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Abstract: Optimization algorithms are popular to solve different problems in many fields, and are
inspired by natural principles, animal living habits, plant pollinations, chemistry principles, and
physic principles. Optimization algorithm performances will directly impact on solving accuracy. The
Crow Search Algorithm (CSA) is a simple and efficient algorithm inspired by the natural behaviors
of crows. However, the flight length of CSA is a fixed value, which makes the algorithm fall into
the local optimum, severely limiting the algorithm solving ability. To solve this problem, this
paper proposes a Variable Step Crow Search Algorithm (VSCSA). The proposed algorithm uses
the cosine function to enhance CSA searching abilities, which greatly improves both the solution
quality of the population and the convergence speed. In the update phase, the VSCSA increases
population diversities and enhances the global searching ability of the basic CSA. The experiment
used 14 test functions,2017 CEC functions, and engineering application problems to compare VSCSA
with different algorithms. The experiment results showed that VSCSA performs better in fitness
values, iteration curves, box plots, searching paths, and the Wilcoxon test results, which indicates
that VSCSA has strong competitiveness and sufficient superiority. The VSCSA has outstanding
performances in various test functions and the searching accuracy has been greatly improved.

Keywords: crow search algorithm; optimization algorithm; test function

1. Introduction

The optimization is to give existing solutions and parameters to present a satisfactory
answer for a certain problem. For quite some time, people have conducted large research
on various optimization problems. Newton and Leibniz founded calculus which can solve
some optimization problems. Then, different mathematical concepts have been proposed,
such as the steepest descent method and the linear programming solution method, which
can be used in many fields [1–3].

For specific problems, traditional methods have produced specific optimization meth-
ods for different problems. However, most of these methods have specific requirements
for the searching space which requires objective functions to be convex, continuously
differentiable, and differentiable. These weaknesses of traditional optimization methods
are limited in solving many practical problems [4–7]. These practical production problems
have large-scale, non-linear, multi-extreme values, characteristics of multiple constraints,
and non-convexities, making traditional optimization methods difficult to conduct mathe-
matical modeling. Therefore, exploring information processing methods with intelligent
features is valuable.

In practical applications, intelligent algorithms generally do not require problem spe-
cial information, the constraint on the problem, the continuity, the differentiability, the
convexity of the objective function, and the analytical expression. Intelligent algorithms
have strong adaptability to uncertainty data in the calculation process. At present, intelli-
gence algorithms mainly include African Vultures Optimization Algorithm (AVOA) [8],
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Beluga Whale Optimization (BWO) [9], Whale Optimization Algorithm (WOA) [10], Flow
Direction Algorithm (FDA) [11], Grey Wolf Optimizer (GWO) [12], Harris Hawks Opti-
mizer (HHO) [13], Sine Cosine Algorithm (SCA) [14], Spotted Hyena Optimizer (SHO) [15],
Slime Mould Algorithm (SMA) [16], Symbiotic Organisms Search (SOS) [17], Wild Horse
Optimizer (WHO) [18], Geometric Mean Optimizer (GMO) [19], Golden Jackal Optimiza-
tion algorithm (GJO) [20], Coati Optimization Algorithm (COA) [21], Dandelion Optimizer
(DO) [22], Remora Optimization Algorithm (ROA) [23], Great Wall Construction Algo-
rithm (GWCA) [24], Generalized Normal Distribution Optimization (GNDO) [25], Pelican
Optimization Algorithm (POA) [26], and so on [27–30].

These algorithms have been achieved in various engineering fields [31–36]. For solving
large-scale optimization problems, intelligent algorithms are significantly superior to tradi-
tional mathematical programming methods in terms of computational times and complexities.

Crow Search Algorithm (CSA) was proposed by Alireza Askarzadeh in 2016 [37].
Crows will hide their food and remember its hiding location for several months. At the
same time, they will track other crows to steal food. Based on the living habits of crows in
nature, the crow search algorithm has been proposed. From the algorithmic perspective, the
overall flying area of the crow population is the searching space. The position of each crow
represents the algorithm feasible solution and the location of crow hidden food represents
the algorithm’s objective function value. The best food position in the algorithm is the
optimal solution in the searching space.

Shalini Shekhawat and Akash Saxena designed the Intelligent Crow Search Algorithm
(ICSA) and used ICSA in the structural design problem, frequency wave synthesis problem,
and Model Order Reduction [38]. Yilin Chen et al. introduced a robust adaptive hierarchical
learning Crow Search Algorithm for feature selection [39]. Primitivo Díaz et al. introduced
an improved Crow Search Algorithm Applied to Energy Problems [40]. Amrit Kaur Bhullar
et al. proposed the enhanced crow search algorithm for AVR optimization [41]. Thippa
Reddy Gadekallu et al. used CNN-CNS for handing gesture classification [42]. Malik Braik
et al. designed a hybrid crow search algorithm for solving numerical and constrained
global optimization problems [43]. Behrouz Samieiyan et al. applied Promoted Crow
Search Algorithm (PCSA) to solve dimension reduction problems [44]. Qingbiao Guo et al.
used an improved crow search algorithm for the parameter inversion of the probability
integral method [45]. CSA has been applied in many fields.

In the basic CSA, crows update their positions by the fixed flight length in the searching
space, wherein the fixed flight length will make the individual jump out of the fitness
solution region, which can cause low searching accuracy. As a result, this paper proposes a
variable step crow search algorithm (VSCSA). VSCSA uses Cosine function steps to update
its positions. The rest of this paper is organized as follows: In Section 2, this paper gives the
basic CSA. In Section 3, this paper proposes VSCSA. In Section 4, the function experiment
results analysis is shown. In Section 5, the CEC2017 function experiment results analysis
is shown. In Section 6, engineering application problems are shown. In Section 7, the
conclusion is given.

2. Crow Search Algorithm

The crow is the general name of passerine corvus that is a large songbird which has
a sturdy mouth and feet. Nostrils are circular and usually covered by feather whiskers.
Crows like to live in groups and have strong clustering. They are forest and grassland
birds with a steady gait. Except for a few species, they often gather in groups and nest,
and wander in mixed groups during the autumn and winter seasons, flying and singing.
Generally, the personality is fierce and full of aggressive habits. CSA is a metaheuristic
algorithm based on crow intelligent behaviors. Crows will steal food by observing where
the other birds hide their food, if a crow finds the thief, it will move to hiding places to
avoid being a future victim. And crows use their own experiences to predict the pilferer’s
behavior. In CSA, the crow overall flight area is the searching space, and the position of
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each crow gives a feasible solution. The crow hidden food represents the quality of the
algorithm function value.

The CSA Step is given in this section.
Step 1: Initialize the problem and adjustable parameters.
Set CSA size N, the maximum number of iterations itermax, the flight length (fl), the

awareness probability AP, and the searching dimension is d. The crow i at one iteration
in the searching space is specified by a vector xi,iter(i = 1, . . ., N; iter = 1, . . ., itermax). The
searching upper bound is ubi(i = 1, . . ., N) and the searching lower bound is lbi(i = 1, . . ., N),

Step 2: Initialize position and memory.
Each crow will save its hidden food location m during each iteration, which represents

the best position the crow currently has because during the initial iteration of the algorithm,
the crow is inexperienced. Therefore, the initial memory, which is the location where the
crow first hides its food, is set as their initial position.

Crows =


x1

1 x1
2 · · · x1

d
x2

1 x2
2 · · · x2

d
...

...
...

...
xN

1 xN
2 · · · xN

d

 (1)

Memory =


m1

1 m1
2 · · · m1

d
m2

1 m2
2 · · · m2

d
...

...
...

...
mN

1 mN
2 · · · mN

d

 (2)

Step 3: Evaluate the objective function.
Compute one crow position.
Step 4: Generate a new position.
Crow i will generate a new position. In this case, two states will happen:
State 1: Crow i will approach crow j.
State 2: Crow j will go to another position.
States 1 and 2 can be expressed as follows:

xi,iter+1 =

{
xi,iter + ri × f li,iter ×

(
mj,iter − xi,iter) rj.iter ≥ APj.iter

a random position otherwise
(3)

where ri is a random number in the range of [0, 1] and fli;iter denotes the flight length of
crow i at iteration iter. AP denotes the awareness probability.

