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Abstract: Social robots represent a valid opportunity to manage the diagnosis, treatment, care,
and support of older people with dementia. The aim of this study is to validate the Mini-Mental
State Examination (MMSE) test administered by the Pepper robot equipped with systems to detect
psychophysical and emotional states in older patients. Our main result is that the Pepper robot is
capable of administering the MMSE and that cognitive status is not a determinant in the effective use
of a social robot. People with mild cognitive impairment appreciate the robot, as it interacts with
them. Acceptability does not relate strictly to the user experience, but the willingness to interact
with the robot is an important variable for engagement. We demonstrate the feasibility of a novel
approach that, in the future, could lead to more natural human–machine interaction when delivering
cognitive tests with the aid of a social robot and a Computational Psychophysiology Module (CPM).

Keywords: MMSE; social robotics; Pepper robot; human–robot interaction; older adult care; emotional
state recognition; cognitive impairment

1. Introduction

The COVID-19 pandemic highlighted an important need for digital tools. During this
period, hospitals, and health systems in general, implemented different strategies to handle
the crisis [1]. Especially since the end of the COVID-19 outbreak, the health system has
been experiencing a crisis in terms of available human resources, which was foreseen in
2017 when Liu et al. published the global market projection on the healthcare workforce
for 2030 [2]. In 2017, the World Health Organization (WHO) established a global strategy
for human resources in health named Workforce 2030 [3]. As reported by Liu et al. [2],
low- and middle-income countries face a lack of resources in delivering essential health
services, and in 2020, the SARS-CoV2 pandemic exacerbated these needs. One possible
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solution is the development of assistive technologies that can help healthcare systems cope
with these crises [2,4–6]. This is also important given the fact that according to the WHO,
the number of older adults > 60 years old will increase to up to 1.4 billion by 2030 and up
to 2.1 billion by 2050. The number of people with dementia is predicted to reach 75 million
in 2030 [7]. In this picture, according to the global action plan of response to dementia,
the development of assistive technologies like social assistive robots could be a strategic
asset in managing the diagnosis, treatment, care, and support of people with dementia [7,8].
In 2022, Sorrentino et al. [9] highlighted how robotic technology can be integrated into
individual care, enhancing the effectiveness and efficiency of healthcare services [9]. Pepper,
a humanoid social robot developed by the Japanese Aldebaran (United Robotics Group) [10]
company, is one of the most popular social robots available on the market. Introduced in
2014, Pepper is designed to interact with people in a natural and engaging manner, making
it suitable for a variety of applications, including customer service, education, healthcare,
and entertainment. Pepper is equipped with a set of sensors such as LED lights that
change color to express different emotions, as well as cameras, microphones, and speakers,
enhancing its communication capabilities. It has a touch-sensitive screen on its chest,
allowing users to interact through touch gestures. In retail environments, the ability of the
Pepper robot to recognize emotions is a critical aspect of its effectiveness in providing care.
In 2022, D’Onofrio et al. [11] presented the “EMOTIVE Project”, which focused on emotion
recognition by a Pepper robot, indicating a significant advancement in our knowledge of
the robot’s empathetic capabilities so that it can better interact with patients. In recent
years, social robots have been employed in different innovative research fields to enhance
people’s well-being, autonomy, and independence [12]. Several studies have contributed to
the understanding and validation of the feasibility and usability of social robots in various
healthcare settings. In 2021, Cobo Hurtado et al. [13] developed and validated a social robot
platform for physical and cognitive stimulation in elderly care facilities, demonstrating the
benefits of such technology in enhancing care services. A study conducted by Asl et al. [12]
improved the evidence-based methodology for using the MINI social robot with individuals
with dementia and mild cognitive impairment. The study highlighted its potential impact
on cognitive assessments and the provision of psycho-social and cognitive stimulation. In a
previous study, the interaction with the robot was measured at the end of the intervention,
which lasted for 1 month, with the Almere Model Questionnaire (AMQ) [14]. Usability and
acceptability are essential factors when designing technology for users with mild cognitive
impairment [15]. In 2020, Castilla et al. [16] conducted a usability study to evaluate the
design of information and communication technology (ICT) for individuals with cognitive
impairments, emphasizing the importance of user-centric approaches. Similarly, in 2018,
Holthe et al. [17] conducted a systematic literature review to explore the usability and
acceptability of technology for community-dwelling older adults with mild cognitive
impairment and dementia, providing insights into the tailoring of technology to suit
their needs. As the potential benefits of social robot interventions in mental healthcare
continue to be explored, in 2022, Guemghar et al. [18] conducted a scoping review on the
potential of social robot interventions in mental healthcare and identified the outcomes,
barriers, and facilitators associated with their implementation. Moreover, some studies
have focused on specific applications of social robots in cognitive impairment testing. In
2020, Martín Rico et al. [19] conducted an acceptance test for assistive robots, contributing
to the understanding of how patients perceive and interact with robotic technologies.
In 2020, Schüssler et al. [20] designed a study to evaluate the effects of a humanoid
socially assistive robot compared to tablet training on the psycho-social and physical
outcomes of persons with dementia, providing valuable insights into the potential benefits
of robotic interventions.

Objectives and Research Questions

The Mini-Mental State Examination (MMSE) [21,22] is widely utilized to screen for
dementia and detect mild cognitive impairment. Our study aims to confirm whether it
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is possible for the Pepper robot to administer the MMSE and examine the results that
are achieved. Following recent approaches [23] that integrate different technologies in
robotic scenarios, this study is set up in the framework of the SocIal ROBOTics for active
and healthy aging (SI-Robotics) project [24] and aims to test a robot equipped with an
innovative technology that can acquire the psycho-physiological and emotional state of the
patient during the execution of the test.

An approach based on the affective computing research paradigm can be fruitfully
applied to this scenario. A social robot with the ability to recognize emotions or psycho-
physiological states could provide the clinician with very detailed and important infor-
mation. Moreover, giving the robot the capability of discerning the Arousal State (ArS) of
the interlocutor could result in a better and more fluid interaction. Many scientific works
in the last decade have investigated the use of affective computing in several fields of
robotics from educational [25] to rehabilitative [26], as well as general social robotics [27].
The assessment of the ArS of the subjects can rely on several methods: speech recognition
and analysis, physiological signal analysis, facial expressions, body posture, and gesture
analysis [28–30].

Regarding the use of social robots and affective computing in the research field of
aging, the most recent work, published in 2023 by Yoshii et al., focused on the early
detection of mild cognitive impairment (MCI) through a conversation between the Pepper
robot and the patient [8]. The conversation was not a specific examination, as it focused on
prosodic and acoustic features, the duration of the response time, and jitter. Based on this,
the authors were able to classify people as having no cognitive impairment or MCI [8]. In
light of these studies, our research aims to contribute to the growing body of knowledge
on the feasibility and efficacy of social robotic technology enriched with systems to detect
psycho-physiological and emotional states. By building upon the existing evidence, we
seek to evaluate the potential of social robots as a valuable tool for cognitive impairment
testing and patient care, ultimately benefiting elderly individuals and the healthcare system
as a whole.

The primary objective of this study is to evaluate the differences between the scores
obtained in the MMSE test performed in the traditional way by a psychologist or other
health professional and those obtained by administering the same test using the robotic
system described in the following sections. As a secondary objective, we investigate the
relevance of psycho-physiological and emotional aspects in the performance of the test.
We also test the usability and user experience, as perceived by the patients involved in
this study.

