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Abstract: Climbing manufacturing robots can create a revolutionary manufacturing paradigm for
large and complex components, while the motion control of climbing manipulation-oriented robots
(CMo-Rs) is still challenging considering anti-slippage problems. In this study, a CMo-R with full-
scenery climbing capability and redundant load-bearing mobility is designed based on magnetic
adsorption. A four-wheel kinematic model considering the slipping phenomenon is established. An
adaptive kinematic control algorithm based on slip estimation using Lyapunov theory is designed
for uncertain inclined planes. For comparison, the traditional PID-based algorithm without slip
consideration is implemented as well. Numeric simulations are conducted to tackle the trajectory
tracking problems for both circular and linear trajectories on the horizontal plane (HP), 50◦ inclined
plane (50◦ IP), 60◦ inclined plane (60◦ IP), and vertical plane (VP). The results prove that our approach
achieves better tracking accuracy. It demonstrated applicability in various climbing scenarios with
uncertain inclined planes. The results of experiments also validate the feasibility, applicability, and
stability of the proposed approach.

Keywords: climbing manipulation; skid-steering; adaptive control; mobile robotics

1. Introduction

Robotized intelligent manipulation is a growing trend in the manufacturing of large
and complex components in aviation, aerospace, marine engineering, and even bionic
applications [1]. Climbing manufacturing robots can create a revolutionary manufacturing
paradigm for large and complex components [2]. Climbing robots have been successfully
used for inspection [3], maintenance [4], and manufacturing tasks [5] in various fields.
For climbing manipulation, the movability of the platform is one of the most important
requirements. To move flexibly on the surface to be manufactured according to craft
requirements, the technologies, e.g., adhesion mechanism and skid-steering control, should
be reviewed first.

Regarding the adhesion technologies of climbing robots, researchers have conducted
extensive studies and achieved significant results [6]. Based on different adhesion methods,
existing climbing robots can mainly be classified as having negative pressure adhesion,
biomimetic adhesion, and magnetic adhesion. Negative pressure adhesion climbing robots
can adapt to various wall materials [7]. Biomimetic adhesion climbing robots achieve wall
adhesion through mechanical devices such as claws, needles, and spikes [8] or through the
use of adhesive materials between the robot and the wall [9]. Magnetic adhesion can be
divided into two main types: electromagnetic adhesion and permanent magnet adhesion.
The Spanish Institute of Industrial Automation developed an electromagnetic adhesion
hexapod climbing robot with effective load of 100 kg. However, its own weight is as
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high as 220 kg, which prevents it from entering narrow and restricted spaces, making
it impractical for on-site operations [10]. As for skid-steering technology, it is one of
the most commonly used locomotion control methods [11]. The exploitation of the skid-
steering method finds extensive applications across various domains, including the skid-
steering control of climbing manipulation-oriented robots (CMo-Rs). A critical aspect of
CMo-Rs involves trajectory tracking, as the tracking accuracy significantly impacts the
overall reliability [12,13]. However, skid-steering control of CMo-Rs is challenging due to
systematical nonlinear dynamics and the complex slip phenomenon.

Obviously, the essence of skid-steering control for a CMo-R is to improve its trajectory
tracking ability. To tackle this problem, various trajectory-tracking techniques have been
explored and can be broadly classified into geometric-based and model-based controllers.
Geometric-based controllers guide the robot along a desired path by considering geometric
relationships between its position, orientation, and reference trajectory. Examples include
PID [14], pure pursuit [15], Stanley controller [16], and follow-the-carrot [17]. Model-
based controllers rely on accurate mathematical models of robots to predict the response
corresponding to control inputs and disturbances and generate appropriate control ac-
tions. Model-based controllers can be further categorized into two categories: (a) robust
controllers, e.g., sliding mode controller (SMC) [18], adaptive controller [19], backstep-
ping controller [20], H-infinity controller [21], and fuzzy logic [22], which ensure stability
and satisfactory performance despite uncertainties. (b) Optimal controllers, e.g., model
predictive controller (MPC) [23], linear quadratic regulator (LQR) [24], iterative learning
controller [25], differential flatness-based controller [26], and nonlinear MPC [27] controller,
which optimize specific performance criteria while adhering to constraints and system dy-
namics. Understanding the strengths and trade-offs of these trajectory-tracking techniques
is essential for choosing the most suitable approach in climbing manipulation-oriented
applications.

However, most of these methods are only suitable for mobile robots that move on
the ground, while only a few of them involve control ability for climbing robotics, es-
pecially for climbing manipulation-oriented trajectory tracking. The ability to overcome
slippage is the core feature that is different from common mobile robots. To enhance
the ability of anti-slippage, various approaches, e.g., mechanical-based friction enhance-
ment [4], tire-mass-based suction improvement [28], flexible adhesion strengthening [29],
and terrain-adaptability-based magnetic optimization [30], etc., are proposed. Since climb-
ing manipulation-oriented robotics are frequently used in industry operations, precision
and security are of paramount importance. Although numerous classic control algo-
rithms [31], advanced control methods [32], and artificial intelligence-based control frame-
works [33] have been proposed recently, the comprehensive control method, which provides
simple and robust yet effective anti-slippage ability, still needs further explorations.