Step 5: Check the feasibility of new positions.
Check the new position feasibility of each crow.
Step 6: Evaluate fitness functions of new positions.
Calculate all feasible solutions. The function value for the new position of each crow

will be calculated.
Step 7: Update memory
The crows update their memory as follows:

mi,iter+1 =

{
xi,iter+1 f

(
xi,iter+1) is better than f

(
mi,iter)

mi,iter otherwise
(4)

Compare all fitness function values. If there is a better fitness function value of the
new position, the memory will be updated.

Step 8: Check termination criterion.
Calculate iter = iter + 1. Stop if the termination criterion is met iter = itermax. If not,

Steps 4–7 are repeated until the itermax is reached.
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3. Variable Step Crow Search Algorithm

In the original CSA, crows constantly update their positions in the searching space,
but their flight length fl is fixed, and the solutions to the search problem are diverse. When
initializing a population, individuals often cannot directly locate the optimal solution
and approach the region where the optimal solution is located without prior exploration
experience in the searching space as a guide. Therefore, the searching process should be
carried out in multiple different directions to expand the searching scope and thereby
increase the probability of approaching the area. In addition, individuals in the population
often wish to visit unexplored areas when exploring the searching space, thereby increasing
the breadth of the search. And from the CSA position update formula, it can be seen
that the crow population mainly updates its position by moving towards a fixed flight
length. Therefore, as the species iteration continues, the crow population will gradually
cluster and the population diversity will gradually decrease, which can easily lead to a
single searching direction and form too many local optima which is not conducive to the
algorithm’s small-scale search in the later stage. To solve this problem, this article proposes
a variable step crow search algorithm (VSCSA).

The cosine function is a Periodic function with a minimum positive period of 2π. When
the independent variable is an integer 2kπ (k is an integer), the function has a maximum
value of 1. When the independent variable is (2k + 1) π (k is an integer), the function has a
minimum value of −1. The cosine function is an even function, and its image is symmetric
about the y-axis.

xi,iter+
new

1 = xi,iter
new + |cos(ri)| ×

(
mj,iter − xi,iter

new

)
rj.iter ≥ APj.iter (5)

When crow j knows that crow i is following it, then as a result, crow j will go to another
position by the searching upper bound.

xi,iter+
new

1 = 0.5×
(

ubi × rsi + mj,iter
)

(6)

New states 1 and 2 can be expressed as follows:

xi,iter+
new

1 =

{
xi,iter

new + |cos(ri)| ×
(

mj,iter − xi,iter
new

)
rj.iter ≥ APj.iter

0.5×
(
ubi × rsi + mj,iter) otherwise

(7)

where rsi is a random number in the range of [−1, 1] and ubi(i = 1, . . ., N) is the searching
upper bound.

VSCSA improves the population diversity and the changing pattern search guidance
method during the evolution process. In the early searching stage, the population diversity
is relatively high. Cosine steps serve as a guide for population evolution, which can
avoid blind individual searching and population diversity rapid decay. This meets the
requirement that the algorithm should conduct a large-scale exploration as much as possible
during the initial iteration. In the later searching stages, the proposed algorithm will shift
from a global exploration to a local development, which can avoid the divergence in
search directions. When the population falls into the local optima, the proposed algorithm
can use individuals generated by cosine steps as searching guides to effectively increase
population diversities and jump out of different local optima areas. Therefore, the proposed
strategy reflects the adaptive interaction between population diversities and multiple search
guided individuals, the changes in the population searching steps reflect different stages
of evolution, and different searching guided methods can be adaptively selected. In turn,
different guided methods can alter the diversity of the population, expand the algorithm
searching range, and strengthen the algorithm searching precision.

The VSCSA Flowchart can be presented in Figure 1 as follows:
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The VSCSA pseudo code can be summarized in Algorithm 1.

Algorithm 1: VSCSA.

Input: Function f(.). Searching upper bound and lower bound. Set itermax. Set iter = 1. Population size N.
Evaluate the position of the crows. Initialize the memory of each crow.
While (iter < itermax)
For i = 1:N
Randomly choose one of the crows to follow (for example j).
Define an awareness probability.
If 1 rj,iter≥ APi.iter

xi,iter+1
new = xi,iter

new + |cos(ri)| × (mj,iter − xi,iter
new )

Else
xi,iter+1

new = 0.5 × (ubi × rsi + mj,iter)
End If 1
End For
Check the feasibility of new positions.
Evaluate the new position of the crows.
Update the memory of crows:
If 2 f (xi,iter+1

new ) is better than f (mi,iter).
mi,iter+1 = xi,iter+1

new
Else
mi,iter+1 = mi,iter

End If 2
iter = iter + 1
End While
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4. Function Experiment Results
4.1. Experiment Environments

Different functions are in Table 1. In Table 1, D is the searching dimension and f min is
the idea function value. Range is the searching scope. Different optimal solutions of high-
dimensional testing functions in this paper are hidden in a smooth and narrow parabolic
valley, with broad searching space, tall obstacles, and a large number of local minimum
points. This paper uses different test functions for comparing VSCSA and standard CSA
performances. This paper tests VSCSA with the cuckoo search algorithm (CS) [46], the sine
cosine algorithm (SCA) [14], and the moth-flame optimization algorithm (MFO) [47]. CS
was proposed by Xin-She Yang and was inspired by the cuckoo incubation mechanism
in nature. The size of the cuckoo bird is similar to that of a pigeon, but it is slender and
has a dark gray upper body. SCA, which was proposed by Seyedali Mirjalili in 2016,
was inspired by sine and cosine mathematical terminology. MFO, which was proposed
by Seyedali Mirjalili in 2015, was inspired by the moth navigation in nature called the
transverse orientation. In this chapter, the CS discovery probability was set as 0.25 and
the step was set as 0.25. For SCA, a = 2, r2 = 2π, r3, and r4 were selected in [0, 1]. In
CSA, fl = 2. All algorithm parameters were selected from the original algorithm literature.
The population size was 20, the maximum iterations were 400, and it was ran 10 times in
MATLAB (R2016b).

Table 1. Basic information of benchmark functions.

Name Function D Range f min

Beale
f 1(x) = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x2

2)2 +
(2.625 − x1 + x1x3

2)2 2 [−50, 50] 0

Bohachevsky01 f 2(x) = x2
1 + 2x2

2 − 0.3cos(3πx1) − 0.4cos(4πx2) + 0.7 2 [−50, 50] 0
Bohachevsky02 f 3(x) = x2

1+ 2x2
2 − 0.3cos(3πx1) cos(4πx2) + 0.3 2 [−50, 50] 0

Bohachevsky03 f 4(x) = x2
1 + 2x2

2 − 0.3cos(3πx1 + 4πx2) + 0.3 2 [−50, 50] 0
Booth f 5(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 [−50, 50] 0
Brent f 6(x) = (x1 + 10)2 + (x2 + 10)2 + e−x2

1−x2
2 2 [−50, 50] 0

Cube f 7(x) = 100(x2 − x3
1)2 + (1 − x1)2 2 [−50, 50] 0

Leon f 8 (x) = 100(x2 − x2
1)2 + (1 − x1)2 2 [−50, 50] 0

Levy13 f 9(x) = sin2(3πx1) + (x1 − 1)2[1 + sin2(3πx2)] + (x2 − 1)2[1 + sin2(2πx2)] 2 [−50, 50] 0
Matyas f 10(x) = 0.26(x2

1 + x2
2) − 0.48 x1x2 2 [−50, 50] 0

Ackley 01 f11(x) = −20 exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+20 + exp(1)