2. Materials and Methods
2.1. Experimental Protocol

We enrolled 20 patients aged over 60 with an Activity Daily Living (ADL) [31] index
≥4 and with a traditionally computed MMSE [21,22] score >18. The exclusion criterion was
the inability to sign the informed consent. The experimental scenario was set up within the
healthcare facilities of the Casa Sollievo della Sofferenza Research Hospital in San Giovanni
Rotondo, Italy. More specifically, the patients were recruited from the hospitalized older
adults in the Rehabilitation Medicine Unit. The clinical protocol was approved by the
local Ethical Committee on the 14th of July 2021 with the N 111/CE code number. The
experimental scenario consisted of the following phases:

• At first, we verified that each participant agreed to take part in the study by signing
the informed consent for interacting with the Pepper robot and for video recording.
A psychologist explained the purpose of the study and introduced the Pepper robot.
The psychologist ensured that the patient met the inclusion criteria. As per the ap-
proved clinical protocol, patients underwent a set of questionnaires aimed at assessing
various dimensions that could arise from their interaction with the Pepper robot in the
context of the robotic MMSE administration scenario. The tests included the Activity
of Daily Living (ADL) [31], Instrumental Activity of Daily Living (IADL) scale [32],
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Mini-Mental State Examination (MMSE) [21,22], Exton–Smith Scale (ESS) [33], Mini
Nutritional Assessment (MNA) [34], Short Portable Mental Status Questionnaire
(SPMSQ) [35], and Cumulative Illness Rating Scale Comorbidity Index (CIRS-CI) [36].
These tests were used to compute the Multidimensional Prognostic Index (MPI) [37],
whose values range from 0 to 1, with the following risk classification scale:

1. 0 to 0.33 low prognostic mortality risk at 1 year (MPI-1);
2. 0.34 to 0.66 moderate risk (MPI-2);
3. 0.67 to 1.00 severe risk (MPI-3).

• Then, on a different day from the one on which the administration of the tests took
place and in accordance with the needs of the clinical ward, each patient was in-
troduced to the robot. Each participant was led into the room designated for the
experiment. Patients with motor difficulties were assisted in reaching the setting in a
wheelchair. The psychologist made the participant comfortable. The dialogue then
continued with the administration of the MMSE test by the robot.

• The interaction with the robot was evaluated by administering 5 different tests to each
participant at the end of the session. The tests were:

1. The Almere Model Questionnaire (AMQ) to assess acceptability [14];
2. The System Usability Scale (SUS) questionnaire to assess usability [38];
3. The Robot Acceptance Questionnaire (RAQ) [39–41];
4. The Godspeed test to assess likability [42,43];
5. The User Experience Questionnaire (UEQ) [44,45].

This set of tests enabled a multifaceted evaluation of the robotic-mediated MMSE
sessions. The questionnaires are described in more detail in Table 1.

Table 1. Standard questionnaires used to evaluate the interaction with the robot.

Questionnaire Description

Almere Model Questionnaire (AMQ)

The questionnaire assesses the intention of use,
anxiety, trust, enjoyment, and ease of use.

The responses are measured on a Likert scale, with
values ranging from 1 to 5, and then an average

value for each domain is calculated [14].

Godspeed

The questionnaire evaluates the appearance and
design of the robot in terms of anthropomorphism,

animacy, likability, perceived intelligence,
and perceived safety. The responses consist of

opposing adjectives as items, per domain, and are
measured on a Likert scale from 1 to 7 [43].

Robot Acceptance Questionnaire (RAQ)

This questionnaire evaluates the acceptance of the
robot based on its pragmatic, hedonic,

and attractiveness qualities, the attributed and
perceived age of the robot, and the tasks it can

perform. It is divided into different sections (at least
6) and scored on a Likert scale from 1 to 5 [39].

User Experience Questionnaire (UEQ)

The questionnaire aims to assess the pragmatic and
hedonic quality of a specific product. Similar to

Godspeed, it is designed with opposing adjectives as
items, per domain, and is measured on a Likert scale

from 1 to 7 [44].

System Usability Scale (SUS)

The SUS test is a ten-item questionnaire. The scores
vary from 0 to 100 and are measured on a Likert

scale (from 1 to 5). The SUS questionnaire is capable
of acquiring a subjective assessment of usability.
A value above 68 is considered acceptable [38].
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To enable the Pepper robot to interact with the users, it was equipped with the Robo-
Mate [46] system developed by Behaviour Labs [47]. RoboMate is a software platform run
by humanoid robots like Pepper and it is recognized as a medical device for rehabilita-
tion. The RoboMate app, through its graphic user interface in Figure 1, can help with the
following activities:

• Simplify the use of robots by clinicians, therapists, and educators;
• Realize an easy and intuitive platform for human–machine interactions;
• Handle e-learning content and “edutainment”;
• Manage the delivery of content to the user;
• Track and store results of the executed sessions and patient data;
• Generate reports and statistics on the results of the executed sessions.

RoboMate is tailored to determine the behavior of a humanoid robot and hosts a tablet
device on its chest as a reinforcing and feedback component through which a person can
respond and interact during the session. The RoboMate system includes a mobile app for
tablets, which enables the therapist to:

• Remotely control the movements and voice of the robot;
• Trigger predefined animations, games, and questions;
• Record answers;
• Tele-present a session using a mic and camera (Telepresence), in Figure 2, on the left;
• Manage patient data (sociodemographic, clinical data, and test session information),

in Figure 2, on the right.

Figure 1. RoboMate app for remotely controlling the Pepper robot.
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Figure 2. Managing users’ sessions remotely and viewing results on RoboMate: a screenshot.

The psychologist then controls the robot with the tablet, which keeps the user engaged
during the administration of the MMSE. Using its synthesized voice, the robot asks the
user to answer the MMSE questions; as the user answers, the psychologist records the
correctness of the answer on the tablet, as represented in the Figure 3.

Figure 3. Mini-Mental State Examination using Pepper robot with the supervision of a psychologist.
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The study included the evaluation of the patient’s psycho-physiological state during
the MMSE performed by Pepper. For this purpose, a Computational Psychophysiology
Module (CPM) was used, developed specifically for this purpose by Next2U. The CPM
is a hardware platform consisting of an infrared (IR) image sensor, a visible (VIS) image
recording device, and a computational unit based on the Jetson Nano system, which hosts
artificial intelligence-based algorithms. The CPM was housed on the robot using a harness
that allowed the vision module (IR + VIS sensors) to be positioned below the tablet that
the Pepper robot housed on its trunk. From this position, the face of the patient, who was
sitting about 1 m away from the robot, was framed. The control of the CPM was delegated
to a remote interface controlled by the psychologist through a tablet, who was present
in the room, together with the robot and the patient, to guarantee the success of the test.
In particular, the interface allowed for the start of thermal IR video recording and framing
control, as well as providing service information on the status of the CPM. The technical
features of the acquisition module of the CPM are summarized in Table 2.

Table 2. Technical features of the CPM sensing unit mounted on Pepper.

VIS Device IR Device

Technical Data Intel RealSense D415 FLIR Boson 320 LWIR
Weight 4.54 g 7.5 g w/o lens
Dimensions 99 × 20 × 23 mm 21 × 21 × 11 mm w/o lens
Spatial Resolution 720 × 720 px 320 × 256 px
Framerate 10 Hz 10 Hz

The CPM allowed for the synchronous acquisition of IR and VIS videos of the faces of
the patients during the administration of the cognitive tests. The system has been validated
and used in several research studies [27,48,49].

The cameras were rigidly mounted in a case, which fixed their relative positions.
The camera system was calibrated using stereoscopic calibration, which allowed for

the transformation of the coordinates of the 2D VIS image space into the coordinates of the
2D IR image space. Due to the optical co-registration of the optics and a face alignment
model, the CPM was able to extract 68 facial landmarks from the VIS image feed and project
the set of points onto the IR domain [50].