The study focuses on airborne climbing and operation scenarios such as large-scale
steel structures of ships, bridges, and petrochemical storage tanks, etc., aiming to investigate
the impact of side slip on trajectory tracking for CMo-Rs. To achieve this, we developed
a kinematic model that considers slip ratio and designed a simple yet reliable adaptive
controller. With backstepping at the kinematics level, we were able to significantly reduce
lateral deviation and improve the system stability and convergence rates during trajectory
tracking, including on uncertain inclined planes. Furthermore, we were able to demonstrate
asymptotic stability using the Lyapunov theory, effectively proving the stability of our
proposed control system. Our approach was successfully tested through both simulation
and experiments, demonstrating its applicability, feasibility, and stability. Overall, our
study made four significant contributions: (1) a magnetic-adhesion-based mobile platform
is designed for climbing manipulation with full-scenery climbing ability and redundant
load-bearing mobility. (2) A simplified decoupling strategy, which transforms the originally
complex climbing steering problem in 3D space into a planar skid-steering problem that
only considers slip, is proposed for the skid-steering control. (3) An adaptive kinematic
controller is developed for climbing manipulation on uncertain inclined planes based on
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skid-steering kinematics considering slip. (4) The control law for slip estimation is also
designed, ensuring stable and robust tracking performance of CMo-Rs.

This paper is organized as follows: Section 2 outlines the mechanical structure of
the CMo-R. Sections 3 and 4 cover the skid-steering kinematics and controller design
considering the slip. In Section 5, we implement the proposed kinematic controller and
simulate it on different inclined planes with unknown tilt angles. Lastly, Section 6 presents
the conclusions drawn from this study.

2. Mechanical Structure
2.1. Mechanical Design

The CMo-R under consideration is manufactured by Drivedream Machinery Equip-
ment Co., Ltd in Shanghai. To ensure the CMo-R can move smoothly and complete the
designated tasks on ferromagnetic surfaces, the mechanical structure of the robot mainly
consists of two magnetic adhesion wheels, as shown in Figure 1a,b. The robot can carry
70 kg in weight and it is designed for climbing manipulation. In practice, mobility and
trajectory-tracking performance are essential for climbing manipulation. For most cases,
linear trajectory tracking is much more practical for climbing manipulation. Thus, linear
trajectory tracking is paid more attention in this paper.
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Figure 1. Mechanical structure of CMo-R. (a,b) Prototype of CMo-R; (c) Magnetic adhesion wheel and
concealing front panel; (d) Magnetic adhesion wheel, showing one side wheel and rotary actuator.

2.2. Magnetic Adhesion

The adhesion mechanism system utilizes permanent magnets to achieve full-scenery
climbing ability and redundant load-bearing mobility. The magnetic adhesion wheel
comprises various components, such as a wheel frame, wheels, rotary actuators (RAs),
electro-hydraulic actuator (EHA), magnetic adhesion module (MAM), force sensor, and
displacement sensor. For a better understanding of these components, please refer to
Figure 2. The outer layer of the magnetic adhesion wheel is coated with polyurethane,
while the inner layer is made of an aluminum alloy hub. The polyurethane coating directly
contacts the wall surface to provide the necessary friction. The wheels are powered by 48
VDC and driven by RAs. The MAM comprises three groups of permanent magnets: end
permanent magnets (EPMs), middle permanent magnets (MPMs), and bottom permanent
magnets (BPMs). All magnetic groups are designed using the Halbach array and are located
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on the inner side of the wheels. The centers of the three groups of permanent magnets lie
on the axis of the wheel, creating an enveloping angle of 135◦, which ensures sufficient
magnetic adhesion force on both sides of the internal angle of the walls. To ensure the
safe movement of the robot, the magnetic force of each permanent magnet is constantly
monitored in real time using force sensors.
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climbing without load; (f–j) full-scenery climbing with a 40 kg load.

2.3. Full-Scenery Climbing

The CMo-R boasts an innovative magnetic adhesion structure that allows it to climb
any surface, even under a weight of up to 70 kg. As seen in Figure 2, the robot can move
seamlessly from a horizontal to a vertical surface, crawl across a ceiling, and return to
the ground. Its magnetic adhesion module design is ideal for traversing noncontinuous
surfaces, making it a valuable tool for welding, polishing, rust removal, and other onboard
climbing manipulations. However, its rigid structure limits its ability to adjust orientation
on continuous surfaces, requiring precise skid-steering control. Subsequent sections will
delve into the skid-steering control issue of the CMo-R.

2.4. Skid-Steering Control Architecture

In Section 2.3, it was shown that the CMo-R has excellent wall-climbing capabilities
and can bear heavy loads. Due to the low-speed and high-precision requirements of wall-
climbing manipulations, the motion control of the CMo-R on three-dimensional surfaces
is similar to that on the HP. However, there is a concern about slipping on the plane. To
address this issue, a simplified decoupling strategy has been proposed in this paper for the
skid-steering control system, as depicted in Figure 3. The strategy involves transforming the
complex problem of wall-climbing steering in 3D space into a planar skid-steering problem
that only considers the effects of slipping. This simplification allows for accurate control of
wall-climbing steering using conventional algebraic methods and planar differential motion
control models, without relying on complex theoretical tools, e.g., Lie groups/Lie algebra.
It simplifies the overall control system by separating the problem of 3D wall-climbing
control into the modeling of planar skid steering and control of planar trajectory tracking.
Specifically, the modeling of planar skid steering takes slip effects into account. The control
of planar trajectory tracking is explored in detail in the following sections.
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Figure 3. The simplified decoupling strategy for onboard climbing manipulation.

3. Skid-Steering Kinematics

The CMo-R robot comprises three fundamental modules: the drive module, the control
module, and the sensor module. These modules are interlinked and securely attached to the
rigid body of the robot. The motion and stability of the robot are facilitated by four identical
wheels, each driven by an individual DC-geared motor. It is postulated that all motors
generate the same rotational speed at a given input voltage. In this section, we establish both
the kinematic constraints and the slip-based kinematic model. Slippage can significantly
impact the performance of a four-wheel skid-steering wall-climbing robot, especially when
equipped with an airborne manipulator. Slippage occurs when the wheels lose traction
with the surface on which the robot is moving, and this can have several effects:

• Reduced climbing efficiency: Slippage can decrease the robot’s ability to climb walls
efficiently. If the wheels slip on the climbing surface, the robot may struggle to
maintain a stable grip, making it difficult to ascend or descend the climbing wall
smoothly.