2/30/60/200 [−20, 20] 0

Griewank f12(x) =
D
∑

i=1

(
x2

i /4000
)
−

D
∏
i=1

cos
(

xi/
√

i
)
+ 1 2/30/60/200 [−20, 20] 0

Rastrigin f13(x) = 10D +
D
∑

i=1

(
x2

i − 10 cos(2πxi)
) 2/30/60/200 [−20, 20] 0

Sphere f14(x) =
D
∑

i=1
x2

i
2/30/60/200 [−20, 20] 0

4.2. Data Results

In Tables 2 and 3, Min, Max, Ave, and Var mean the minimum value, the maximum
value, the average value, and the variance deviation. Table 2 shows two-dimension function
results. Table 3 shows high-dimension functions results. For two-dimension functions,
VSCSA can obtain the ideal function values in f 2 to f 5, f 12(D=2), and f 13(D=2). And VSCSA
can obtain the ideal values of all evaluation indexes in f 2 to f 4. CSA can obtain ideal
function values in f 12(D=2), f 13(D=2). MFO can obtain the ideal function values in f 2 to f 5,
f 12(D=2), and f 13(D=2). MFO can obtain the ideal values of all evaluation indexes in f 2, f 3,
f 5. SCA can obtain the ideal function values in f 2 to f 4, f 12(D=2), and f 13(D=2). SCA can
obtain the ideal values of all evaluation indexes in f 2 to f 4. Min values of MFO in f10 and
f 14(D=2) are better than those of VSCSA. Min value of SCA in f 14(D=2) is better than that of



Biomimetics 2023, 8, 395 7 of 29

VSCSA. For high dimension functions, the Min values of SCA in f 11(D=30), f 12(D=60), f 13(D=60),
f 13(D=200) are better than those of VSCSA. Min value of MFO in f 12(D=30) is better than that
of VSCSA. VSCSA in other results are all less than comparative algorithms. VSCSA can
ensure continuous evolution and has good convergence speed and optimization accuracy.
Especially for multi-peak high dimension functions with rotational characteristics, the
proposed algorithm can better overcome the interference caused by local extreme points in
the solving process, can prevent premature convergence, ensure continuous population
evolution, and ultimately achieve a high optimization accuracy.

Table 2. Comparison of results for two-dimension functions.

Function Metric VSCSA CSA CS MFO SCA

f 1

Min 1.2634 × 10−31 1.1569 × 10−16 0.0436 8.2737 × 10−22 0.0001
Max 6.4206 × 10−16 8.2586 × 10−15 1.8208 0.0358 0.0035
Ave 7.9525 × 10−17 2.6914 × 10−15 0.4393 0.0036 0.0009
Var 4.1382 × 10−32 7.2893 × 10−30 0.2594 0.0001 1.2328 × 10−6

f 2

Min 0 2.2204 × 10−16 0.5852 0 0
Max 0 2.6645 × 10−14 3.4157 0 0
Ave 0 7.3053 × 10−15 1.7169 0 0
Var 0 7.5842 × 10−29 1.2711 0 0

f3

Min 0 1.6653 × 10−16 0.0910 0 0
Max 0 3.9351 × 10−12 2.0767 0 0
Ave 0 5.8736 × 10−13 1.1458 0 0
Var 0 1.6012 × 10−24 0.4273 0 0

f 4

Min 0 5.5511 × 10−17 0.4008 0 0
Max 0 6.8778 × 10−14 3.9791 3.3307 × 10−16 0
Ave 0 1.5071 × 10−14 1.5279 6.6613 × 10−17 0
Var 0 4.8923 × 10−28 1.4034 1.3559 × 10−32 0

f 5

Min 0 2.2380 × 10−17 0.1529 0 8.5105 × 10−5

Max 1.4374 × 10−15 9.8969 × 10−15 5.2062 0 0.0072
Ave 1.4374 × 10−16 1.3184 × 10−15 2.3982 0 0.0015
Var 2.0660 × 10−31 9.2626 × 10−30 2.5784 0 4.1821 × 10−6

f 6

Min 1.3839 × 10−87 1.2181 × 10−17 0.2978 1.3839 × 10−87 0.0001
Max 1.2738 × 10−21 1.3241 × 10−15 2.2916 1.3839 × 10−87 0.0554
Ave 1.3301 × 10−22 4.7342 × 10−16 0.9435 1.3839 × 10−87 0.0258
Var 1.6096 × 10−43 2.2174 × 10−31 0.4555 5.5373 × 10−206 0.0005

f 7

Min 1.9671 × 10−17 6.8577 × 10−15 0.2525 0.0002 0.0002
Max 0.0005 1.8490 × 10−11 15.7426 7.1992 0.0056
Ave 9.1750 × 10−5 2.2728 × 10−12 5.7119 1.5894 0.0025
Var 2.3620 × 10−8 3.2677 × 10−23 36.2206 7.2811 3.1310 × 10−6

f 8

Min 3.2519 × 10−27 7.0257 × 10−15 0.8962 0.0064 0.0001
Max 5.7350 × 10−6 2.4108 × 10−12 26.2582 39.3529 0.0368
Ave 9.2305 × 10−7 5.0263 × 10−13 7.5532 5.2897 0.0104
Var 4.0001 × 10−12 6.7474 × 10−25 52.2655 1.5027 × 102 0.0002

f 9

Min 1.3498 × 10−31 2.5846 × 10−16 0.2671 1.3498 × 10−31 0.0002
Max 1.9689 × 10−14 7.3082 × 10−14 4.1046 1.3498 × 10−31 0.0099
Ave 2.9178 × 10−15 1.6250 × 10−14 1.8569 1.3498 × 10−31 0.0033
Var 4.3618 × 10−29 5.1105 × 10−28 0.9865 0 1.0867 × 10−5

f 10

Min 1.7336 × 10−38 2.2204 × 10−16 0.0014 4.8795 × 10−50 5.0354 × 10−54

Max 2.4876 × 10−29 2.0117 × 10−13 0.2567 1.6616 × 10−10 6.4181 × 10−41

Ave 2.6360 × 10−30 2.5902 × 10−14 0.0544 1.6789 × 10−11 7.4082 × 10−42

Var 6.1178 × 10−59 3.8412 × 10−27 0.0057 2.7550 × 10−21 4.0702 × 10−82
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Table 2. Cont.

Function Metric VSCSA CSA CS MFO SCA

f 11(D=2)

Min 8.8818 × 10−16 5.5532 × 10−9 0.4659 8.8818 × 10−16 8.8818 × 10−16

Max 4.4409 × 10−15 5.5989 × 10−8 2.7931 2.5799 8.8818 × 10−16

Ave 1.2434 × 10−15 1.8217 × 10−8 1.7149 0.2580 8.8818 × 10−16

Var 1.2622 × 10−30 3.0345 × 10−16 0.5155 0.6656 0

f 12(D=2)

Min 0 0 0.0089 0 0
Max 0.0074 0.0099 0.0150 0.0395 0.0085
Ave 0.0015 0.0045 0.0115 0.0145 0.0016
Var 9.7247 × 10−6 1.6088 × 10−5 4.6345 × 10−6 1.8438 × 10−4 1.1916 × 10−5

f 13(D=2)

Min 0 0 2.5027 0 0
Max 0.9950 0.9950 5.5228 1.9899 0
Ave 0.4869 0.0995 4.4264 0.3980 0
Var 0.2644 0.0990 1.1062 0.4840 0

f 14(D=2)

Min 9.4793 × 10−39 3.1793 × 10−18 0.0239 3.2958 × 10−78 1.0019 × 10−57

Max 8.9804 × 10−31 1.4926 × 10−16 0.7788 1.8724 × 10−19 1.0246 × 10−40

Ave 1.0017 × 10−31 5.2384 × 10−17 0.1987 1.8724 × 10−20 1.0247 × 10−41

Var 7.9344 × 10−62 3.3914 × 10−33 0.0521 3.5060 × 10−39 1.0497 × 10−81

Table 3. Comparison of results for high dimension functions.