The regions of interest (ROIs) of the subject’s face in the IR were detected as polygonal
masks with a selection of landmarks as vertices. The ROIs used in this study were the
region of the glabella and the region of the nose tip.

The preprocessing pipeline is illustrated in Figure 4.

Figure 4. Preprocessing pipeline.

In Figure 5, the Graphical User Interface (GUI) that controls the CPM is shown.
Importantly, 12 out of 20 individuals were considered for further analysis due to

technical issues related to the acquisition or synchronization of the data.
The CPM module was equipped with algorithms from affective computing based on

artificial intelligence and computer vision methods [51]. Specifically, for the purpose of the
present study, the focus was on the estimation of valence and arousal of the Affective State
(AS) of the subjects during the execution of the cognitive tests that relied on the circumplex
model approach.

The circumplex model is a psychological framework used to understand and catego-
rize human emotions, interpersonal relationships, and personality traits. It was developed
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by Russel [52] and has been widely used in the fields of psychology, counseling, and inter-
personal communication.

Figure 5. GUI of the CPM system. IR and VIS images with the fiducial 68 face landmarks are shown,
respectively, in the left and right frames of the GUI.

The circumplex model represents the following concepts on a circular diagram,
with two main axes:

1. X-Axis (Horizontal): This axis represents the degree of activation or intensity of an
emotion or trait. Emotions and traits can vary from low activation (calm, relaxed) to
high activation (excited, anxious).

2. Y-Axis (Vertical): This axis represents the valence or emotional tone of the emotion or
trait. Emotions and traits can vary from positive valence (pleasant, happy) to negative
valence (unpleasant, sad).

The circular diagram is divided into different sectors or quadrants, each representing
specific emotions, traits, or interpersonal styles. The exact arrangement and labels of these
sectors can vary depending on the specific model or theory being used, but they generally
follow the principles of the circumplex model.

The algorithm for the estimation of the AS was built upon the implementations of
the classifiers for the Autonomic Neural System (ANS) valence state and the ArS based on
IR imaging.

A 1D time-series thermal signal, measured in counts, was retrieved from each ROI by
averaging over the pixels within the ROI. The two thermal signals were then fed to the
valence and ArS classifiers.

The valence classifier was based on a Support Vector Machine (SVM) with a linear
kernel relying on the IR signal from the nose tip, which was highly sensitive to ANS activity.
The classifier operated on overlapping windows of 20 s, with a delay of 2 s between adjacent
windows. The classifier provided the estimated valence value of each block, with possible
values being “sympathetic”, “parasympathetic”, or “NA” when no estimate could be made.
Hence, each valence output state refers to the 20 s prior to the estimation. Notably, in this
study, the “sympathetic” class was considered indicative of negative valence, whereas the
"parasympathetic" class was associated with positive valence [53,54].

The classifier was trained on the following set of features of the 20 s window:

• Signal mean from the 1st third of the window;
• Signal mean from the last third of the window;
• Difference between the mean of the 1st and 2nd thirds of the window;
• Signal entropy;
• Ratio of the 95th percentile to the 5th percentile;
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• First-order polynomial fit coefficients of the fit curve over the 2nd and 3rd thirds
of the window;

• Second-order polynomial fit coefficients of the fit curve over the window;
• Ratio between the spectral power of the signal in the bands 0.04 Hz–0.15 Hz and

0.15 Hz–0.4 Hz.

The ArS algorithm was based on previous results reported by Kosonogov et al. [55].
The model feeds on the thermal signal coming from the nose tip and the glabella. The clas-
sifier operates on overlapping windows of 8 s, with a delay of 1 s between each window.
The algorithm estimates the ArS by classifying the average 1st-time derivative of the dif-
ference between the thermal signal of the nose tip and that of the glabella over a period
of 8 s.

The length of the window was selected to take into account the temporal delay of the
thermal response associated with the increase in arousal conditions [25,56]. The derivative
was computed from the slope of the minimum squares line fit of the z-normalized difference
signal over a window of 8 s. The thresholds of the slope were defined using a data-driven
approach to classify the arousal response (high, medium, and low ArSs).

The AS algorithm combines the valence state and the arousal state in a valence–arousal
plane analog to the circumplex circle of effect [57]. The algorithm discriminates 6 states:

• High arousal—positive valence (excited state);
• High arousal—negative valence (tense state);
• Medium arousal—positive valence (focused state);
• Medium arousal—negative valence (cautious state);
• Low arousal—positive valence (calm state);
• Low arousal—negative valence (bored state).

To assign the AS, the algorithm takes the time at which the current ArS value is emitted
and pairs it with the simultaneous valence value, providing an output update every 2 s,
thus allowing for real-time AS monitoring.

The real-time AS classification pipeline is shown in Figure 6.

Figure 6. The realtime AS classification pipeline based on the valence and arousal classifiers, fed with
thermal IR signals.

2.2. Descriptive Data Analysis for Usability Test Score

Statistical analysis was performed with R [58] version 4.2.23. The normal distribution
of the population was assessed using the Shapiro–Wilk test. The results confirmed that
due to the very small sample size, most of the parameters were not normally distributed,
with some exceptions. Non-parametric tests are considered the best choice due to the
sample size, despite some exceptions. The Mann–Whitney test was performed to assess
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any differences in distribution between the two groups, whereas the Kruskal–Wallis test
was used in cases involving three or more groups. The Wilcoxon paired test was employed
to assess significant differences in the MMSE scores when administered with and without
the robot. Bivariate correlation analysis was conducted using the Spearman method
due to the sample size. Some of the graphics and figures were created using Microsoft
Excel (Microsoft Office Professional Plus 2016), whereas others were generated using the
R software version 4.2.23.

2.3. Data Analysis Processing for the CPM

To ensure that the analysis remained unaffected by the particular question posed,
due to the small sample size, the average effective response across all the questions was
considered for each participant. The subsequent 10 s window from the question was
divided into 5 non-overlapping 2 s segments to determine the average modulation of
the signals and states following a question and detect the response pattern of the ANS
following the interaction with the robot.

Notably, all the points for which the classification resulted in null values were dis-
carded from the statistical analysis.

For each segment, the difference between the number of sympathetic and parasym-
pathetic states was calculated; thus, the mean difference was calculated for all patients in
the time segment under consideration. To determine the statistical significance of this data,
the normalized mean of the number of sympathetic states and parasympathetic states per
time segment was calculated and a Student’s t-test was performed.

Regarding the AS, the global effect of the human–robot interaction (HRI) experience
was analyzed by averaging the affective response during a temporal window of 10 s
following the question. Specifically, ASs characterized by medium or high arousal, particu-
larly those showing positive valence, were considered significant states of an interaction
characterized by attention on the part of the patient.

3. Results

We recruited 23 patients but we only included 20 patients in the analysis due to missing
data. The total number of male users was 85 % (with a male/female rate of 17/3). The mean
age was 75.35 ± 7.86 years. On average, the educational level in years was 9.95 ± 4.63.
The educational level did not differ among the groups analyzed. The years of education
did not seem to affect usability and acceptability, except for a moderate negative correlation
in some domains in the AMQ: Perceived Enjoyment (PENJ) (ρ = −0.446) and Perceived
Sociability (PS) (ρ = −0.528); the novelty domain in the User Experience Questionnaire
(UEQ) (ρ = −0.462); and the Perceived Intelligence (PI) domain of Godspeed (ρ = −0.527),
all with p-values < 0.05.