• Loss of maneuverability: The ability to control and maneuver the robot is compromised
when slippage occurs, especially when the airborne climbing manipulator is mounted.
The external load affects the system’s efficacy, and the intended movements and
commands cannot be accurately translated into actions if the wheels are slipping,
leading to decreased overall performance.

• Decreased stability: Slippage can affect the stability of the robot. The airborne manipu-
lator adds an additional layer of complexity, and any instability in the base can further
complicate the control of the manipulator, hence design of an accurate control law is
crucial. This is important for precise positioning and accurately tracking the trajectory.
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This study addresses the incorporation of slippage effects into the robot kinematic
model and emphasizes slip estimation in designing a robust controller. Furthermore, the
design of the airborne manipulator considers the overall stability and control of the robot’s
optimal performance.

3.1. Nonholonomic Kinematics Constraints

As illustrated in Figure 4a, a fixed global coordinate frame is established, denoted as
XaOaYa, while the local coordinate frame fixed to the mobile robot is defined as XbObYb,
with its origin located at the robot’s center of mass. Key parameters include the separation
between the wheels, denoted by 2d, and the wheelbase marked as l = l1 + l2. The radius
of each wheel is represented by r. θa is the heading of the robot in the local coordinate
frame with respect to the global coordinate frame. The linear and angular velocities of left
and right side wheel pairs are respectively represented by (vl , vr) and

( .
φl ,

.
φr
)
. The overall

translational velocity of the nonholonomic robot system is v and the rotational velocity
is ω.
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The interrelation between the velocities of the wheels and those of the robot is defined
in the following equations: { .

φl = ω1 = ω4 = ωl.
φr = ω2 = ω3 = ωr

v =
(

ωr+ωl
2

)
r

ω =
(

ωr−ωl
2d

)
r

(1)

Unlike conventional vehicles, the CMo-R achieves turning through differential speeds
of its side wheel pairs. However, this differential speed control and the reduced traction
in wheel–ground interactions can lead to a phenomenon known as ‘slip’ causing the
wheels to slide instead of rolling. Consequently, controlling the motion of the CMo-
R becomes challenging, particularly when navigating nonlinear paths. Therefore, we
address this challenge by incorporating the slip factor into the kinematics model to enhance
maneuverability. By considering the slip ratio of the right and left side wheel pairs, we
aim to improve the robot’s ability to follow desired paths and achieve more precise motion
control. The slip ratio si is a crucial parameter that reflects the difference between the actual
linear velocity of a wheel r

.
φi and the effective linear velocity vi after slip. The slip ratio for

the right and left side wheel pairs is defined as [34]:sr =
r

.
φr−vr
r

.
φr

sl =
r

.
φl−vl
r

.
φl

∵ 0 ≤ si ≤ 1 (2)
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where r is the wheel radius,
.
φr and

.
φl are the angular velocities of the right and left

wheels. vl and vr are the corresponding linear velocities after slip. The slip parameter is
expressed as {

pr =
1

1−sr
pl =

1
1−sl

∵ 0 ≤ si ≤ 1 (3)

where pl and pr represent the left and right wheel pairs’ slip parameters. It is important to
note that, in Equation (3), if the slip ratio si becomes 1, the slip parameter pi will approach
infinity. This implies that the wheel–ground traction is completely lost, and the control
system may face challenges in accurately predicting and controlling the wheel’s motion
producing effective linear velocity after slip vi is equal to zero, resulting in a scenario where
the wheels are not moving relative to the ground. This situation indicates that the wheels
are experiencing maximum skidding or slipping and no forward motion is produced by
them. Therefore, it is crucial to maintain enough wheel–ground traction to minimize the
slip effect.

This study employs a path-following controller to regulate the motion of the mobile
robot, utilizing calculated translational and rotational velocities. A detailed discussion
regarding the computation and implementation is presented in a subsequent section.

3.2. Kinematic Model Considering Slip

The positive quadrant of the geodetic coordinate system {Xa, Ya, Za}, and the vehicle
coordinate system {Xb, Yb, Zb} are defined as shown in Figure 4b. The posture of the robot
in the global frame qa(t) = [xa(t), ya(t), za(t)] represents the abscissa, ordinate, and heading
with the control inputs u(t) = [v(t), w(t)]T representing the linear and angular velocities.
Let qd(t) = [xd(t), yd(t), zd(t)] be the desired pose to follow the reference trajectory ξd
centered in the global coordinate frame, while the vector e(t) = qa(t)− qd(t) describes
the longitudinal, lateral, and yaw error, respectively. The reference [35] introduces the
inverse kinematics model relationship for a 4-wheel skid-steering mobile robot. Notably,
the existing model neglects the impact of wheel slippage, potentially influencing the
controller’s overall performance. To address this limitation, the current study extends the
inverse kinematics relationship, considering the effects of slip.

The kinematics model of the CMo-R with the slip parameter is formulated in the
following equation:

.
X = R

.
φ =


.

Xa.
Ya.
θa

 =


r

2pr
cosθa

r
2pl

cosθa
r

2pl
sinθa

r
2pl

sinθa
r

2dpr
− r

2dpl

[ .
φr.
φl

]
(4)

If the velocity vector of the robot in the local coordinate is defined as u(t) = [v(t), w(t)]T ,
then the relation between φ and u including the slip parameter is derived as

u = T
.
φ ⇒ .

φ = T−1u (5)

where u =
[

v(t) ω(t)
]T ; T =

[
r

2p
r

2p
r

2dp − r
2dp

]
;

.
φ =

[ .
φRd

.
φLd

]
; T−1 = 1

r

[
pr dpr
pl −dpl

]
.