Function Metric VSCSA CSA CS MFO SCA

f 11(D=30)

Min 2.2797 3.2397 16.3819 10.0741 0.6109
Max 5.1136 6.0112 17.7649 16.5201 7.2651
Ave 3.7778 4.6759 17.1658 13.7082 2.8626
Var 0.6331 0.9435 0.2970 4.7736 3.6873

f 12(D=30)

Min 0.0528 0.1364 1.2198 0.0300 0.0139
Max 0.3587 0.3208 1.4571 0.5775 0.7466
Ave 0.1378 0.2198 1.3653 0.2246 0.3989
Var 0.0070 0.0056 0.0058 0.0388 0.0677

f 13(D=30)

Min 1.1286 × 102 1.3475 × 102 1.4140 × 103 1.5609 × 102 1.1746 × 102

Max 2.5911 × 102 2.0885 × 102 2.0780 × 103 9.2546 × 102 2.5009 × 102

Ave 1.7758 × 102 1.6834 × 102 1.7499 × 103 3.2263 × 102 1.8308 × 102

Var 1.7198 × 103 7.5248 × 102 4.3256 × 104 6.8344 × 104 2.4061 × 103

f 14(D=30)

Min 0.1507 0.8730 1.1071 × 103 2.5817 0.8212
Max 0.4330 2.8546 1.8329 × 103 8.0147 × 102 59.5845
Ave 0.2653 1.8225 1.5994 × 103 3.4198 × 102 16.5211
Var 0.0075 0.4599 5.5006 × 104 9.3346 × 104 2.8519 × 102

f 11(D=60)

Min 4.1431 4.1958 16.7884 14.5856 5.0868
Max 6.6470 5.7192 18.2277 18.1983 10.4431
Ave 5.1825 4.8548 17.6613 16.7067 7.8758
Var 0.6236 0.4106 0.2953 1.7958 3.1980

f 12(D=60)

Min 0.2101 0.3262 1.7140 1.0847 0.0276
Max 0.3411 0.6327 2.1414 1.4313 1.1034
Ave 0.2524 0.4977 1.8979 1.2450 0.8115
Var 0.0021 0.0087 0.0125 0.0143 0.1153

f 13(D=60)

Min 3.3309 × 102 3.7876 × 102 3.6370 × 103 8.6975 × 102 2.1715 × 102

Max 6.2218 × 102 6.1118 × 102 5.3243 × 103 3.9577 × 103 7.7275 × 102

Ave 5.0434 × 102 4.7404 × 102 4.3379 × 103 2.0584 × 103 4.8009 × 102

Var 9.9127 × 103 6.2803 × 103 4.1675 × 105 1.1259 × 106 3.6050 × 104
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Table 3. Cont.

Function Metric VSCSA CSA CS MFO SCA

f 14(D=60)

Min 2.7331 17.9029 2.6427 × 103 2.9806 × 102 1.2890 × 102

Max 5.5279 27.1171 4.5444 × 103 1.5615 × 103 4.8950 × 102

Ave 4.0482 21.1575 3.7431 × 103 9.2456 × 102 2.4631 × 102

Var 0.8931 8.1825 3.7021 × 105 1.8256 × 105 1.6048 × 104

f 11(D=200)

Min 4.9721 5.4329 16.4399 18.5124 8.4967
Max 6.4728 6.2622 18.2605 18.9722 11.7968
Ave 5.5735 5.7298 17.6394 18.7693 9.9552
Var 0.2370 0.0481 0.2890 0.0161 1.2549

f 12(D=200)

Min 0.5730 0.8061 3.6256 3.9739 1.1261
Max 0.6674 0.9795 5.1979 4.8149 2.0141
Ave 0.6197 0.9020 4.4142 4.2953 1.5740
Var 0.0013 0.0035 0.1957 0.0626 0.0719

f 13(D=200)

Min 1.8775 × 103 1.9453 × 103 1.5111 × 104 1.5274 × 104 1.7142 × 103

Max 2.5561 × 103 2.3118 × 103 1.8056 × 104 1.7675 × 104 4.6564 × 103

Ave 2.2061 × 103 2.1896 × 103 1.6534 × 104 1.6121 × 104 3.2054 × 103

Var 3.4431 × 104 1.1518 × 104 1.1715 × 106 9.4756 × 105 1.0841 × 106

f 14(D=200)

Min 42.8433 1.5256 × 102 1.0562 × 104 1.2646 × 104 1.3509 × 103

Max 62.5081 2.0567 × 102 1.6804 × 104 1.5405 × 104 5.0878 × 103

Ave 52.1370 1.8448 × 102 1.3558 × 104 1.4005 × 104 3.1410 × 103

Var 33.5172 3.3378 × 102 3.1386 × 106 6.1661 × 105 1.8390 × 106

4.3. Iteration Results

This paper gave algorithm optimal iteration curves after 10 independent operations, as
shown in Figures 2 and 3. Compared with different algorithms in two-dimension iteration
curves, VSCSA has the fastest iteration curve except for f 10, f 13(D=2), f 14(D=2). In f 10, SCA has
the fastest iteration curve. In f 13(D=2), f 14(D=2), MFO has the fastest iteration curve, and CSA
has the second fast iteration curve. Compared with different algorithms in high-dimension
iteration curves, VSCSA has the fastest iteration curve except f 11(D=30), f 12(D=30), f 12(D=60),
f 13(D=60). In f 11(D=30), f 12(D=30), f 12(D=60), f 13(D=60), SCA has the fastest iteration curve. The
VSCSA has outstanding performances in various test functions, whereby especially the
searching accuracy has been greatly improved. Therefore, the iteration curve can display
that VSCSA has a strong searching performance.
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Figure 2. Iteration curves of two−dimension functions. (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f) f6; (g) f7; (h) 
f8; (i) f9; (j) f10; (k) f11(D=2); (l) f12(D=2); (m) f13(D=2); (n) f14(D=2). 
Figure 2. Iteration curves of two−dimension functions. (a) f 1; (b) f 2; (c) f 3; (d) f 4; (e) f 5; (f) f 6; (g) f 7;
(h) f 8; (i) f 9; (j) f 10; (k) f 11(D=2); (l) f 12(D=2); (m) f 13(D=2); (n) f 14(D=2).
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Figure 3. Iteration curves of high−dimension functions. (a) f 11(D=30); (b) f 12(D=30); (c) f 13(D=30);
(d) f 14(D=30); (e) f 11(D=60); (f) f 12(D=60); (g) f 13(D=60); (h) f 14(D=60); (i) f 11(D=200); (j) f 12(D=200);
(k) f 13(D=200); (l) f 14(D=200).

4.4. Box Plot Results

The box plot connects the two quartiles and connects the upper and lower edges
to draw the box plot, and the median is in the middle of the box plot. If the box plot is
narrower, the data is more concentrated. This paper gave algorithm box plots, as shown in
Figures 4 and 5. Compared with different algorithms in low-dimension box plots, VSCSA
has the narrowest box plot except for f 8, f 13. In f 8 and f 13, CSA has the narrowest box plot.
Compared with different algorithms in high-dimension box plots, VSCSA has the narrowest
box plot except for f 11(D=60), f 13(D=60), f 11(D=200), f 13(D=200). In f 11(D=60), f 13(D=60), f 11(D=200),
f 13(D=200), CSA has the narrowest box plot. Compared to the standard CSA algorithm, the
VSCSA algorithm not only has a higher solving accuracy but also runs faster in most testing
functions, which fully demonstrates that the VSCSA retains outstanding local search ability
and is a significant improvement in global searching performances.
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Figure 4. Box plot charts of two−dimension functions. (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f) f6; (g) f7; (h) f8; 

(i) f9; (j) f10; (k) f11(D=2); (l) f12(D=2); (m) f13(D=2); (n) f14(D=2). 
Figure 4. Box plot charts of two−dimension functions. (a) f 1; (b) f 2; (c) f 3; (d) f 4; (e) f 5; (f) f 6; (g) f 7;
(h) f 8; (i) f 9; (j) f 10; (k) f 11(D=2); (l) f 12(D=2); (m) f 13(D=2); (n) f 14(D=2).
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nected into lines or geometric shapes. Each variable has its axis, with equal distances be-
tween them, and all axes have the same scale. It is equivalent to a parallel coordinate map, 
which is arranged radially along the axis. This paper shows the basic statistical assessment 
obtained in sub-sequence runs of different algorithms. Ten sub-sequence runs are shown 
in Figures 6 and 7. If the total length of polygon edges with different colors is longer, the 
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Figure 5. Box plot charts of high−dimension functions. (a) f 11(D=30); (b) f 12(D=30); (c) f 13(D=30);
(d) f 14(D=30); (e) f 11(D=60); (f) f 12(D=60); (g) f 13(D=60); (h) f 14(D=60); (i) f 11(D=200); (j) f 12(D=200);
(k) f 13(D=200); (l) f 14(D=200).

