic regulation will be proposed
in Section 5.1. Then, the performance of FTC will be demonstrated by comparing it with
the classic linear quadratic regulator (LQR) in two different case studies. In practice,
the vehicle’s inertial response time, τv, is not approximately equal to that of the ideal
fast-tracking particle, τm. Therefore, FTC and LQR are implemented and compared for
the control of an air vehicle with τv greater than τm in Section 5.2, and an air vehicle with
τv smaller than τm in Section 5.3, respectively. In the end, based on multiple numerical
simulations, the dependence of the minimum-energy simulation results on the choice of τv
with respect to τm is discussed.

5.1. Comparison with Linear Quadratic Regulator (LQR)

LQR is an optimal solution to the control problem of making the vehicle reach and
maintain a desired steady state velocity. The flow disturbances perpendicular to the desired
steady state velocity are compensated by state feedback control. We first rewrite the
two-dimensional vehicle dynamics (7) in the standard state-space form,

ẋ(t) = Ax(t) + Bū(t), (23)

where ū = u + a + 1
τv

w. Whereas, in the previous section, the cost function (15) was
an integral of the difference between the state derivatives of the air vehicle and the fast-
tracking particle, we construct the cost function as a different integral here that penalizes
both state excursions and control effort for this particular problem,

J =
1
2

∫ t f

t0

[xT(t)Qx(t) + ūT(t)Rū(t)] dt (24)

where Q = R = I2×2. With perfect knowledge of the vehicle state, the desired feedback con-
trol law, ū, can be expressed in terms of the steady-state gain matrix C(0) as t f approaches
infinity such that,

ū(t) = −C(0)x(t) + Krxr

= −R−1BTS(0)x(t) + Krxr
(25)

where S(0) is a solution to the algebraic Riccati equation (ARE),

ATS(0) + S(0)A− S(0)BR−1BTS(0) + Q = 0 (26)

and Kr can be chosen to track the reference xr with zero steady-state error [93],

Kr = −{[A− BC(0)]−1B}−1 (27)

In this case, the Riccati matrix solution that guarantees closed-loop asymptotic stabil-
ity is

S(0) = −
(
− 1

τv
+

√
1
τ2

v
+ 1

)
I2×2 (28)
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Combining (25), (27), and (28), we can obtain the following acceleration-based LQR
feedback control law,

u(t) = ū(t)− a− 1
τv

w(t) = −
(
− 1

τv
+

√
1
τ2

v
+ 1

)
x(t)+

√
1
τ2

v
+ 1 xr− a− 1

τv
w(t) (29)

5.2. FTC Minimum-Energy Case Study 1

In this case study, FTC and LQR are implemented and compared for the control
of a thrust-driven vehicle with τv > τm. In the simulation, the controlled vehicle with
τv = 0.21 s traverses the cellular flow with τw = 0.15 s for 20 s. Additionally, another purely
forward-thrust-driven vehicle with the same τv as the controlled vehicles and an ideal
fast-tracking particle with τm = τw are simulated for comparison. As previously explained
in Section 3, to keep the control cost comparable among different control designs and
case studies, the horizontal thrust in (9) remains unchanged when the vehicle’s inertial
response time changes in different simulations. Therefore, τvax stays the same at 1.5 m/s
here. In this FTC minimum-energy simulation, the fast-tracking particle, the vehicle purely
driven by forward thrust, and FTC-controlled and LQR-controlled vehicles all start from the
origin, and their initial velocities are assumed to be zero. FTC aims to make the air vehicle
follow the ideal response of the fast-tracking particle. The control objective is to make
the air vehicle reach and maintain a desired steady-state velocity, xr = [vxr vyr ]

T , where
vxr = 15.41 m/s and vyr = 0 m/s, through the cellular flow with minimum control effort.

Trajectories of the fast-tracking particle with τm = 0.15 s, and purely thrust-driven,
FTC-controlled, and LQR-controlled vehicles with τv = 0.21 s are compared in Figure 3.
They all start from the origin at the same time, go through a transitional period in the
cellular flow, and travel horizontally in the end. Nevertheless, the LQR-controlled vehicle
travels horizontally without any oscillations, because its vertical velocity maintains zero
all the time to meet the control objective. The trajectory of the FTC-controlled air vehicle
identically overlaps that of the fast-tracking particle, which demonstrates that the FTC-
controlled air vehicle can perfectly follow the fast-tracking particle with zero tracking error.
They both go through a short transitional period at first, and are then swept and, thus,
readily accelerated into the downward sweeping sides of eddies. However, the air vehicle
purely driven by constant horizontal forward thrust deviates a little from the desired
horizontal direction at first, and takes a longer transitional time to adapt to the cellular
flow conditions.