Finally, the relation of the right and left wheel pairs’ desired angular velocity with the
influence of the slip parameter is given as[ .

φRd.
φLd

]
=

1
r

[
p dp
p −dp

][
v
ω

]
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After inserting Equation (5) into (4), the simplified relation becomes
.

Xa.
Ya.
θa

 =

cos θa 0
sin θa 0

0 1

[ v
ω

]
(6)

Let
.
x,

.
y, and ω be the longitudinal, lateral, and angular velocities in the local coordinate

frame, while the relation in the universal coordinate frame in the kinematics model is
represented as 

.
Xa.
Ya.
θa

 =

 .
xcos θa −

.
ysin θa.

xsin θa +
.
ycos θa

ω

 (7)

For proper vehicle movement and control, it is imperative that the x component of
the instantaneous center of rotation remains within the confines of the wheelbase, denoted
as l1. If this condition is not met, the vehicle could potentially experience skidding in
the y direction, leading to a loss of control. To ensure the vehicle’s smooth operation, the
following relationship is established:∣∣∣∣− .

y
ω

∣∣∣∣ < l1 or
.
y = −bω∵ 0 < b < l1

Inserting the effect of ICR in Equation (6), the overall kinematics model of the CMo-R
skid-steering nonholonomic system becomes

.
Xa = S(q)v,

.
Xa.
Ya.
θa

 =

cos θa bsinθa
sin θa −bcosθa

0 1

[ v
ω

]
(8)

The above equation presents the kinematics model of a CMo-R, accounting for the
effect of ICR and will be used in formulating the adaptive kinematics controller in the
subsequent section. In this model, the control inputs are characterized by the wheel angular
speeds and the slip ratio of the left and right wheel pairs. Then, we can obtain the following
equation which encapsulates the representation of linear and angular velocity attributed to
the rotation of each wheel, accounting for the slip parameter: v = r

2

( .
φr
pr

+
.
φL
pl

)
ω = r

2d

( .
φr
pr

−
.
φL
pl

),∵ (pr, pl) ≥ 1 (9)

4. Controller Design for Trajectory Tracking

To control the CMo-R for better trajectory-tracking performance, the PID controller is
one of the classic approaches. PID is a model-free method. The trajectory-tracking error
is provided for feedback. However, the slip rate varies across different wheel–ground
interactions due to differences in friction coefficients. Thus, both the PID controller and the
adaptive kinematics controller are designed for comparison.

4.1. PID Controller

The proportional–integral–derivative (PID) controller stands as the most prevalent
type of closed-loop control system. These controllers operate by constantly measuring and
modifying the system’s output to align with a predetermined set point, representing the
desired condition for the system or process in question. What sets PID controllers apart
is their adaptability, cost-effectiveness, and ease of implementation. They do not require
extensive prior knowledge or a detailed system model, making them applicable in diverse
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fields ranging from hydraulics and pneumatics to both analog and digital electronics.
In this paper, we designed a kinematics-level PID control algorithm to achieve smooth
control. Proportional, integral, and derivative gains are introduced to tune the controller
performance. The algorithm flowchart is shown in Figure 5.
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Since the observation states are linear and angular velocities, u =
[

v(t) ω(t)
]T ,

then, the PID controller can be established as follows:{
v(t) = Kl

pel(t) + Kl
I
∫ t

0 e(τ)dτ + Kl
D

d
dt e(t)

ω(t) = Ka
pel(t) + Ka

I
∫ t

0 e(τ)dτ + Ka
D

d
dt e(t)

(10)

where
{

Kl
p, Kl

I , Kl
D

}
,
{

Ka
p, Ka

I , Ka
D

}
are gain parameters for PID controllers of linear and

angular velocity, respectively. Before the controllers are applied for trajectory tracking, the
reference should be predefined according to different trajectories. In this paper, a circular
trajectory is utilized for comparison.

4.2. Kinematic Controller

The first procedure is to determine a desired velocity control law that drives the
tracking error between the current posture vector and the reference posture vector. A
kinematic tracking error vector ec(t) and its time derivative

.
ec(t) are defined as

pe =

Xe
Ye
θe

 =

 cosθa sinθa 0
−sinθa cosθa 0

0 0 1

Xd − Xa
Yd − Ya
θd − θa

 (11)

The relation for computing the time derivative of reference longitudinal, lateral, and
yaw states in the global coordinate frame is given as

.
Xr = S(q)vr.

.
Xd.
Yd.
θd

 =

cosθd bsinθd
sinθd −bcosθd

0 1

[vd
ωd

]
(12)

We can find the time derivative of the above equation to find the
.
ec(t) matrix form in

order to observe the variables’ relationship.
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
.

Xe.
Ye.
θe

 =


.

Xdcos(θ)−
.
θXdsin(θ)−

.
Xcos(θ) +

.
θXsin (θ) +

.
Ydsin(θ) +

.
θYdcos(θ)−

.
Ysin(θ)−

.
θYcos(θ)

−
.

Xdsin(θ)−
.
θXdcos(θ) +

.
Xsin(θ) +

.
θXcos (θ) +

.
Ydcos(θ)−

.
θYdsin(θ)−

.
Ycos(θ) +

.
θYsin(θ)

.
θd −

.
θ

 (13)

Substituting Equations (8) and (12) in (13) and simplifying the relation yields
.