4.5. Sub-Sequence Runs Results

Different axes are projected at equal angular intervals from the same center point, each
axis represents a quantitative variable, and points on each axis are sequentially connected
into lines or geometric shapes. Each variable has its axis, with equal distances between
them, and all axes have the same scale. It is equivalent to a parallel coordinate map,
which is arranged radially along the axis. This paper shows the basic statistical assessment
obtained in sub-sequence runs of different algorithms. Ten sub-sequence runs are shown in
Figures 6 and 7. If the total length of polygon edges with different colors is longer, the lower
the accuracy of the algorithm subsequence operations. For two-dimension amplification
radar charts, CS subsequences have the largest radar charts except for f 12(D=2). MFO radar
charts are larger than CSA radar charts in f 12(D=2). For high-dimension amplification radar
charts, CS subsequences have the largest radar charts except for f 11(D=60), f 11(D=200) to
f 14(D=200).
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Figure 6. Sub-sequence runs radar charts of two−dimension functions. (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; 
(f) f6; (g) f7; (h) f8; (i) f9; (j) f10; (k) f11(D=2); (l) f12(D=2); (m) f13(D=2); (n) f14(D=2). 
Figure 6. Sub-sequence runs radar charts of two−dimension functions. (a) f 1; (b) f 2; (c) f 3; (d) f 4;
(e) f 5; (f) f 6; (g) f 7; (h) f 8; (i) f 9; (j) f 10; (k) f 11(D=2); (l) f 12(D=2); (m) f 13(D=2); (n) f 14(D=2).
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Figure 7. Sub-sequence runs radar charts of high−dimension functions. (a) f11(D=30); (b) f12(D=30); (c) 
f13(D=30); (d) f14(D=30); (e) f11(D=60); (f) f12(D=60); (g) f13(D=60); (h) f14(D=60); (i) f11(D=200); (j) f12(D=200); (k) f13(D=200); (l) 
f14(D=200). 

4.6. Search Path Results 
To test the structural reliability analysis, the computational efficiency, and the accu-

racy of the proposed algorithm, three-dimensional images of two-dimension functions are 
given in Figure 8, while the VSCSA path and the CSA path are refracted to a two-dimen-
sion plane in Figure 9. The red straight line is the VSCSA searching path, the green dashed 
line is the CSA searching path, and the pink dot is the theoretical optimal position. CSA 
searching paths have many short repeat searching paths and occasional long searching 
paths. The VSCSA algorithm has a strong performance in population diversity, represent-
ing the global optimal performance. In the early stage of the algorithm searching process, 
the VSCSA can quickly traverse and explore the entire solution region, lock in the approx-
imate range of the global optimal solution, and ensure the diversity of the population. At 
the end stage of the algorithm searching process, the reduction of differences between 
individuals makes the searching process jump out of local vortices and find the ideal op-
timization solution, which can improve the algorithm global convergence ability. 

Figure 7. Sub-sequence runs radar charts of high−dimension functions. (a) f 11(D=30); (b) f 12(D=30);
(c) f 13(D=30); (d) f 14(D=30); (e) f 11(D=60); (f) f 12(D=60); (g) f 13(D=60); (h) f 14(D=60); (i) f 11(D=200); (j) f 12(D=200);
(k) f 13(D=200); (l) f 14(D=200).

4.6. Search Path Results

To test the structural reliability analysis, the computational efficiency, and the accuracy
of the proposed algorithm, three-dimensional images of two-dimension functions are given
in Figure 8, while the VSCSA path and the CSA path are refracted to a two-dimension plane
in Figure 9. The red straight line is the VSCSA searching path, the green dashed line is the
CSA searching path, and the pink dot is the theoretical optimal position. CSA searching
paths have many short repeat searching paths and occasional long searching paths. The
VSCSA algorithm has a strong performance in population diversity, representing the global
optimal performance. In the early stage of the algorithm searching process, the VSCSA can
quickly traverse and explore the entire solution region, lock in the approximate range of
the global optimal solution, and ensure the diversity of the population. At the end stage of
the algorithm searching process, the reduction of differences between individuals makes
the searching process jump out of local vortices and find the ideal optimization solution,
which can improve the algorithm global convergence ability.
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Figure 8. Three−dimension images of two-dimension functions. (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f) f6; 
(g) f7; (h) f8; (i) f9; (j) f10; (k) f11(D=2); (l) f12(D=2); (m) f13(D=2); (n) f14(D=2). Figure 8. Three−dimension images of two-dimension functions. (a) f 1; (b) f 2; (c) f 3; (d) f 4; (e) f 5;
(f) f 6; (g) f 7; (h) f 8; (i) f 9; (j) f 10; (k) f 11(D=2); (l) f 12(D=2); (m) f 13(D=2); (n) f 14(D=2).
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Figure 9. Search paths. (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f) f6; (g) f7; (h) f8; (i) f9; (j) f10; (k) f11(D=2); (l) f12(D=2); 
(m) f13(D=2); (n) f14(D=2). 

  

Figure 9. Search paths. (a) f 1; (b) f 2; (c) f 3; (d) f 4; (e) f 5; (f) f 6; (g) f 7; (h) f 8; (i) f 9; (j) f 10; (k) f 11(D=2);
(l) f 12(D=2); (m) f 13(D=2); (n) f 14(D=2).
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4.7. Wilcoxon Rank Sum Test Results

In the process of detecting algorithms, more different experimental results often appear.
When comparing and analyzing algorithms, conclusions cannot be drawn solely based on
differences in a few results, so statistical analysis should be conducted to test the significance
of differences in the data. The Wilcoxon rank sum test result is the p-value. If the p-value
is greater than 0.05, there is no significant change for two sets of data. If the p-value is
less than 0.05, two algorithm performances are significant. In Table 4, N means that the
computer cannot give the p-value because of the too-large or too-small p-value. In function
f 8, f 13(D=2), f 11(D=30), f 13(D=30), f 11(D=60), f 13(D=60), f 11(D=200), f 13(D=200), the p-value in CSA is
larger than 0.05. In function f 4, f 10, f 11(D=2), f 13(D=2), f 12(D=30), f 13(D=30), the p-value in MFO
is larger than 0.05. In function f 11(D=2), f 12(D=2), f 11(D=30), f 13(D=30), f 13(D=60), the p-value in
SCA is larger than 0.05. For other algorithms, the Wilcoxon rank sum test results are all
less than 0.05. From the results of the Wilcoxon rank sum test by VSCSA, the searching
accuracy of the algorithm has been significantly improved, and the improved algorithm is
significantly better than the standard CSA in terms of searching accuracy and speed.

Table 4. Comparison of the Wilcoxon rank sum test results.