Figure 3. Case study 1: the trajectory comparison of the ideal fast-tracking particle with τm = 0.15 s,
and purely thrust-driven, FTC-controlled, and LQR-controlled vehicles with τv = 0.21 s traversing a
cellular flow with τw = 0.15 s demonstrates that the FTC-controlled vehicle can perfectly follow the
fast-tracking particle with zero tracking error.
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In Figure 4, the velocity time histories of the fast-tracking particle and the purely thrust-
driven, FTC-controlled, and LQR-controlled vehicles are compared. The FTC-controlled
and LQR-controlled air vehicles both meet the control objective of reaching and maintain-
ing a desired steady-state velocity, xr = [vxr vyr ]

T , where vxr = 15.41 m/s and vyr = 0
m/s. With the flow disturbance compensated, the LQR-controlled air vehicle achieves and
maintains the desired steady-state velocity perfectly with zero tracking error, while the
horizontal velocity component, vx, of the FTC-controlled air vehicle oscillates a little around
the desired horizontal steady-state velocity, vxr , due to the periodically changing flow condi-
tions. At the expense of sacrificing the vehicle’s riding comfort, the FTC-controlled vehicle
exploits beneficial flow structures and harvests energy from cellular flows. Additionally,
the LQR-controlled air vehicle reaches vxr faster than the FTC-controlled one. However,
the vehicle purely driven by forward thrust takes a longer transitional time to adapt to the
fluctuating flow conditions. According to Figure 4, the average horizontal velocities of the
LQR-controlled and FTC-controlled air vehicles over the entire period of simulation are
both significantly greater than the vehicle purely driven by forward thrust. Consequently,
both LQR-controlled and FTC-controlled vehicles travel a longer distance horizontally than
the purely thrust-driven vehicle within the same period of time.

Figure 4. Case study 1: the comparison of the velocity time histories of FTC-controlled and LQR-
controlled vehicles shows that they both achieve and maintain the desired steady-state velocities (vxr

and vyr ).
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In this benchmark minimum-energy problem, the objective is to use minimum control
effort. Therefore, the quadratic control usage, given by uTu = u2

x + u2
y, of FTC is compared

to that of LQR in Figure 5. The total control effort of a controller is commonly quantified by
the integral quadratic control usage C, which takes the form,

C =
∫ t f

t0

uT(t)u(t) dt. (30)

In this case study, over the same period from time t0 = 0 s to time t f = 20 s, the in-
tegral quadratic control usage of FTC is C f = 6.71 × 103 m2/s3, while that of LQR is
Cl = 1.33× 105 m2/s3. LQR has a much larger control cost than FTC.

Figure 5. Case study 1: the comparison of the FTC and LQR control cost shows that the FTC-controlled
vehicle meets the control objective with much less control effort than the LQR-controlled one.

To represent the difference of inertial response time between the controlled air vehicle
and the ideal fast-tracking particle, the ratio of inertial response time is defined as

ητ =
τv

τm
(31)

Similarly, to quantify the relative control savings of FTC compared to LQR, the ratio
of total control cost is defined as
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ηc =
Cl
C f

(32)

Therefore, we can obtain that, in case study 1, the ratio of inertial response time is
ητ = 1.40, and the ratio of total control cost is ηc = 19.83.

5.3. FTC Minimum-Energy Case Study 2

In this case study, FTC and LQR are implemented for the control of a thrust-driven
vehicle with τv = 0.075 s < τm. The cellular flow parameters, control objective, and
simulation conditions are all the same as in case study 1. Another purely forward-thrust-
driven vehicle with τv = 0.075 s and an ideal particle are also simulated for comparison.
To keep the control cost comparable among different cases, the horizontal thrust Tx, or τvax
equivalently, remains the same as in case study 1. Trajectories of the ideal particle and
purely thrust-driven, FTC-controlled, and LQR-controlled vehicles are compared in Figure 6.
Similarly to case study 1, the FTC-controlled vehicle can perfectly follow the ideal particle
with zero tracking error.