Xe.
Ye.
θe

 =

 ωYe − v + vdcos(θe) + bωdsin(θe)
vdsin(θe)− bωdcos(θe) + ω(b − Xe)

ωd − ω

 (14)

The Lyapunov function is introduced using the above concept, where k2 ≥ 0 is a
constant parameter greater than zero. It is obvious that the function V ≥ 0, if and only if
[xe, ye, θe]

T = 0, then V = 0. The Lyapunov function is selected as

V1 =
1
2

X2
e +

1
2

Y2
e +

(1 − cos(θe))

k2
> 0 (15)

The time derivative of the Lyapunov function should be negative definite which
ensures that the control law is stable over the infinite period which means the system is
asymptotically stable.

.
V1 = Xe

.
Xe + Ye

.
Ye +

.
θe

sin(θe)

k2
< 0 (16)

After inserting the values of
.

Xe,
.

Ye,
.
θe, from Equation (14), we obtain

.
V1 = Xe(ωYe − v + vdcos(θe) + bωdsin(θe)) + Ye(vdsin(θe)− bωdcos(θe) + ω(b − xe)) (17)

After simplifying the above equation, we formulate the following control law for
linear and angular velocity:[

v
ω

]
=

[
vdcos(θe) + bωdsin(θe) + k1Xe

1
(1−k2Yebcsc(θe))

(ωd + k2Yevd − k2Yebωdcot(θe) + k3sin(θe))

]
(18)

The above equation represents the control law for the skid-steering mobile robot with
k1, k2, and k3 as the gain parameters to tune the controller. Substituting Equation (18) to
(17), one can obtain

.
V1 = −k1Xe

2 − k3sinθe

k2
≤ 0 (19)

The conditions V1 ≥ 0 and
.

V1 ≤ 0 imply that as t → ∞ , pe tends to zero. This
behavior indicates that the control law given by Equation (18) is asymptotically stable.

4.3. Adaptive Slip Control

The validity of the control law given in Equation (18) implies the absence of slip
during wheel–ground interactions. Unlike conventional vehicles, where steering angles
are responsible for the wheel turn, skid-steering mobile robots achieve rotation by rotating
their outer wheels at a higher speed than the inner wheels. However, the occurrence of
slip can significantly impact overall turning accuracy. Thus, it is imperative to account
for slips in the design and implementation of these control systems. If the parameter
s in Equation (2) is unknown, the slip parameter in Equation (3) cannot be determined.
Consequently, Equation (7) is invalid.

To facilitate the computation of the updated law, slip parameter estimation becomes
essential. We assume that the slip on each side of the wheel pair is identical, denoted as
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sr = sl = s and p = 1
1−s . The error derivatives with respect to time can be written in

state-space form: 
.

Xe.
Ye.
θe

 =

cosθe bsinθe
sinθe −bcosθe

0 1

[vd
ωd

]
+

−1 ye
0 b − xe
0 −1

[ v
ω

]
(20)

Putting Equation (5) in (20), we obtain
.

Xe.
Ye.
θe

 =

cosθe bsinθe
sinθe −bcosθe

0 1

[vd
ωd

]
+

−1 Ye
0 b − Xe
0 −1

[ r
2p

r
2p

r
2dp − r

2dp

][ .
φRd.
φLd

]
(21)

The constant slip parameter mentioned in the above equation is unknown, so the
relation for Equation (5) is undetermined. To handle this problem, we need to introduce
the estimation p̂ of p. Replacing the slip parameter to estimate slip in Equation (7), we
can write

.
φd =

[ .
φRd.
φLd

]
=

1
r

[
p̂ dp̂
p̂ −dp̂

][
v
ω

]
=

1
r

T̂−1u (22)

where
.
φd =

[ .
φRd

.
φLd

]T represents the desired angular velocity of the right and left

side wheel pairs, respectively. Additionally, u =
[
v ω

]T denotes the control linear and
angular velocities after slip estimation, respectively. By substituting Equation (22) into
Equation (21), we obtain

.
Xe.
Ye.
θe

 =

cosθe bsinθe
sinθe −bcosθe

0 1

[vd
ωd

]
+

−1 Ye
0 b − Xe
0 −1

[ p̂
p 0

0 − p̂
p

][
v
ω

]
(23)

Since the left side of Equation (23) represents the error rate in position and orientation
of the robot, we have to define the error for slip estimation and that is

∼
p = p − p̂. Replacing

p̂ in the above equation to represent in terms of
∼
p is as follows:

.
Xe.
Ye.
θe

 =

cosθe bsinθe
sinθe −bcosθe

0 1

[vd
ωd

]
+

−1 Ye
0 b − Xe
0 −1

1 −
∼
p
p 0

0 1 −
∼
p
p

[ v
ω

]
(24)

To derive an updated law for computing the slip estimation p̂, the following Lyapunov
function is introduced:

V2 = V1 +

∼
p

2

2βp
> 0 (25)

In which slip constant p ≥ 1 and slip gain β > 0. The derivative of the above Lyapunov
function should be negative definite in order to ensure the control law stability and has the
following relation:

.
V2 = Xe

.
Xe + Ye

.
Ye +

.
θe

sin(θe)

k2
+

∼
p

.
∼
p

βp
< 0 (26)

Inserting the error values from (21) and simplifying, one can obtain

.
V2 = Xe[−v + vdcos(θe) + bωdsin(θe)] +

sin(θe)
k2

[k2Yevd−

k2Yebωdcot(θe) + k2Yebωcos(θe) + ωd − ω]−
∼
p
p

[
p̂
β − vXe−

ω
{

k2XeYe+k2Ye(b−xe)−sin(θe)
k2

}] (27)
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where
.
∼
p = −

.
p̂.

To ensure the stability of the control law,
.