Function CSA CS MFO SCA

f 1 0.00033 0.00018 0.00131 0.00018
f 2 6.39 × 10−5 6.39 × 10−5 N N
f 3 6.39 × 10−5 6.39 × 10−5 N N
f 4 6.39 × 10−5 6.39 × 10−5 0.07758 N
f 5 0.00219 0.00018 0.00023 0.00018
f 6 0.00018 0.00018 0.00221 0.00018
f 7 0.00283 0.00018 0.00033 0.00033
f 8 0.27304 0.00018 0.00018 0.00018
f 9 0.00443 0.00017 0.00597 0.00017
f 10 0.00018 0.00018 0.79134 0.00018

f 11(D=2) 0.00009 0.00009 1.00000 0.36812
f 12(D=2) 0.01903 0.00013 0.01914 0.88154
f 13(D=2) 0.87766 0.00015 0.60255 0.01429
f 14(D=2) 0.00018 0.00018 0.00283 0.00018
f 11(D=30) 0.07566 0.00018 0.00018 0.06402
f 12(D=30) 0.01133 0.00018 0.67758 0.03121
f 13(D=30) 0.73373 0.00018 0.18588 0.79134
f 14(D=30) 0.00018 0.00018 0.00018 0.00018
f 11(D=60) 0.57075 0.00018 0.00018 0.00283
f 12(D=60) 0.00033 0.00018 0.00018 0.00283
f 13(D=60) 0.42736 0.00018 0.00018 0.62318
f 14(D=60) 0.00018 0.00018 0.00018 0.00018
f 11(D=200) 0.14047 0.00018 0.00018 0.00018
f 12(D=200) 0.00018 0.00018 0.00018 0.00018
f 13(D=200) 0.85011 0.00018 0.00018 0.02113
f 14(D=200) 0.00018 0.00018 0.00018 0.00018

4.8. Algorithm Ranking Results

Algorithm ranking radar charts are shown in Figure 10. The positions of different
colored dots in the radar image represent the algorithm searching accuracy. If the algorithm
point is close to the center point, the algorithm has a high ranking. It can be seen that the
VSCSA surrounds the center point. From the radar graph, it can be seen that VSCSA has the
best results among multiple test functions and has the highest searching accuracy among
comparison algorithms. Although VSCSA did not achieve comprehensive advantages
in some test functions, it achieved optimal searching results in more than half of the
test functions, indicating that VSCSA has strong competitiveness. It can be seen that the
proposed VSCSA in this paper greatly enhances the CSA searching performance.
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Figure 10. Algorithm ranking figures. (a) Two-dimension functions. (b) High-dimension functions.

5. CEC2017 Test Function Experiment Results
5.1. Experiment Environments

The IEEE Congress on Evolutionary Computation (CEC) is one of the largest and
most significant conferences within Evolutionary Computation (EC). CEC test functions
under the CEC conference series are among the widely used benchmarks to test different
algorithms. CEC2017 is the test function in the 2017 CEC conference. CEC2017 consists of
different problems, including Unimodal, Multimodal, Hybrid, and Composition functions.
To further show the proposed algorithm, this paper selected CEC2017 in F1 to F20. F1 to
F20 of CEC2017 are given in Table 5. In Table 5, D is the searching dimension, Fmin is the
idea function value, and range is the searching scope. F1 and F2 are Unimodal Functions,
F3 to F9 are Simple Multimodal Functions, F10 to F19 are Hybrid Functions, and F20 is the
Composition. In this paper, the proposed method compares with state-of-the-art algorithms
(SOTA) in recent years. SOTA includes the bald eagle search algorithm (BES) [48], COOT
bird algorithm (COOT) [49], wild horse optimizer (WHO) [18], and whale optimization
algorithm (WOA) [10]. All algorithm parameters were selected according to original
literature. The population size and the maximum number of iterations were 20 and 5000,
respectively. To obtain a fair comparison result, all algorithms independently ran 10 times
in MATLAB(R2016b). The experimental environment was the Windows 7 operating system,
Intel (R) Core (TM) i3-7100CPU, 8GBRAM.

5.2. Experiment Results

The statistical results of algorithms on CEC2017 benchmark functions are shown in
Table 6. In Table 6, Min, Max, and Var mean the minimum value, the maximum value, and
the variance deviation. For Unimodal Functions, VSCSA, CSA, BES, COOT, and WHO can
obtain the ideal value in F1. All six algorithms can obtain the ideal value in F2. For Simple
Multimodal Functions, all six algorithms can obtain the ideal value in F3 to F9. For Hybrid
Functions, all six algorithms can obtain the ideal value in F10 and F11. CSA can obtain the
minimum value in F12. BES can obtain the minimum value in F17. COOT can obtain the
minimum value in F14 F16. WHO can obtain the minimum value in F13 F15 F18 F19. For the
Composition, COOT can obtain the minimum value in F20.

Figure 11 gives the best iteration curves of different algorithms in 10 independent runs.
From Figure 11 we can see that VSCSA has the fastest initial iteration speed in function F1,
F3, and F9. And VSCSA has the fastest iteration speed in the later stage for function F2, F4
to F8, and F10. VSCSA has the slowest iteration speed in F12, F15, and F16.
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Figure 12 gives box plots for different algorithms after 10 independent runs. VSCSA
has the narrowest box plot in function F2 to F9. CSA has the narrowest box plot in function
F12, F13, and F18. BES has the narrowest box plot in function F15. COOT has the narrowest
box plot in function F10, F11, F14, F16, F17, F19, and F20. VSCSA has the worst box plot in
function F1 and F15. BES has the worst box plot in function F5, F16, F17, and F20. COOT
has the worst box plot in function F7. WHO has the worst box plot in function F8. WOA
has the worst box plot in function F6, F11, F12, F13, F14, F18, and F19. For F10, VSCSA, BES,
WHO, and WOA have large box plots.
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Figure 13 gives radar charts for different algorithms after 10 independent runs. For
Figure 13, VSCSA subsequences have the largest radar charts for function F15. BES has the
largest radar charts for function F5 and F8. WHO has the largest radar charts for function
F6. WOA has the largest radar charts for function F1 to F4, F9, F12, F14, F18, and F19. For
function F7, F10, F11, F13, F16, F17, and F20, many algorithms have large radar charts.
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Table 7 shows the Wilcoxon rank sum test results. In Table 7, N means that the
computer cannot give the p-value because of the too-large or too-small p-value. In function
F7, F11, the p-value in CSA is larger than 0.05. In functions F6, F8, F10, F11, F13, F16, F17, F20,
the p-value in BES is larger than 0.05. In function F1, F3, F6, F8, F9, F11, F13, F18, the p-value
in COOT is larger than 0.05. In function F2, F5, F6, F8, F10, F11, F14, F17, the p-value in WHO
is larger than 0.05. In function F10, F12, F10, F14, F16 to F20, the p-value in WOA is larger
than 0.05. For other algorithms, the Wilcoxon rank sum test results are all less than 0.05.

Table 5. Basic information of CEC2017 benchmark functions.

No. Function D Range Fmin

F1 Shifted and Rotated Bent Cigar Function 2 [−100, 100] 100
F2 Shifted and Rotated Zakharov Function 2 [−100, 100] 200
F3 Shifted and Rotated Rosenbrock’s Function 2 [−100, 100] 300
F4 Shifted and Rotated Rastrigin’s Function 2 [−100, 100] 400
F5 Shifted and Rotated Expanded Scaffer’s F6 Function 2 [−100, 100] 500
F6 Shifted and Rotated Lunacek Bi-Rastrigin Function 2 [−100, 100] 600
F7 Shifted and Rotated Non-Continuous Rastrigin’s Function 2 [−100, 100] 700
F8 Shifted and Rotated Levy Function 2 [−100, 100] 800
F9 Shifted and Rotated Schwefel’s Function 2 [−100, 100] 900
F10 Hybrid Function 1 (N = 3) 2 [−100, 100] 1000
F11 Hybrid Function 2 (N = 3) 10 [−100, 100] 1100
F12 Hybrid Function 3 (N = 3) 10 [−100, 100] 1200
F13 Hybrid Function 4 (N = 4) 10 [−100, 100] 1300
F14 Hybrid Function 5 (N = 4) 10 [−100, 100] 1400
F15 Hybrid Function 6 (N = 4) 10 [−100, 100] 1500
F16 Hybrid Function 6 (N = 5) 10 [−100, 100] 1600
F17 Hybrid Function 6 (N = 5) 10 [−100, 100] 1700
F18 Hybrid Function 6 (N = 5) 10 [−100, 100] 1800
F19 Hybrid Function 6 (N = 6) 10 [−100, 100] 1900
F20 Composition Function 1 (N = 3) 10 [−100, 100] 2000

Table 6. Comparison of results for CEC2017 benchmark functions.