In Table 3, we summarize the demographic characteristics of the cohort, presenting
functional and cognitive information. To validate the case study, the MMSE score obtained
by the psychologist through the traditional method was compared with that acquired
by the Pepper robot using the non-parametric Wilcoxon test for paired data. Obtaining
a p-value = 0.111 is not significant compared to a Type I error α of 0.05. Therefore, no
substantial differences were reported between the traditional administration of the MMSE
test and its administration through the Pepper robot following the adopted protocol. This
result confirms similar findings in the literature [59] and represents a first step toward
validating a potential robotic system that can autonomously administer this type of test in
the future, even without the direct involvement of a healthcare operator.

On average, the recruited patients had a low 1-year prognostic mortality risk. Table 3
presents the values obtained for some statistical variables (mean ± standard deviation (SD)
or median (interquartile range (IQR))) concerning the responses provided by the patients
to the administered questionnaires.
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Table 3. Demographic and cognitive characteristics of the cohort of 20 patients involved
in the experiment.

Variables (Min–Max) N. 20

Traditional MMSE (0–30) 26.35 [23.56–28.78]
Robotic MMSE (0–30) 26.20 [23.00–27.15]

ADL (4–6) 6 [6–6]
IADL (0–8) 8 [7.25–8.00]

SPMSQ (0–10) 1.00 [2.00–1.00]
CIRS-CI (0–3) 2.00 [1.75–3.00]

MNA (<17–≥24) 22.01 ± 2.13
ESS (5–20) 18.00 [18.00–18.00]
MPI (0–1) 0.17 [0.17–0.25]

Legend: Activity of Daily Living (ADL); Instrumental Activity of Daily Living (IADL); Mini-Mental State
Examination (MMSE); Exton-Smith Scale (ESS); Mini Nutritional Assessment (MNA); Short Portable Mental
Status Questionnaire (SPMSQ); Cumulative Illness Rating Scale Comorbidity Index (CIRS-CI); Multidimensional
Prognostic Index (MPI). If data are normally distributed, mean ± SD is reported; otherwise, median (IQR).

3.1. Almere Model Questionnaire

Regarding the AMQ, it can be concluded that the patients achieved an average score
of around 3.00 for almost all constructs, showing higher average scores in the domain of
Perceived Sociability (PS) and a notably very high value for Anxiety. It is important to note
that in this construct, the scoring for Anxiety was reversed, meaning that higher values
were associated with lower anxiety levels. There was an average score for the remaining
domains, which fell within the range of 3.00 and 3.50, except for Perceived Adaptability
(PAD), Perceived Enjoyment (PENJ), and Perceived Ease of Use (PEOU), but Intention
to Use (ITU), Facilitating Condition (FC), and Social Presence (SP) were slightly lower in
this case Table 4.

Table 4. Results obtained through the Almere Model Questionnaire.

AMQ Items (Min–Max) N. 20

Anxiety (ANX) 4.63 [3.94–5.00]
Attitude (ATT) 3.22 ± 1.25

Facilitating Conditions (FC) 2.30 ± 0.91
Intention to Use (ITU) 2.83 [1.00–4.00]

Perceived Adaptability (PAD) 3.50 [1.58–4.17]
Perceived Enjoyment (PENJ) 3.40 ± 1.27

Perceived Ease of Use (PEOU) 3.13 ± 1.01
Perceived Sociability (PS) 3.71 ± 1.08

Perceived Utility (PU) 3.03 ± 1.13
Social Influence (SI) 3.00 [1.38–4.00]
Social Presence (SP) 1.80 [1.00–2.80]

Trust 3.50 [1.00–4.00]
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR).

The Almere questionnaire employs a Likert scale, and the majority of the constructs
are positively oriented, except for Anxiety and two other items, which needed reverse
scoring [14]. The reliability measured by the Cronbach’s α test was above 0.7, except for
Anxiety (α = 0.618) and Facilitating Condition (α = 0.398). In the case of Anxiety, the low
score in terms of reliability was due to some users fearing they may have broken something
without proper assistance. None of them perceived the robot as frightening. The same
sensation was reported in the FC domain, where users often reported feeling unequipped
to use it alone without proper professional support. The user perception can be explained
in terms of the length of the interaction with the robot, as it lasted only as long as the
test was administered. As a result, the patients did not perceive themselves as capable of
autonomously using it.
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In Figure 7, we can observe the interrelationship among the domains of the AMQ.
The correlation matrix was calculated using the Spearman method due to the sample size.
Positive correlations suggest that as one variable increases, the other tends to increase,
while for negative correlations, as one variable increases, the other tends to decrease.

*

*

*

* *

*

*

*

*

*

**

**

**

**

**

** **

**

** **

**

***

***

***

***

***

***

***

***

*** ***

***

***

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

A
N

X

A
T

T

F
C

IT
U

P
A

D

P
E

N
J

P
E

O
U

P
S

P
U

S
I

S
P

ATT

FC

ITU

PAD

PENJ

PEOU

PS

PU

SI

SP

TRUST

Figure 7. The correlation matrix among the domains of the AMQ: colors represent the degree of
association between variables. Blue has been used to indicate positive correlations close to +1,
while red is associated with negative correlations close to −1. * p-value < 0.05; ** p-value < 0.01;
*** p-value < 0.001.

3.2. Godspeed

The Godspeed score measures the level of safety perceived by the patients, i.e., the
perceived level of danger and comfort during the interaction with the robot [42]. This level
of safety is expressed through opposing adjectives to which the patient responds, based
on their perception of the robot, with a Likert scale score from 1 to 7. Patients perceived
the Pepper robot as intelligent and likable, but they did not attribute anthropomorphic
characteristics to it, considering it, in any case, an artificial entity Table 5. These results
align with the Social Presence domain of the AMQ, as the items presented in that domain
generally explore how users perceive the robot to be a human or real person.

Table 5. Results of Godspeed test.

Godspeed’s Domains N. 20

Anthropomorphism (ANTP) 2.10 [1.55–3.25]
Animation (ANM) 2.80 ± 1.11
Likeability (LIKE) 4.60 [3.40–4.85]

Perceived Intelligence (PI) 4.00 [3.40–5.00]
Perceived Safety (PSa) 3.66 [2.83–3.66]

If data are normally distributed, mean ± SD is reported; otherwise, median (IQR).
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3.3. Robot Acceptance Questionnaire

R The Robot Acceptance Questionnaire (RAQ), a test developed by the H2020 project
Empathic (see [60]), is a test used to comprehensively measure both the overall and specific
acceptability of a robot [39–41]. The test consists of a total of four clusters divided into six
sections: Section 3 [40] includes four sub-sections: pragmatic quality (PQ), hedonic and
robot identity quality (HQI), hedonic and feeling quality (HQF), and attractiveness (ATT).
Clusters 3 and 4 encompass the other four sections, with a particular focus on Section 6,
which investigates the robot’s speech and communication (Figure 11). These sections are
evaluated on a Likert scale, ranging from 1 (strongly agree) to 5 (strongly disagree) [40].
The sections listed above include both positive and negative responses, and the scores for
the negative items have been reverse-coded. This means that in the final scoring, low scores
indicate positive evaluations of the robot, whereas high scores indicate negative evaluations.
As shown in Table 6, the average scores were low for all the analyzed domains, which
means that the robot was perceived as useful, effective, practical, clear, and controllable
(pragmatic qualities); moderately original, creative, presentable, and aesthetically pleasing
(hedonic qualities); and it evoked positive emotions and was capable of engaging the user.

Table 6. Results obtained from the RAQ (Robot Acceptance Questionnaire).

RAQ’s Domains N. 20

Pragmatic Quality (PQ) 2.35 [1.75–3.38]
Hedonic Quality—Identity (HQ-I) 2.50 ± 0.94
Hedonic Quality—Feeling (HQ-F) 2.15 [1.35–2.90]

Attractiveness (ATTr) 2.59 ± 0.97
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR).