V2 ≤ 0 guarantees the system is stable.
Hence, the estimated control law after simplifying Equation (25) is[

v
ω

]
=

[
vdcos(θe) + bωdsin(θe) + k1Xe
(ωd+k2Yevd−k2Yebωdcot(θe)+k3sin(θe))

(1−k2yebcsc(θe))

]
(28)

Hence, the kinematic adaptive control law vector for the system with an unknown slip
parameter in Equation (26) is identical to the kinematic control law vector for the system
without an unknown slip parameter in Equation (16). The update law for estimating

.
p̂ can

be formulated as follows:

.
p̂ = β

[
vxe − ω

{
k2xeye + k2ye(b − xe)− sin(θe)

k2

}]
(29)

Equation (29) represents the control law designed for slip estimation, ensuring stable
and robust tracking performance along a nonlinear trajectory for a nonholonomic system.

4.4. Stability Analysis

According to the adaptive backstepping method, the time derivative of the Lyapunov
function for the CMo-R is

.
V2 = −k1X2

e −
k3sinθ2

e
k2

−
∼
p
p
(0) ≤ 0 (30)

Because ∀t ∈ [0,+∞), it is concluded that vd and ωd are bounded, and
[
Xe Ye θe

]T
= 0

are uniformly bounded. This is because k1, k2, and k3 are constants greater than zero, and
k3sinθ2

e /k2 is positive definite for any value of θe in the domain as
D =

{
e(t) ∈ R3 I − π ≤ θe ≤ π}. It can be summed up that V2 is a positive definite

continuous and bounded differentiable function while
.

V2 is a negative definite uniformly
continuous function under the defined condition of ∀t ∈ [0,+∞) in a domain D. This
implies that V2 is a nonincreasing function that converges to some constant positive value
and hence the error

[
Xe Ye θe

]T and the estimation parameter
∼
p are bounded. Given

that ud =
[
vd ωd

]T is bounded and hence u =
[
v ω

]T is also uniformly bounded,
.
e(t)

in Equation (24) is bounded.
According to the Barbalat lemma, when t → ∞, V2 , a noninceasing function, converges

to some positive constant value making
.

V2 → 0 , implying
[
Xe Ye θe

]T should converge
to zero, respectively, at the equilibrium point. Referring to Equation (29), as {xe, θe} → 0
makes the p̂ nonincreasing, thereby making the overall Equation (29) uniformly bounded
as the following equation:

lim
t→∞

pe = lim
t→∞

[|Xe(t)|+ |Ye(t)|+ |θe(t)|] = 0 (31)

This analysis demonstrates that the pose error of the closed-loop control system, as de-
scribed in Equation (31), possesses characteristics that render the controller asymptotically
stable within the defined domain D based on the calculated values.

4.5. Comparative Analysis of Adaptive Kinematic and PID Controllers

The adaptive kinematic control algorithm based on slip estimation and Lyapunov
theory offers several advantages over the traditional PID controller in the context of control-
ling a CMo-R skid-steering nonholonomic system with wheel slip. The adaptive kinematic
controller offers adaptability, robustness, stability guarantees, and improved performance
in scenarios with wheel slip compared to the traditional PID control algorithm. These
advantages make it particularly suitable for systems where slip is a critical factor, such
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as four-wheel vehicles navigating challenging terrains. The comparison between the con-
trollers shown in Table 1.

Table 1. Comparison of the adaptive robust controller with traditional PID control approach.

Index Criteria PID Controller Adaptive Controller

1 Adaptability to variable conditions Tuned for specific conditions Adapts dynamically to changes in
slip conditions

2 Handling unknown parameters Relies on fixed parameters Estimates and adapts to unknown
slip parameters

3 Stability guarantee Lacks robust stability
guarantees

Utilizes Lyapunov theory for a
mathematically guaranteed stability

4 Improved performance in
slip-prone scenarios

Struggles in slip-prone
scenarios

Specifically designed for enhanced
performance in slip-prone environments

5 Reduced energy consumption Control efforts may not be
optimized

Potential for optimized control actions,
leading to reduced energy consumption

6 Control approach Geometric-based Model-based

5. Experiment and Simulation

In this section, both the PID controller and the adaptive kinematic controller are
implemented. Specifically, the adaptive kinematic controller considers different slip factors,
which are simulated and experimented with on uncertain inclined planes. The results of
numerical simulations and on-site experiments provide evidence for the effectiveness of
this control method, demonstrating precise control of slip turning for mobile robots on
uncertain inclined planes.

5.1. PID-Based Control

For comparison, the PID controller is implemented and simulated with the following
hardware configuration and parameter list.

For simplification, the CMo-R is represented as a four-wheel skid-steering robot
considered for circular trajectory tracking. Parameters are set according to Table 2. In this
simulation, the CMo-R is controlled to track a circular trajectory. As shown in Figure 6a,
the local details of the initial tracking performance may be affected by proportional gain,
integral gain, and derivative gain. And the tracking trajectory is oscillating in the first
second. According to Figure 6b, the oscillation is mainly produced in the yaw dimension in
the 1st second, and the oscillation is also shown in angular velocity errors, which are shown
in Figure 6c. Then, the oscillation is restrained by tuning the position and orientation
from 4 s to 6 s. Accurately, the controller is tuning all the time until both the linear and
angular velocities reach the steady state. The velocities of the right wheel pair and left
wheel pair are adjusted based on the proportional term, integral term, and derivative term.
Considering the kinematic characteristic of anti-clockwise circle motion, the amplitude of
the right pair is approximately 2000 rad/s, which is much larger than that of the left side
(1500 rad/s). The velocities of both sides will reach an equilibrium state finally.

5.2. Adaptive Kinematic Control

The proposed method utilizes a backstepping algorithm for adaptive kinematic control.
Except for the mechanical parameters, some assistant hyperparameters are also supplied in
this kinematic control algorithm, and the details are listed in the following Table 3.