Function Metric VSCSA CSA BES COOT WHO WOA

F1

Min 100.0000 100.0000 100.0000 100.0000 100.0000 100.8089
Max 100.4967 100.0000 100.0000 100.0079 2476.9326 4991.5872
Var 0.0239 0 0 5.8721 × 10−6 5.6498 × 105 3.0578 × 106

F2

Min 200.0000 200.0000 200.0000 200.0000 200.0000 200.0020
Max 200.0000 200.0000 200.0000 200.0000 200.0012 200.0951
Var 3.2226 × 10−13 0 0 7.7463 × 10−11 1.6905 × 10−7 1.3605 × 10−3

F3

Min 300.0000 300.0000 300.0000 300.0000 300.0000 300.0000
Max 300.0000 300.0000 300.0000 300.0000 300.0000 300.0000
Var 0 0 0 3.5902 × 10−28 0 9.2862 × 10−22

F4

Min 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000
Max 400.0000 400.0000 400.0000 400.0000 400.0000 400.0000
Var 0 0 0 1.3381 × 10−21 6.9650 × 10−26 2.1903 × 10−14

F5

Min 500.0000 500.0000 500.0000 500.0000 500.0000 500.0000
Max 500.0000 500.0000 500.9950 500.0000 500.9950 500.9950
Var 0 0 0.2640 0 0.1760 0.1760

F6

Min 600.0000 600.0000 600.0000 600.0000 600.0000 600.0000
Max 600.0002 600.0000 600.0164 600.0000 600.1573 600.0976
Var 5.1834 × 10−9 0 2.6128 × 10−5 8.0042 × 10−11 0.0025 0.0009
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Table 6. Cont.

Function Metric VSCSA CSA BES COOT WHO WOA

F7

Min 700.0000 700.0000 702.0163 700.0000 700.9950 700.0000
Max 700.9950 702.0163 702.2136 702.0163 704.7119 702.1708
Var 0.0990 0.4066 0.0027 1.0842 0.8721 0.5292

F8

Min 800.0000 800.0000 800.0000 800.0000 800.0000 800.0000
Max 800.0000 800.0000 804.9748 800.0000 800.9950 800.0000
Var 0 0 2.4639 5.7443 × 10−27 0.2310 4.8755 × 10−24

F9

Min 900.0000 900.0000 900.0000 900.0000 900.0000 900.0000
Max 900.0000 900.0000 900.0000 900.0000 900.0000 900.0000
Var 0 0 0 5.7443 × 10−27 0 8.2264 × 10−14

F10

Min 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000
Max 1017.0694 1000.6243 1074.9496 1000.3122 1058.5045 1016.7572
Var 71.9334 0.0444 465.5578 0.0097 337.6272 63.1675

F11

Min 1114.9624 1109.6715 1116.5732 1119.8084 1114.9368 1109.3504
Max 1198.3403 1204.5114 1207.1855 1144.6353 1204.4832 1396.9177
Var 663.0311 1057.8398 958.1988 70.7817 889.1115 1.0239 × 104

F12

Min 7.5856 × 104 2604.2573 3128.5674 1.4793 × 104 2.5114 × 103 1.9748 × 104

Max 9.7061 × 105 3.6182 × 104 4.0349 × 104 5.7144 × 105 3.8765 × 104 1.0693 × 107

Var 1.0431 × 10+11 1.1384 × 108 1.4756 × 108 4.7970 × 10+10 1.3494 × 108 1.48761× 10+13

F13

Min 3041.5027 1403.7263 1455.2229 1895.3341 1318.7813 2105.0934
Max 1.8156 × 104 2602.3091 3.1311 × 104 2.5062 × 104 1.3722 × 104 5.2478 × 104

Var 3.8814 × 107 1.2894 × 105 1.3522 × 108 6.6879 × 107 2.0050 × 107 2.3650 × 108

F14

Min 1472.2338 1431.3035 1453.1541 1423.2821 1429.3626 1431.4869
Max 2069.1500 1536.7192 2282.9765 1531.6019 2297.9909 5143.6059
Var 3.1788 × 104 1113.3125 6.3312 × 104 1214.3278 6.3780 × 104 2.2832 × 106

F15

Min 2102.0812 1561.6616 1514.5328 1530.4193 1501.4497 1755.3194
Max 8248.5418 2380.6647 1.7944 × 103 1835.0032 2035.3400 1.0501 × 104

Var 4.5125 × 106 6.0137 × 104 6405.4267 9095.8887 2.7671 × 104 7.1257 × 106

F16

Min 1785.9923 1605.1444 1614.9232 1604.0291 1614.1054 1703.0662
Max 2058.8581 1962.8200 2319.6410 1980.6734 1989.2964 2086.8136
Var 9501.8979 1.0527 × 104 3.8956 × 104 1.0911 × 104 1.9357 × 104 1.4474 × 104

F17

Min 1736.2506 1735.7399 1711.0671 1726.6221 1711.3399 1741.0307
Max 1828.8309 1774.8088 1988.8544 1784.6624 1841.2146 1894.6790
Var 756.9156 102.0301 1.1332 × 104 297.7841 2068.8956 2046.5244

F18

Min 2795.7978 1899.0415 1900.8064 5348.1482 1837.5630 3284.2186
Max 2.6628 × 104 4194.3397 9071.9493 3.2147 × 104 8313.3384 5.2491 × 104

Var 6.6663 × 107 4.9868 × 105 7.3939 × 106 6.8506 × 107 6.0211 × 106 3.3418 × 108

F19

Min 2323.2878 1914.0998 1919.9589 1906.5796 1905.3476 2080.4660
Max 5351.9820 2022.0524 2.6936 × 103 2656.9216 3.2933 × 104 2.4271 × 105

Var 1.2781 × 106 1145.4605 4.8170 × 104 5.2873 × 104 9.6078 × 107 5.3813 × 109

F20

Min 2118.6468 2025.8065 2016.9142 2004.9954 2020.8626 2052.4900
Max 2262.7814 2123.8647 2289.2135 2056.6773 2224.7862 2305.7172
Var 1758.7689 1230.6049 9242.5172 231.5231 3534.4072 5965.3790
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Table 7. Comparison of the Wilcoxon rank sum test results in CEC2017 functions.

Function CSA BES COOT WHO WOA

F1 0.00075 0.00075 0.51989 0.02384 0.00018
F2 0.00006 0.00006 0.03764 0.47100 0.00018
F3 N N 0.36812 N 0.00006
F4 N N 0.03498 0.01493 0.00006
F5 N 0.03359 N 0.16749 0.00023
F6 0.01493 0.57148 0.10957 0.39943 0.00069
F7 1.00000 0.00007 0.04981 0.00010 0.00012
F8 N 0.16808 0.36812 0.07672 0.00023
F9 N N 0.36812 N 0.00006
F10 0.00978 0.35909 0.00445 1.00000 0.96975
F11 0.52052 0.42736 0.34470 0.27304 0.01726
F12 0.00018 0.00018 0.04515 0.00018 0.42736
F13 0.00018 0.96985 0.42736 0.01402 0.03764
F14 0.00101 0.03121 0.00077 0.06402 0.30749
F15 0.00025 0.00018 0.00018 0.00018 0.00911
F16 0.00911 0.27304 0.00361 0.01726 0.47268
F17 0.01402 0.57075 0.00459 0.18588 0.14047
F18 0.00033 0.02113 0.27304 0.00283 0.12122
F19 0.00018 0.00033 0.00033 0.00283 0.05390
F20 0.00033 0.73373 0.00018 0.00220 0.34470

6. Engineering Applications
6.1. Three Bar Truss Design Problem

The three bar truss design problem is a civil engineering problem, and the weight of
the bar structure is the key problem in the Gear Train Problem which owns a problematic
and constrained space. The constraints of this problem are based on the stress constraints
of each bar. Figure 14 is the structural diagram of the three bar truss design problem. A1
A2 A3 respectively represents the length of the bar, P means the force value, L means the
space length.
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In this paper, basic CSA were selected for the CSA literature. Comparison algorithms 
and parameters selected the algorithm literature [50], with each method tested 30 times 
with 1000 iterations and a maximum of 60,000 number function evaluations (NFEs). The 
results of best, mean, minimum values, maximum values, and the standard deviation 
value are given in Table 8. 