In addition to the results presented earlier, the following figures (Figures 8–14) show
some graphs obtained in response to specific questions from the RAQ [39,40]. As mentioned
earlier, the RAQ is divided into four main clusters [39]. Cluster 1 has the goal of collecting
some socio-demographic information: Section 1 (ease of use and frequency of use of devices)
and Section 2 (willingness to interact with the robot). The remaining clusters (3 and 4)
are composed of Section 4 (aim to know the perceived age of the robot), Section 5 (items
that evaluate which tasks participants would entrust to the robot or occupations: from
1(Not suitable at all) to 5 (Very suitable)), and the previously mentioned Section 6. This
information can help us better understand the characteristics of the sample of patients
involved in the study and their perspectives regarding the use of the robot.

Commenting on the results presented above, it appears that:

• The use of digital devices by patients is infrequent (Figure 8, left);
• Smartphones are the most commonly used digital tool. In general, patients reported

that they did not know if the use of other digital devices was difficult or not (Figure 8,
right).
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Figure 8. Familiarity of patients with digital devices with respect to the ease of use.
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Figure 9. Willingness of the user to interact with the robot.

• There was a high number of patients who expressed a positive attitude toward the
use of the robot and a willingness to interact with it (Figure 9);

• The robot’s occupations appear to be an interesting aspect: housework and welfare
were the most quoted occupations for Pepper (Figure 10). The target population
appears to have had difficulty in identifying a unique occupation for the robot.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

OCCUPATIONS

Housework

Security and Protection

Front Office

Welfare

Figure 10. Occupations of participants that they would entrust a robot with.

• The robot’s speech abilities appear to be a critical aspect (Figure 11);
• Although the willingness to interact with the robot was not influenced by the age

attributed to it (p-value = 0.655), Pepper conveyed the idea of an anthropomorphic
robot with a “youthful” appearance: four of the participants perceived it as a child
and four of them perceived it as being aged between 10 and 20 years (Figure 14). There
were also no significant differences between the perceived age and the impact on the
willingness to interact.
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understandable when it speaks*
I find it difficult to understand what 

it says
The robot expresses itself naturally 

and effortlessly*
The robot has a truly atypical way of 

speaking

Figure 11. Scores of patient responses to RAQ Section 6 items. * Positive items reverse coded.

The above results cannot be extended to the entire elderly population because of
the small number of patients involved in this study. However, they can be useful for
characterizing the group of patients involved.

Figure 12. Influence of robot’s age.

Figure 13. Cross-tab between the two previous questions.
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4 4
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UP TO 10 YEARS BETWEEN 10 AND 20 
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OLDER THAN 20 YEARS

HOW MANY YEARS DO YOU ATTRIBUTE TO THE ROBOT?

Figure 14. Responses to the question: How many years do you attribute to the robot?

3.4. User Experience Questionnaire

The User Experience Questionnaire score does not produce an overall score for the
user experience [44]. The scale ranges from −3 to +3, as reported in Table 7. In general,
a value > +0.8 represents a positive evaluation [44]. In this case, for each domain, we
obtained a positive evaluation, except for the stimulation (Table 7). In terms of reliability,
we obtained a Cronbach’s α of below 0.7 for the domains of efficiency, dependability,
and novelty. Interestingly, a moderate correlation between these domains and the SUS
score is evident in Table 7, but it was weaker in the case of stimulation, attractiveness,
and perspicuity. The participants did not perceive the robot as a novelty, but this seems not
to have had a relationship with usability.

Table 7. Results obtained for the UEQ (User Experience Questionnaire) and correlation with the SUS.

UEQ’s Domains N. 20 Cronbach’s α
SUS’s

Spearman ρ
p-Value

Attractiveness 1.92 [0.13–2.58] 0.853 0.490 *
Perspicuity 2.12 [0.75–2.75] 0.829 0.540 *
Efficiency 1.23 ± 1.38 0.542 0.700 ***

Dependability 1.50 [0.63–2.00] 0.423 0.720 ***
Stimulation 0.64 ± 1.95 0.827 0.600 **

Novelty 1.03 ± 1.21 0.159 0.290
Legend: System Usability Scale (SUS). If data are normally distributed, mean ± SD is reported; otherwise, median
(IQR). The transformed score ranges from −3 (indicating extremely poor) to +3 (representing exceptionally good).
* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.

In Figure 15, the ranges of the User Experience Questionnaire (UEQ) scores are
shown [44].

3.5. Differences in Usability among Patients’ Categories

Furthermore, an analysis was conducted using the non-parametric Kruskal–Wallis test
to measure any differences in the distribution of the usability and acceptability test results
based on the following categories:

• Patients’ levels of experience with technology;
• Patients’ genders;
• Cognitive status of the patients.
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Figure 15. The ranges of scores for UEQ responses. The transformed score ranges from −3 (indicating
extremely poor, in red) to +3 (representing exceptionally good, in green).

While no significance was found for the first two categories, regarding cognitive status,
the following categories were considered:

1. Cognitive impairment (CI; MMSE < 24.0);
2. Mild cognitive impairment (MILD CI; MMSE < 27.0 and ≥ 24.0);
3. No cognitive impairment (NO CI; MMSE ≥ 27.0).

No differences in the results on usability and acceptability were found to be significant
for the cognitive categories. These results are reported in Tables A1–A6 in Appendix A.
The data reported in Table A1 demonstrate how the patients were distributed in terms of
cognitive status in relation to age, years of education, and gender. There were no differences
between cognitive status and each category. The only clear difference that emerged among
the three groups of patients with different levels of cognitive status was regarding the ESS
test (p-value = 0.021) (Table A2). There were no differences in the scores of AMQ’s domains
among groups with different cognitive statuses, as reported in Table A3. There were no
differences among groups for the SUS score (p-value = 0.756).

The values recorded for the Godspeed test and the domains investigated by the Robot
Assistant Questionnaire (RAQ) do not appear to be significantly different with respect to
the cognitive status of the patients (Tables A4 and A5). In the case of the User Experience
Questionnaire, the score was the same across the three categories (Table A6).

The patients’ cognitive statuses do not seem to be a distinguishing factor in their
interaction with the Pepper robot.

3.6. Differences in the Willingness to Interact with the Robot

We investigated the patients’ willingness to interact with the robot through the ques-
tions in Section 2 of the RAQ, in correlation with the UEQ, Godspeed, and domains outlined
in Section 3 of the RAQ. Regarding the response categories for the willingness to interact,
the groups were organized by consolidating the ‘Possible’ and ‘Probable’ responses into
one category, and the ‘Improbable’ and ‘Impossible’ responses into another one. The scores
ranged from 1 (Possible) to 5 (Impossible); we re-numbered them from 1 (Probable) to
3 (Improbable) for the subsequent analyses.

There was a statistically significant difference (p-value = 0.03) in the distribution
between the genders of the participants and the willingness to interact with the robot,
although the result could not be generalized due to the disproportionate number of males
and females, as well as the sample size. No differences were highlighted between the
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willingness to interact among the cognitive test scores and in terms of years of education
(p-value = 0.4832). The same result was found across the scores of the various domains
of the AMQ. However, a negative correlation was found between certain domains of the
AMQ and the willingness to interact with the robot (Table 8).

Table 8. Spearman correlation between the domains of the AMQ and the willingness to interact with
the robot.

Domains of the AMQ Spearman ρ p-Value

Attitude (ATT) −0.580 0.008 **
Intention to use (ITU) −0.560 0.011 *
Perceived Adaptability (PAD) −0.570 0.009 **
Perceived Enjoyment (PENJ) −0.590 0.006 **
Perceived Utility (PU) −0.500 0.026 *

Legend: * if p-value < 0.05; ** if p-value < 0.01.