Based on the above configuration, numerical simulation for adaptive kinematic control
of the CMo-R is carried out. Compared with the PID controller, the performance of circular
tracking is much smoother even in the initial state. There is no oscillation during the
tracking period, as shown in Figure 7a,b. The controller produces better performance.
Longitudinal and lateral errors are less than 0.5 mm. However, the yaw error is much larger.
There exists a constant latency difference between the reference velocity and actual velocity,
as shown in Figure 7c, which reduces the tracking performance of angular velocity.
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Table 2. Configurations of hardware and parameters.

Parameters Value Parameters Value

Processor Intel i7-9750H 2.6 GHz Operating system Win 10, ×64
RAM 32 G Software tool MATLAB

Index Parameters Value Unit

1 R, desired radius of the
circular trajectory 1.5 [m]

2 W, width of wheelbase 0.22 [m]
3 r, each wheel radius 0.10 [m]

4 b, instantaneous center of
rotation (ICR) 0.0107 [m]

5 Kl
p, proportional gain for
linear velocity control

60 --

6 Kl
I , integral gain for linear

velocity control
10 --

7 Kl
D, derivative gain for linear

velocity control
0.01 --

8 Ka
p, proportional gain for

angular velocity control 50 --

9 Ka
I , integral gain for angular

velocity control 10.0 --

10 Ka
D, derivative gain for

angular velocity control 0.01 --
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Table 3. Simulation parameters for adaptive kinematic control algorithm.

Index Parameters Value Unit

1 R, desired radius of the circular trajectory 1.5 [m]
2 W, width of wheelbase 0.44/2 [m]
3 r, each wheel radius 0.10 [m]
4 b, instantaneous center of rotation (ICR) 0.0107 [m]
5 k1, controller gain to tune the linear velocity 9.0 --
6 k2, controller gain to tune the angular velocity 150.0 --
7 k3, controller gain to tune the angular velocity 0.5 --
8 sr, slip control gain for right wheel pair 961.9516 --
9 sl , slip control gain for left wheel pair 0.8695 --

Figure 7. Simulation results of circular trajectory tracking using adaptive controller; (a) tracking
trajectory with local information; (b) Error of position and orientation; (c) Error of linear and angular
velocities; (d) angular velocity errors of right and left wheel pair.

On the other side, considering the slip factors, the velocity difference between the left
wheel pair and right wheel pair, which is demonstrated in Figure 7d, also deteriorates the
performance. At the initial stage, large acceleration is applied on the right pair of wheels
to keep up with the change in angular velocity. Due to maximum accelerating ability, the
desired velocity may cost more time to track. As a result, it produces a constant tracking
error.

During the simulation, both the tracking velocity and trajectory curvature affect the
final tracking performance. Aiming at the influence of trajectory curvature and tracking
velocity on performance, simulations are also carried out. Results are shown in Figure 8.
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radiuses when v = 2.0 m/s.

It can be seen from Figure 8 that when the robot moves at a speed of 1 m/s, the
tracking error of the linear velocity and the angular velocity decreases as the curvature of
the reference trajectory increases. This is because the greater the curvature of the trajectory,
the greater the probability of slip during skid steering, which increases the tracking error.
When the reference trajectory radius is R = 3 m, the RMSE of the angular velocity is
approximately 0.47 × 10−³. The primary error comes from the initial stage of the motion,
which keeps up with the change in the angular velocity at the fastest speed. While the
change in the linear velocity is relatively stable, the RMSE is approximately 1.8 × 10−³. The
trajectory tracking error is less than 2 mm.
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On the other hand, if the radius of the reference trajectory remains constant, both the
linear velocity and angular velocity tracking errors tend to increase as the velocity increases.
According to the average value of RMSE, the tracking error is maintained below 5 mm, and
the tracking error for both linear and angular velocity is 1.33 mm/s, even in the worst case,
i.e., the linear velocity is 2 m/s and trajectory curvature is 1.5 m. The error is primarily
attributed to the initial stage of motion adjustment, as shown in Figure 9a. Therefore, in
practice, for better skid-steering control of the CMo-R, a smaller velocity and gentler path
should be chosen for climbing manipulation, e.g., welding, grinding, and other scenes.
Theoretically, the longer the path traveled, the smaller the average error generated. This is
because the main error generated during the initial adjustment phase is reduced.
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5.3. Climbing Manipulation-Oriented Linear Trajectory Tracking

The most significant difference between climbing tasks and regular planar motion tasks
lies in the continuous control of the body posture. This control algorithm involves complex
geometric motion modeling, e.g., Lie groups/Lie algebras, with significant theoretical
depth and computational complexity. However, for climbing tasks such as welding and
polishing, which involve movement on vertical surfaces, the control of the mobile platform
requires higher tracking performance for a linear trajectory. Therefore, this section focuses
on the simulation and experimentation of linear trajectory tracking required for climbing
tasks such as welding and polishing.

In linear trajectory tracking, we have implemented a motion control algorithm that
considers only sliding without delving into differential geometry. We conducted simulation
analysis in four different poses, namely, along the y-axis, x-axis, 45◦ diagonal, and 135◦
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diagonal direction for repeated forward and backward linear trajectory tracking. The results
are shown in Figures 9 and 10. During the simulation, the CMo-R was controlled to move
forward and backward. As shown in Figure 9, due to the initial position being different from
the predetermined reference, the CMo-R deviates significantly from the intended trajectory.
However, through algorithm adaptation, the CMo-R reaches the desired trajectory after an
adjustment time of 2 to 5 s.
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Figure 10. Simulation results of linear trajectory tracking with different orientations; (a–c) Tracking
trajectory, position, and orientation error and velocity tracking error of simulation with horizontal
orientation; (d–f) Tracking trajectory, position, and orientation error and velocity tracking error of
simulation with 45◦ orientation; (g–i) Tracking trajectory, position, and orientation error and velocity
tracking error of simulation with 135◦ orientation.