Figure 6. Case study 2: the trajectory comparison of the ideal fast-tracking particle with τm = 0.15 s,
and purely thrust-driven, FTC-controlled, and LQR-controlled vehicles with τv = 0.075 s traversing a
cellular flow with τw = 0.15 s.

In Figure 7, the horizontal velocity and quadratic control usage of the two controlled
vehicles are compared. They both meet the velocity tracking control objective. Additionally,
the LQR-controlled vehicle reaches vxr faster than the FTC-controlled one, and its settling
time is less than half of the settling time in case study 1. The purely forward-thrust-driven
vehicle behaves similarly in each case study with a much longer settling time and smaller
average settling velocity compared to the controlled vehicles. Over the same period of
simulation, the integral quadratic control usage of FTC is C f = 8.22× 104 m2/s3, while
that of LQR is Cl = 1.04× 106 m2/s3. Therefore, LQR has a larger control cost than FTC.
Accordingly, the ratio of inertial response time is ητ = 0.5, and the ratio of total control cost
is ηc = 12.69 in this case.
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Figure 7. Case study 2: the comparison of the horizontal velocity of the ideal particle and purely
thrust-driven, FTC-controlled, and LQR-controlled vehicles and the comparison of the FTC and LQR
control cost show that the two controlled vehicles both achieve and maintain the desired horizontal
steady-state velocity, but the FTC-controlled vehicle costs much less control effort.

Through multiple numerical simulations with the ratio of inertial response time ητ

ranging from 0.01 to 500, we find that there is a trade-off between the control savings of
FTC and the difference of inertial response time between the controlled vehicle and the
fast-tracking particle. The larger the difference of inertial response time is, the more FTC
control effort will be cost to make the vehicle follow the ideal response of the fast-tracking
particle. In Figure 8, the polynomial fits to the circular and cross data points illustrate how
the relative total control cost, ηc = Cl/C f , changes as a function of the normalized inertial
response time of the vehicle, ητ = τv/τm. The relative total control cost, ηc, approaches
infinity when ητ = 1, because the total control cost of FTC is zero when the inertial response
time of the vehicle is equal to that of the fast-tracking particle. On the left side of the vertical
asymptote at ητ = 1, all the red cross markers correspond to simulations where τv < τm,
and the yellow one represents case study 2. In this area, the relative total control cost, ηc,
is enhanced as the normalized inertial response time, ητ , grows. On the right side of the
vertical asymptote at ητ = 1, all the blue circular markers correspond to simulations where
τv > τm, and the yellow one represents case study 1. Conversely, in this area, ηc decreases
as ητ grows. Moreover, there exists two horizontal asymptotes for the polynomial fits: ηc
approaches 1.50× 10−3 as ητ increases, and approaches 3.19 as ητ decreases. In addition,
the logarithms of the two ratios ηc and ητ are approximately first-order linearly dependent
with each other when ητ is roughly within the range of 2 to 10. All the data points located in
the grey shaded area above the horizontal dashed line at ηc = 1 correspond to simulations
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in which the FTC-controlled air vehicle achieves the control objective with less control effort
than the LQR-controlled one, while those below the dashed line at ηc = 1 correspond to
simulations where FTC costs more control effort than LQR. The critical point where ηc = 1
locates approximately at η∗τ ≈ 2.80. Therefore, below this critical inertial response time
ratio, the FTC-controlled vehicle uses less energy to traverse the cellular flow compared
with the LQR-controlled one.

Figure 8. Log-log plot showing the relative total control cost (ηc) as a function of the normalized
inertial response time of the vehicle (ητ) for τm = τw. Circular and cross markers represent simulations
corresponding to different ητ , and the black lines are polynomial fits to these data points. Yellow
markers represent the two simulations chosen as case studies in this section. Data points located in
the grey shaded area correspond to simulations in which FTC costs less control effort than LQR.