Table A7 shows the differences in the SUS scores for the willingness to interact. It is
clear that the score is higher when the patient assumes that their interaction with the robot
Pepper could be possible or probable rather than not possible or improbable. This trend is
confirmed by a negative linear correlation between the SUS score and the willingness to
interact (ρ = −0.670; p-value = 0.001).

The agreement between the willingness to interact with the robot and attractiveness,
which represents the robot’s charm and appeal to the patient; efficiency, which is the
perceived efficiency of the robot by the patient; dependability, which is the perceived
reliability of the robot; and stimulation, which is how motivated the patient feels to use the
robot, is statistically significant (Table A8). The higher the score, the greater the likelihood
of interaction with the robot.

In Table A9, the results regarding the Godspeed domains are presented. In all the
domains of Godspeed, the higher the score, the greater the likelihood of interaction with
the robot. In Table A10, the results regarding the RAQ domains are presented. On the
contrary, due to the inverse Likert scale, the lower the score, the greater the likelihood of
interaction with the robot.

3.7. CPM Results

With regard to the valence, the t-test showed a significant difference between the
sympathetic and parasympathetic valence during the 4–6 s segment following the questions
(p-value = 0.001). For this time segment, the difference between the number of sympathetic
and parasympathetic responses was 10.7% in favor of parasympathetic responses. For the
rest of the temporal segments, no significant p-values emerged. The average differences are
summarized in Figure 16.

Regarding the AS detection, the percentages of the occurrence of the estimation states
are reported in Table 9.

It emerged that 94% of the ASs measured were indicative of medium or high arousal,
50.48% of the ASs measured were characterized by both medium-high arousal and positive
valence, and 75.5% of the total number of states were characterized by medium arousal.

Table 9. Occurrence of the estimation states.

Negative Valence Positive Valence

High Arousal and
Negative Valence (Tense) = 7.92%

High Arousal and
Positive Valence (Excited) = 9.57%

Medium Arousal and
Negative Valence (Cautious) = 35.60%

Medium Arousal and
Positive Valence (Focused) = 40.91%

Low Arousal and
Negative Valence (Bored) = 6.01%

Low Arousal and
Positive Valence (Calm) = 0.00%
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Figure 16. The average differences between sympathetic and parasympathetic responses.

4. Discussion

This study investigated the feasibility of employing an assistive robot to administer
cognitive tests in clinical practice. In particular, the robot Pepper was used to administer
the MMSE to a geriatric population. The quality of the human–robot interaction (HRI)
was monitored by administering questionnaires and evaluating the patients’ physiological
responses. Specifically, the CPM was able to provide real-time monitoring of the valence,
arousal condition, and AS.

The results demonstrated that Pepper was able to successfully administer the MMSE
to patients since the scores obtained in the test were not statistically different from those
obtained when the MMSE was administered through standard in-person delivery by a
healthcare specialist. This result is in accordance with previous findings reported in the
literature [59], highlighting the potentiality of the employment of assistive robots for the
administration of cognitive tests. We found that there was no difference in the scores
of acceptability and usability in the presence or absence of cognitive deficits. This could
confirm that the cognitive status of the patients may not affect the usability and acceptability
of the user experience.

The questionnaires administered showed the good acceptability of the artificial agent
by the patients. In fact, the AMQ highlighted low levels of anxiety during the HRI, and
the RAQ revealed the good acceptability of the robot. These results were confirmed by the
CPM-based AS evaluation. This can be attributed to the fact that ASs such as anxiety can
modulate the physiological state [61]: the prevalence of parasympathetic system activity
with respect to sympathetic activity in the 4–6 s segment after the HRI is compatible with the
hypothesis that between 4 and 6 s, after having received the question and elaborated on the
answer, the patient feels comfortable with the administration of the test by the robotic agent.
Moreover, 94% of the ASs measured are characterized by medium or high arousal, and
50.48% of the total affective conditions measured are denoted by both medium-high arousal
and positive valence. Importantly, 75.5% of the total states are characterized by medium
arousal, independently of the valence state. This can be related to the patient’s attention
when listening to the questions asked by the robot and producing the answers. These
estimated ASs showed a collaborative attitude aimed at carrying out the task requested by
the robot.
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Nevertheless, the willingness to interact with the robot had an important impact on the
user experience. At the same time, the willingness to interact appeared to influence domains
such as the perception of anthropomorphism, animacy, likability, perceived intelligence,
and safety by the patient. It had an impact on the evaluation of the hedonic and pragmatic
qualities of the robot and at the multi-level measure of the attractiveness that results
from Pepper.

As shown in Table A9, patients with a probable willingness to interact appreciated
the robot Pepper with respect to the others, attributing human-like qualities to it, and this
benefited the overall interaction with the robot. Furthermore, contrasting resulted in
the scores on likability, which was the highest among all levels of willingness to interact
(Table A9), and it is not possible to determine whether the willingness to interact with the
robot could be a cause or an effect of the perception of the robot’s intelligence.

However, it is worth noting that the Godspeed test demonstrated that although
Pepper was perceived as likable and intelligent, it was not considered anthropomorphic
by the patients. This aspect could be related to the low comprehensibility of the robot’s
speech during the interaction, as shown by the RAQ Section 6 score concerning the robot’s
speech abilities.

In general, among the population under examination, there seems to be unanimous
agreement regarding the characteristics of the robot Pepper and the likelihood of future
interaction with it. Perhaps in a larger sample, these differences would be accentuated or
reduced. On the other hand, it appears that the willingness of a patient to interact with
a new technology like a humanoid robot is a crucial factor for them to use the robot or
perceive the experience as positive during the interaction. However, we can assume that
the manifested anthropomorphism of the Pepper robot may be a key point in patients’
perceptions of the robot.

In a previous work by Szczepanowski et al. [62], the authors addressed the topic of
perception toward social robots and their relationship with education. In our study and in
our specific population, education did not influence the usability and the willingness to
interact with the robot, but a lower educational level seemed to influence the perception
of the novelty, intelligence, and perceived enjoyment and sociability of the robot. Other
studies may confirm these findings.

4.1. Limitations

Two of the main limitations of this study are the poor intelligibility of the robot’s voice
and the latency with which the robot sometimes reacted to the patient’s responses. These
problems often led patients to ask the psychologist to repeat the question because they
did not understand or were looking for feedback after having given the answer. This
was reflected in the sporadic failure of the AS estimation due to signal losses by the CPM.
Further studies should focus on the improvement of the spontaneity of the HRI and the
fluidity of the communication to make the interaction more human-like.

Another limitation is related to the small study sample (low statistical power) and its
gender imbalance. Moreover, the environmental setting in which the study was conducted
may have influenced the performance of the patients, the HRI, and, consequently, the qual-
ity of the test administration. Hence, several environments should be used for testing to
investigate the generalization of the results. From this perspective, it is worth highlighting
that assistive robots could be employed in home environments, facilitating telemedicine
and remote health monitoring. It is very important to investigate the replicability of the
approach adopted in this study in a domestic setting. However, in the current state of
development, specialized personnel are needed to properly control and manage the robot
and the CPM. Therefore, further efforts should be directed to make the system user-friendly
and suitable for non-trained users and caregivers for at-home usage.

Eventually, equipping the robot with the ability to perceive the AS of the patients and
modify its behavior accordingly could enable the robot to offer emotional support to the
patient and make the administration of cognitive tests more human-like.



Biomimetics 2023, 8, 475 21 of 30

4.2. Costs and Effectiveness

An analysis or evaluation that takes into account both the costs and effectiveness
of the Pepper robot in a healthcare context could be of interest. The aim would be to
determine whether resource allocation is efficient and whether the benefits obtained justify
the costs incurred.