Table 8. Results of three bar truss problem. 

Algorithm Min Max  Std  Avg 
WHO 263.8958433765  263.8958433765  1.2710574865 × 10−13 263.8958433765  
PSO 263.8958433827  263.8960409745  5.3917161119 × 10−5 263.8959010895  
GA 263.8958919373  263.9970875475  0.0252055577  263.9095296976  

AEFA 265.1001279647  280.9534461900  4.0558625686  271.8733092380  
FA 263.8958477145  263.8989975836  8.8455344984 × 10−4 263.8964634153  

GSA 263.8968857660  264.1972851298  0.0948941056  264.0059193538  
HHO 263.8959528570  264.0672685182  0.0467621287  263.9419743129  
MVO 263.8958747019  263.9000377233  9.8601397499 × 10−4 263.8967256362  
WOA 263.8959383525  265.6916186134  0.5029074306  264.3105859277  
SSA 263.8958435096  263.8998220362  7.2678747873 × 10−4 263.8962415757  

GWO 263.8959818300  263.9028435626  0.0014371714  263.8975822284  
CSA 263.8958433765  263.8958433765  6.4741204424 × 10−12 263.8958433765  

VSCSA 263.8958433765  263.9145156687  0.0037434952  263.8981466437  

The VSCSA Min value is the same as the CSA Min value and the WHO Min value. 
The VSCSA Max value is larger than the CSA Max value. WHO and CSA obtain the less 
Max value and the Avg value. WHO obtains the less Std value. AEFA obtains the worst 
Min value, the Max value, the Std value, and the Avg value. 
  

Figure 14. Three bar truss design problem.

This problem can be described mathematically as follows:

Consider
→
X = [x1x2] = [A1 A1]

Minimize f
(→

X
)
=
(

2
√

2x1 + x2

)
× L

Subject to g1

(→
X
)
= 2

√
2x1+x2√

2x2
1+2x1x2

× P− σ ≤ 0

g2

(→
X
)
= x2√

2x2
1+2x1x2

× P− σ ≤ 0

g3

(→
X
)
= 1√

2x2+x1
× P− σ ≤ 0

0 ≤ x1, x2 ≤ 1 P = 2KN/cm2 L = 100cm σ = 2KN/cm2



Biomimetics 2023, 8, 395 26 of 29

In this paper, basic CSA were selected for the CSA literature. Comparison algorithms
and parameters selected the algorithm literature [50], with each method tested 30 times
with 1000 iterations and a maximum of 60,000 number function evaluations (NFEs). The
results of best, mean, minimum values, maximum values, and the standard deviation value
are given in Table 8.

Table 8. Results of three bar truss problem.

Algorithm Min Max Std Avg

WHO 263.8958433765 263.8958433765 1.2710574865 × 10−13 263.8958433765
PSO 263.8958433827 263.8960409745 5.3917161119 × 10−5 263.8959010895
GA 263.8958919373 263.9970875475 0.0252055577 263.9095296976

AEFA 265.1001279647 280.9534461900 4.0558625686 271.8733092380
FA 263.8958477145 263.8989975836 8.8455344984 × 10−4 263.8964634153

GSA 263.8968857660 264.1972851298 0.0948941056 264.0059193538
HHO 263.8959528570 264.0672685182 0.0467621287 263.9419743129
MVO 263.8958747019 263.9000377233 9.8601397499 × 10−4 263.8967256362
WOA 263.8959383525 265.6916186134 0.5029074306 264.3105859277
SSA 263.8958435096 263.8998220362 7.2678747873 × 10−4 263.8962415757

GWO 263.8959818300 263.9028435626 0.0014371714 263.8975822284
CSA 263.8958433765 263.8958433765 6.4741204424 × 10−12 263.8958433765

VSCSA 263.8958433765 263.9145156687 0.0037434952 263.8981466437

The VSCSA Min value is the same as the CSA Min value and the WHO Min value.
The VSCSA Max value is larger than the CSA Max value. WHO and CSA obtain the less
Max value and the Avg value. WHO obtains the less Std value. AEFA obtains the worst
Min value, the Max value, the Std value, and the Avg value.

6.2. The Gear Train Problem

The cost of the gear ratio of the gear train is the key problem in the Gear Train Problem
which owns only four parameters in boundary constraints. Four parameters are discrete
because each gear should have an integral number of teeth in this problem. Discrete
variables add different complexities for this problem. Figure 15 is the structural diagram of
the Gear Train Problem. Four parameters are the numbers of teeth on the gears: nA, nB,
nC, and nD. A, B, C, and D mean centre points.
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30 independent runs. The results of the best, mean, minimum values, maximum values, and
the standard deviation value are given in Table 9. Comparison algorithms include CS [46],
FPA [50], FSA [51], SA [52], and SCA [14]. The VSCSA Min value is the same as the CSA
Min value. SCA obtains the worst Min value. SCA obtains the worst Max value, Std value,
and Avg value. The VSCSA Min value, Max value, Std value, and Avg value are larger
than those of CSA. There is no specific algorithm that can perfectly solve all engineering
problems. Different algorithms can be selected for different engineering problems.

Table 9. Results of the gear train design problem.

Algorithm Min Max Std Avg

CS 2.7008571489 × 10−12 8.7008339998 × 10−9 2.5469034697 × 10−9 2.5277681200 × 10−9

FPA 2.3078157333 × 10−11 1.3616491391 × 10−9 5.1819924289 × 10−10 5.5155436237 × 10−10

FSA 1.0935663792 × 10−9 4.4677248806 × 10−7 8.5620977463 × 10−8 4.7845971457 × 10−8

SA 2.3078157333 × 10−11 1.3616491391 × 10−9 4.8777877665 × 10−10 6.1683323242 × 10−10

SCA 3.6358329757 × 10−9 2.0768133383 × 10−1 4.9002989331 × 10−2 1.6613443644 × 10−2

CSA 2.7008571489 × 10−12 2.3576406580 × 10−9 5.5363138249 × 10−10 2.7032649321 × 10−10

VSCSA 2.7008571489 × 10−12 2.7264505977 × 10−8 7.3324954585 × 10−9 4.4138792095 × 10−9

7. Conclusions

In this paper, VSCSA is introduced to solve function problems. The proposed algo-
rithm uses the cosine function to enhance the CSA searching ability. VSCSA has strong
problem applicability and can effectively find the global optimum in a short iteration period,
greatly improving the solution accuracy. In conclusion, the proposed algorithm VSCSA
has significant advantages over CSA in CEC-2017 fitness values, iteration curves, box plots,
and search paths. In addition, the Wilcoxon test results statistically indicate differences
between VSCSA and other comparative algorithms. Engineering applications show that the
proposed algorithm has strong competitiveness. The above data and conclusions indicate
that the improvement strategy proposed in this paper has achieved good results, greatly
improving the performances of the original CSA. Many algorithms have been applied to
specific fields such as medicine, aerospace, and industry and have achieved good results.
Therefore, combining VSCSA with practical problems in specific fields is a direction for
future research.
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