6. Minimum-Time Solutions and Results

As UAVs have been widely used, there is an increasing need to extend the range
and endurance of UAV flight in many applications with extremely strict time limitations,
including autonomous medical delivery and emergency response [94,95]. In addition to
energy consumption, the cost of time has become another essential factor to consider for
UAV path planning and control. In this benchmark minimum-time control problem, we aim
to find an optimal control law for the air vehicle with τv, such that the controlled vehicle
can travel a desired distance in the horizontal direction, xd, through the cellular flow with
τw = τm within a minimum time. The optimal solution to this problem, a bang-bang
controller (BBC), will be proposed in Section 6.1. Subsequently, the performance of FTC will
be demonstrated by comparing it with the optimal BBC solution in Section 6.2. In the end,
based on multiple numerical simulations, the dependence of the minimum-time simulation
results on the choice of τv with respect to τm is discussed.

6.1. Comparison with Bang-Bang Controller (BBC)

In still fluid, bang-bang control, which requires full use of available control effort,
is the optimal solution to the minimum-time problem when the control is bounded [86].
In this paper, since the horizontal and vertical motions of the vehicle are decoupled, we first
consider the horizontal vehicle dynamics and ignore the flow disturbance for simplicity.
Additionally, the vertical control input, uy, is assumed to be zero. Assuming that the vehicle
state is represented by x = [x vx]T , the horizontal vehicle dynamics can be expressed as
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[
ẋ
v̇x

]
=

[
0 1
0 −1/τ

][
x
vx

]
+

[
0
1

]
ûx (33)

where ûx = ux + ax, and the horizontal control input is assumed to be bounded,

ux = ux(t), −u0 6 ux 6 u0. (34)

To minimize the time to reach the desired horizontal position, xd, the cost function can
be constructed as,

J =
∫ t f

t0

1 dt (35)

subject to the horizontal vehicle dynamics in (33) and boundary conditions,

x(t0) = vx(t0) = 0, x(t f ) = xd, vx(t f ) = vxr , (36)

where vxr is the horizontal steady-state velocity achieved by the ideal fast-tracking particle.
In general, the optimal control history for this type of minimum-time problem takes the
form [96],

ux(t) =
{

u0 t0 6 t 6 tw
−u0 tw < t 6 t f

(37)

where tw is the switching time, and t f is the terminal time. The control switches at time tw
and only takes the boundary value. Then, the switching time tw and the terminal time t f
can be obtained by solving the constrained optimization problem formulated above.

6.2. FTC Minimum-Time Case Study 3

In this case study, FTC and BBC are implemented and compared for the control of a
thrust-driven vehicle with τv = 0.225 s traversing a cellular flow with τw = 0.15 s. In the
simulation, the FTC-controlled and BBC-controlled vehicles both start from the origin with
zero initial velocity, and the control is assumed to be bounded: −u0 6 ux 6 u0, where
u0 = 8 m/s2. The control objective is to make the air vehicle travel a desired distance
in the horizontal direction, xd = 15 m, through the cellular flow using minimum time.
The FTC-controlled air vehicle achieves this objective by following the ideal response of a
fast-tracking particle with τm = τw.

By solving the constrained optimization problem with the flow disturbance ignored
in Section 6.1, we find that if the control switches at time tw = 6.54 s, the BBC-controlled
air vehicle can reach the desired horizontal position at time t f = 6.55 s in still fluid.
Although we neglect the flow disturbance for simplicity when deriving the optimal bang-
bang control law, the flow effects on the air vehicle are still considered in the simulation.
As shown in Figure 9, both the FTC-controlled and BBC-controlled air vehicles start at the
same time from the origin, go through a transitional period in the cellular flow, and travel
horizontally in the end. However, compared to the FTC-controlled one, the BBC-controlled
air vehicle significantly deviates from the desired horizontal direction at first, and takes a
longer transitional time to reach an approximate equilibrium state.

Figure 10 shows the horizontal velocity and position time histories of the FTC-
controlled and BBC-controlled air vehicles. The time-average horizontal velocity of the
BBC-controlled air vehicle is smaller than that of the FTC-controlled one. Consequently,
in the simulation, the FTC-controlled air vehicle reaches the desired position, xd = 15 m,
at time ta = 2.47 s, while the BBC-controlled one reaches the desired position at time
tb = 5.09 s. Even though the bang-bang control law is the optimal solution to the bench-
mark minimum-time problem for bounded control inputs, the FTC-controlled air vehicle
achieves the control objective of reaching a desired horizontal position through the cellular
flow using less time compared to the BBC-controlled one.
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Figure 9. Case study 3: the trajectory comparison of the FTC-controlled and BBC-controlled vehicles
with τv = 0.225 s traversing a cellular flow with τw = 0.15 s demonstrates that both vehicles achieve
the control objective of reaching a desired horizontal position, xd = 15 m.