In the healthcare field, this type of analysis could be used to assess the relationship
between the costs of the robot and the outcomes achieved in terms of the improved
department and/or outpatient activity, as well as patient health, if applicable.

The goal would be to find an optimal balance between the costs incurred and the
outcomes achieved to maximize the efficiency and effectiveness of using a robot like
Pepper to deliver cognitive tests. In this context, an interesting experiment was conducted
by D’Onofrio et al. [63] involving a humanoid robot that autonomously performed and
managed the execution of the multidimensional assessment phase of the Comprehensive
Geriatric Assessment (CGA), with the aim of assisting the healthcare professional [63,64].

Our results appear to be promising in a hospital and rehabilitation context, where the
goal is to streamline and reduce diagnosis and follow-up times.

4.3. Future Perspectives

The results obtained in our study offer many paths of investigation to further develop
the system and generate value from it. First, as digital skills are constantly progressing in
our society, we expect future patients to obtain higher scores in all test domains, which can
be a facilitating factor for the diffusion of this technology.

Our results open up the possibility of saving time for healthcare professionals. In fact,
a robot that performs cognitive tests at different times, even in unusual settings, i.e., at home
or far from clinics, will generate valuable data that clinicians can exploit when physically
facing the patient in follow-up visits.

From a more research-oriented perspective, the availability of a CPM module coupled
with a robot can pave the way for new studies on (a) the variability of MMSE results
depending on environmental factors, and (b) tracking the emotions of a patient while a
cognitive test is being executed.

Grasping patient emotion during an MMSE can also be useful for adapting the robot
interaction by modifying its voice tone, speech, and intensity of movements in response to
the emotional state of the patient so that a more natural and easy interaction can occur.

Lastly, the use of a social robot to administer tests like the MMSE could pave the way
for the standardization of results so that they cannot be affected by the “dependence on the
operator” characteristic, which is one of the issues with the traditional way of delivering
cognitive tests.

5. Conclusions

This study demonstrated the feasibility of employing the Pepper robot equipped with
the CPM for administering the MMSE in clinical practice. The results demonstrated the
acceptance of the robotic system by the patients, supporting the hypothesis that robotic
agents can be successfully used in such contexts. Moreover, the cognitive state did not
affect the usage of the robot: the robot was generally appreciated for its likability and
presumed age. Lastly, the different degrees of willingness to interact with the robot among
patients align with their perceived acceptability, usability, and user experience.

Further studies should improve the spontaneity of the interaction, allowing the robot
to adapt its actions autonomously in accordance with the AS of the patients. The findings of
this study could pave the way for the large-scale employment of robots in both outpatient
environments and for at-home usage.
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NO CI No Cognitive Impairment
PAD Perceived Adaptability
PENJ Perceived Enjoyment
PEOU Perceived Ease of Use
PI Perceived Intelligence
PQ Pragmatic Quality
PSa Perceived Safety
PS Perceived Sociability
PU Perceived Utility
RAQ Robot Acceptance Questionnaire
ROIs Regions Of Interest
SI Social Influence
SI-Robotics SocIal ROBOTics for active and healthy aging
SP Social Presence
SPMSQ Short Portable Mental Status Questionnaire
SUS System Usability Scale
SVM Support Vector Machine
UEQ User Experience Questionnaire
VIS Visible

Appendix A

Table A1. Distribution of demographic characteristics according to cognitive status.

Variables CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

Age
Mean ± SD 73.7 ± 7.1 76.0 ± 8.5 76.1 ± 8.7 0.768

Range (Min–Max) 63–84 64–88 64–88

Sex
Female/Male 1/5 1/4 1/8 0.902

% Male 83% 80% 89%

Education (years)
Mean ± SD 11.3 ± 4.2 9.8 ± 4.1 9.1 ± 5.4 0.654

Range (Min–Max) 5–16 5–15 2–18

Legend: Cognitive impairment (CI); mild cognitive impairment (MILD CI); no cognitive impairment (NO CI).
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically significant
p-values.

Table A2. Distribution of each test that makes up the MPI value according to cognitive status.

Variables CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

ADL
Median (IQR) 6.00 [0.00] 6.00 [1.00] 6.00 [0.00] 0.173

IADL
Median (IQR) 6.50 [5.25] 8.00 [5.00] 8.00 [0.00] 0.073

SPMSQ
Median (IQR) 2.00 [0.75] 2.00 [1.00] 1.00 [0.00] 0.161

CIRS–CI
Median (IQR) 3.00 [1.50] 2.00 [1.00] 2.00 [1.00] 0.811

MNA
Mean ± SD 22.2 ± 2.7 17.5 - 25.0 21.6 ± 2.4 0.898

Range (Min–Max) 18.0–24.0 22.1 ± 1.8 20.0–25.0
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Table A2. Cont.

Variables CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

MPI
Median (IQR) 0.21 [0.27] 0.25 [0.16] 0.17 [0.08] 0.323

ESS
Median (IQR) 17.50 [2.50] 18.00 [0.00] 18.00 [0.00] 0.021

Legend: Activity of Daily Living (ADL); Instrumental Activity of Daily Living (IADL); Exton–Smith Scale (ESS);
Mini Nutritional Assessment (MNA); Short Portable Mental Status Questionnaire (SPMSQ); Cumulative Illness
Raing Scale Comorbidity Index (CIRS-CI); Multidimensional Prognostic Index (MPI); cognitive impairment (CI);
mild cognitive impairment (MILD CI); no cognitive impairment (NO CI). If data are normally distributed, mean ±
SD is reported; otherwise, median (IQR). In bold statistically significant p-values.

Table A3. Distribution of each Almere Model Questionnaire’s domains according to cognitive status.

Domains of the
AMQ

CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

Anxious (ANX)
Median (IQR) 4.25 [0.75] 5.00 [0.50] 4.75 [1.25] 0.640

Attitude (ATT)
Mean ± SD 3.22 ± 1.19 3.07 ± 1.52 3.3 ± 1.3 0.876

Range (Min–Max) 1.0–4.33 1–5 1.33–4.67

Facilitating Condition (FC)
Mean ± SD 2.5 ± 0.89 1.8 ± 0.45 2.44 ± 1.07 0.275

Range (Min–Max) 1.0–3.5 1.0–2.0 1.0–4.0

Intention to Use (ITU)
Median (IQR) 2.83 [2.33] 3.00 [3.00] 2.67 [2.67] 0.983

Perceived Adaptivity (PAD)
Median (IQR) 3.50 [2.83] 3.67 [2.33] 3.33 [2.00] 0.973

Perceived Enjoyment (PENJ)
Mean ± SD 3.8 ± 1.21 2.64 ± 1.40 3.56 ± 1.18 0.195

Range (Min–Max) 2.2–5.0 1.0–4.2 2.2–5.0

Perceived Ease of Use (PEOU)
Mean ± SD 3.8 ± 0.82 2.6 ± 0.91 2.98 ± 1.02 0.096

Range (Min–Max) 2.4–4.8 1.2–3.4 1.6–4.8

Perceived Sociability (PS)
Mean ± SD 3.33 ± 1.28 3.50 ± 1.02 4.08 ± 0.98 0.375

Range (Min–Max) 1.75–5.0 2.5–5.0 2.0–5.0

Perceived Utility (PU)
Mean ± SD 3.11 ± 1.29 2.87 ± 0.51 3.07 ± 1.35 0.850

Range (Min–Max) 1.0–4.67 2.33–3.33 1.0–5.0

Social Influence (SI)
Median (IQR) 3.00 [1.50] 3.00 [3.00] 3.50 [3.00] 0.688

Social Presence (SP)
Median (IQR) 1.90 [1.85] 1.00 [0.80] 2.40 [1.60] 0.421

Trust
Median (IQR) 2.50 [3.75] 1.00 [2.00] 4.00 [1.00] 0.222

Legend: Cognitive impairment (CI); mild cognitive impairment (MILD CI); no cognitive impairment (NO CI).
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically significant
p-values.
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Table A4. Distribution of results in the different dimensions comprising the Robot Acceptance
Questionnaire (RAQ) test with respect to the cognitive status of the patients involved in the study.