Figure 10. Case study 3: the comparison of horizontal velocity and position time histories of the FTC-
controlled and BBC-controlled vehicles shows that the FTC-controlled vehicle reaches the desired
horizontal position much faster than the BBC-controlled one.
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The comparison of the quadratic control usage, uTu = u2
x + u2

y, of FTC and BBC is
shown in Figure 11. Given that the FTC-controlled and BBC-controlled vehicles travel
the same desired horizontal distance, the integral quadratic control usage of FTC over the
entire period from time t0 = 0 s to time ta = 2.47 s is C f = 266.73 m2/s3, while the integral
quadratic control usage of BBC over the entire period from time t0 = 0 s to time tb = 5.09 s
is Cb = 325.89 m2/s3. The comparison of FTC and BBC performance is shown in Table 1.
Compared to the BBC-controlled one, the FTC-controlled air vehicle achieves the control
objective of reaching a desired horizontal position through the cellular flow not only within
a smaller period of time, but also with less control effort.

Figure 11. Case study 3: the comparison of the FTC and BBC quadratic control usage.

Table 1. Case study 3: the comparison of FTC and BBC performance.

Controller t f (s) x(t f ) (m) C (m2/s3)

FTC 2.47 15.00 266.73
BBC 5.09 15.00 325.89

In this case study, the ratio of inertial response time is ητ = 1.5. Similarly, to quantify
the relative time savings of FTC compared to BBC, the ratio of total time is defined as

ηt =
tb
ta

= 2.06 (38)

where ta denotes the total time spent by the FTC-controlled vehicle to reach the desired
horizontal position, and tb denotes that of the BBC-controlled vehicle. To analyze how the
ratio of total time, ηt, changes as a function of the normalized inertial response time of the
vehicle, ητ , we perform multiple numerical simulations with ητ ranging from 0.1 to 10.
As shown in Figure 12, all the data points located in the grey shaded area above the hori-
zontal dashed line at ηt = 1 correspond to simulations in which the FTC-controlled vehicle
spends less time traversing the flow compared with the BBC-controlled one. The critical
point where ηt = 1 locates approximately at η∗τ ≈ 6. The yellow circular marker represents
the simulation chosen as the case study in this section. As ητ increases, ηt grows at first,
reaches a maximum, and then starts to decrease when ητ ≈ 3.5. Moreover, there exists a
horizontal asymptote for the polynomial fit: ηt approaches 0.8 as ητ keeps increasing.



Biomimetics 2022, 7, 192 20 of 24

Figure 12. The ratio of total time (ηt) as a function of the normalized inertial response time of the
vehicle (ητ) for τm = τw is shown by performing many simulations (circular markers) corresponding
to different values of ητ , and by performing a polynomial fit (black line) demarking case studies in
which FTC uses less time than BBC (grey shaded area).

7. Summary and Conclusions

This paper presents a novel and general control design approach, referred to as a
fast-tracking controller or FTC in short, applicable to air vehicles flying through cellular-
flow-like turbulent fields. The new design philosophy presented in this paper allows the
vehicle, with a feedback controller in the loop, to behave like an ideal fast-tracking particle
by means of implicit model following. The simulation results show that, indeed, FTC
control allows the vehicle to take advantage of beneficial tailwinds by means of onboard
propulsion and local wind measurements, ultimately reducing the travel time and energy
consumption required to traverse the cellular flow. The energy-harvesting potential of FTC
is demonstrated by considering two benchmark control problems: the minimum-energy
problem and minimum-time problem. The comparison with classic optimal solutions
obtained via LQR and BBC control theory shows that by following the ideal response of the
fast-tracking particle, the FTC-controlled air vehicle achieves a larger average horizontal
velocity than the purely thrust-driven one. Furthermore, the FTC-controlled vehicle can
reach and maintain a desired steady-state velocity through the cellular flow with less
control effort than the LQR-controlled vehicle, and reach a desired horizontal position
faster than the BBC-controlled vehicle. Finally, the FTC design presented in this paper is
also potentially applicable to underwater vehicles in Langmuir-type water cells.
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