Domains of the
RAQ

CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

Pragmatic Quality (PQ)
Median (IQR) 1.90 [0.88] 2.30 [1.10] 2.60 [2.00] 0.675

Hedonic Quality–Identity (HQ-I)
Mean ± SD 2.78 ± 1.15 2.32 ± 0.76 2.41 ± 0.95 0.842

Range (Min–Max) 1.4–4.5 1.7–3.6 1.4–3.8

Hedonic Quality–Feeling (HQ-F)
Median (IQR) 2.40 [1.88] 1.90 [0.60] 2.50 [1.30] 0.952

Attractiveness (ATTr)
Mean ± SD 2.70 ± 1.27 2.60 ± 0.63 2.50 ± 1.01 0.927

Range (Min–Max) 1.3–4.6 2.1–3.7 1.4–4.2

Legend; Cognitive impairment (CI); mild cognitive impairment (MILD CI); no cognitive impairment (NO CI).
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically significant
p-values.

Table A5. Distribution of scores of the GODSPEED test’s dimensions with respect to the cognitive
status of the patients involved in the study.

Domains of
Godspeed

CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

Antropomorphism (ANTP)
Median (IQR) 2.30 [2.20] 1.80 [1.20] 2.60 [1.20] 0.474

Animacy (ANM)
Mean ± SD 3.11 ± 1.06 2.37 ± 1.30 2.83 ± 1.09 0.524

Range (Min–Max) 1.83–4.5 1.0–3.6 1.0–4.17

Likeability (LIKE)
Median (IQR) 4.00 [2.30] 4.60 [0.00] 4.80 [0.80] 0.810

Perceived Intelligence (PI)
Median (IQR) 4.00 [1.70] 4.60 [1.20] 3.80 [1.60] 0.849

Perceived Safety (PSa)
Median (IQR) 3.33 [1.17] 3.67 [0.67] 3.67 [0.33] 0.434

Legend: Cognitive impairment (CI); mild cognitive impairment (MILD CI); no cognitive impairment (NO CI).
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically significant
p-values.

Table A6. Distribution of results in the different dimensions comprising the User Experience Ques-
tionnaire (UEQ) test with respect to the cognitive status of the patients involved in the study.

Domains of the UEQ CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

Attractiveness
Median (IQR) 1.60 [2.30] 2.00 [1.00] 1.30 [2.30] 0.827

Perspicuity
Median (IQR) 2.10 [0.80] 2.20 [3.30] 1.75 [2.00] 0.860

Efficiency
Mean ± SD 1.08 ± 1.80 0.80 ± 1.53 1.55 ± 1.03 0.817

Range (Min–Max) −2.25–2.75 −1.50–2.25 0.00–3.00

Dependability
Median (IQR) 1.50 [1.30] 1.50 [1.30] 1.50 [1.30] 0.929
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Table A6. Cont.

Domains of the UEQ CI
N. 6

MILD CI
N. 5

NO CI
N. 9 p-Value

Stimulation
Mean ± SD 0.75 ± 2.00 0.45 ± 2.40 0.67 ± 2.00 0.973

Range (Min–Max) −2.00–3.00 −3.00–3.00 −2.00–3.00

Novelty
Median (IQR) 1.50 [1.10] 1.50 [2.00] 0.50 [1.30] 0.511

Legend: Cognitive impairment (CI); mild cognitive impairment (MILD CI); no cognitive impairment (NO CI).
If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically significant
p-values.

Table A7. Analysis of different levels of willingness to interact with the robot with the System
Usability Scale (SUS) score.

Willingness to Interact with the Robot

Probable I Don’t Know Improbable p-Value

N. 13 N. 3 N. 4

System Usability Scale (SUS)
Median (IQR) 70.00 [17.50] 55.00 [17.50] 51.25 [26.87] 0.033

Legend: If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically
significant p-values.

Table A8. Analysis of different levels of willingness to interact with the robot and the domains of the
User Experience Questionnaire (UEQ)

Willingness to Interact with the Robot

Domains of the UEQ Probable I Don’t Know Improbable p-Value

N. 13 N. 3 N. 4

Attractiveness
Median (IQR) 2.50 [1.17] −1.67 [1.41] 0.75 [1.79] 0.018

Perspicuity
Median (IQR) 2.25 [1.00] −1.25 [1.75] 2.25 [2.63] 0.115

Efficiency
Mean ± SD 1.96 ± 0.69 -0.58 ± 1.46 0.19 ± 1.28 0.004

Range (Min–Max) 0.75–3.00 −2.25–0.50 −1.50–1.50

Dependability
Median (IQR) 2.00 [0.75] 0.25 [0.50] 0.75 [1.00] 0.005

Stimulation
Mean ± SD 1.48 ± 1.54 −1.58 ± 0.72 −0.44 ± 2.18 0.027

Range (Min–Max) −1.50–3.00 −2.00–0.75 −3.00–1.50

Novelty
Median (IQR) 1.50 [0.75] 0.50 [0.25] 0.38 [0.63] 0.111

Legend: If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically
significant p-values.
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Table A9. Analysis of different levels of willingness to interact with the robot and the domains of
the Godspeed.

Willingness to Interact with the Robot

Domains of
Godspeed Probable I Don’t Know Improbable p-Value

N. 13 N. 3 N. 4

Antropomorphism (ANTP)
Median (IQR) 3.00 [1.80] 1.40 [0.40] 1.50 [0.35] 0.016

Animacy (ANM)
Mean ± SD 3.23 ± 1.04 2.17 ± 0.44 1.88 ± 1.02 0.025

Range (Min–Max) 63–84 63–84 63–84

Likeability (LIKE)
Median (IQR) 4.80 [0.40] 1.20 [0.70] 4.60 [0.35] 0.016

Perceived Intelligence (PI)
Median (IQR) 4.60 [1.00] 2.40 [1.20] 2.90 [2.05] 0.021

Perceived Safety (PSa)
Median (IQR) 3.67 [0.00] 3.00 [0.83] 2.67 [0.83] 0.171

Legend: If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically
significant p-values.

Table A10. Analysis of the domains of the Robot Assistant Questionnaire (RAQ) through varying
levels of willingness to interact with the robot.

Willingness to Interact with the Robot

Domains of the
RAQ Probable I Don’t Know Improbable p-Value

N. 13 N. 3 N. 4

Pragmatic Quality (PQ)
Median (IQR) 2.00 [0.90] 3.60 [1.20] 4.00 [0.53] 0.011

Hedonic Quality—Identity (HQ-I)
Mean ± SD 2.00 ± 0.61 3.83 ± 0.65 3.10 ± 0.74 0.007

Range (Min–Max) 1.40–3.20 3.20–4.50 2.20–3.80

Hedonic Quality—Feeling (HQ-F)
Median (IQR) 1.40 [1.00] 4.10 [0.90] 3.30 [1.38] 0.006

Attractiveness (ATTr)
Mean ± SD 2.13 ± 0.66 3.80 ± 1.06 3.15 ± 0.82 0.016

Range (Min–Max) 1.30–3.60 2.60–4.60 2.40–4.00

Legend: If data are normally distributed, mean ± SD is reported; otherwise, median (IQR). In bold statistically
significant p-values.
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