Additionally, various initial poses were analyzed through simulation in three different
directions, along the y-axis, 45◦ diagonal, and 135◦ diagonal. Figure 10 illustrates the
corresponding trajectory tracking errors, actual linear and angular velocity errors, and
velocity tracking errors of the left and right drive wheels of the CMo-R. The angular velocity,
linear velocity, and position errors along the x- and y-axes of the CMo-R were statistically
analyzed through repeated simulations. Table 4 summarizes the mean square error (MSE)
values obtained from the analyses.
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Table 4. Simulation results.

Orientation

RMSE

Angular Velocity
rad/s

Linear Velocity
m/s,

X-Position
m

Y-Position
m

Vertical 0.0928 0.0711 0.014 0.013
Horizon 0.0839 0.0654 0.0037 0.0098

45◦ 0.0695 0.0568 0.0018 0.0015
135◦ 0.0567 0.0613 0.0015 0.0013

5.4. Experiment Configuration

The study aimed to investigate the linear trajectory tracking of a climbing manipu-
lation system on various inclined planes. A physical prototype with a maximum linear
speed of 2 m/s and a minimum motion curvature radius of 0.5 m was utilized to test the
proposed method, which was found to be fully applicable to the controller. The CMo-R
was deployed in a custom-designed experimental cabin model with a height of 12 m, and
its performance was evaluated on a horizontal plane (HP), 50◦ inclined plane (50◦ IP), 60◦

inclined plane (60◦ IP), and vertical plane (VP) with magnetic adsorption. The experimen-
tal results are presented in Table 4, along with images of the CMo-R prototype in each
scenario. This research provides valuable insights into the capabilities and limitations of
climbing manipulation systems for navigation on inclined planes, which can inform future
development efforts aimed at improving their performance and safety.

Furthermore, to ensure accurate feedback and ground truth positioning of the CMo-R
within the experimental cabin, a real 3D model of the cabin is utilized to generate a point
cloud. The positioning of the CMo-R was achieved through the utilization of a Livox lidar
sensor and the implementation of the adaptive Monte Carlo localization (AMCL) algorithm.
The comprehensive configuration is shown in Table 5.

Table 5. Geometric parameters and model configuration.

Index Category Parameters Configuration On-Site Experiment Scene

1
Basic

Size 660 mm × 640 mm × 250 mm
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2 Weight 70 Kg
3 Adsorption Permanent magnet
4

Mobility
Maximum velocity 2 m/s

5 Minimum radius 0.5 m
6 Power 48 V DC lithium battery
7 Control system Controller Beckhoff c6930
8 Communication EtherCAT
9 Positioning Controller Jetson AGX Xavier

10 Sensor Livox Mid360

Considering the high requirements for linear trajectory-tracking performance on
various inclined planes in climbing tasks such as welding and polishing, the following
section demonstrates real-world experiments on an HP, 50◦ IP, 60◦ IP, and VP with magnetic
adsorption.

5.5. Experiment Results

Considering the precision and anti-slip technology requirements for climbing oper-
ations, it is necessary to conduct more refined experimental research on linear tracking
for wall-climbing operations. Therefore, experiments are conducted on an HP, 50◦ IP, 60◦

IP, and VP. These experiments demonstrate the effectiveness of the proposed approach in
achieving high precision and stability in challenging environments.

The experiment is performed by controlling the robot moving back and forth without
considering the sliding effect. Results are shown in Figure 11a, where it can be observed
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that the tracking error in the x-axis direction reaches 11.2 mm, while the error in the y-axis
direction exceeds 20 mm. This level of error is unacceptable in practical applications.
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The proposed approach has also been validated for climbing on sloped terrains with
magnetic adsorption. To validate its effectiveness on surfaces with different slip rates,
experimental research was conducted on two differently inclined planes (IPs) with magnetic
adsorption. When controlled by kinematics without considering slip, the experimental
results on the 50◦ IP and 60◦ IP were significantly different, as shown in Figure 11b,c. For
example, when performing linear tracking along different orientations on the 50◦ IP, it
was found that the root mean square error (RMSE) is 28.3 mm in the x-axis direction and
24.7 mm in the y-axis direction. However, when experiments were conducted on the 60◦ IP,
the results were 52.5 mm in the x-axis direction and 55.3 mm in the y-axis direction. Finally,
the experiment is also performed on a VP, as shown in Figure 11d. The error was larger
when the influence of slip estimation was not considered, with an RMSE of 60 mm. The
influence of slipping renders this approach unusable in practical engineering scenarios.

By utilizing the proposed adaptive kinematic controller that considers the slip rate,
another set of linear trajectory-tracking experiments was conducted, and the results are
shown in Figure 12. When performed on an HP, the tracking errors in the x-axis and y-axis
directions are 8.7 mm and 9.9 mm, respectively. It has met the accuracy requirements of
most operations, especially in the field of climbing manipulation. Then, the proposed
adaptive kinematic control method is also verified on 50◦ IP and 60◦ IP, as shown in
Figure 12b,c, and it exhibits a certain level of effectiveness in suppressing slip, with a
minimum error of only 6 mm. Similar results are achieved in the experiments conducted
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on a VP, as shown in Figure 12d, and the minimum error is only 6.7 mm. Furthermore,
the velocity navigation errors in the x-axis and y-axis directions are negligible, with error
peaks at only 0.1% of the travel speed. This means that the adaptive skid-steering control
approach can be applied to inclined planes without knowing the tilt angle. The proposed
method, with its simple framework and relatively stable performance, demonstrates good
applicability in the field of wall-climbing manipulation.
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As shown in Table 6, the performance of linear trajectory tracking using the proposed
method is represented by RMSE. The data in the table indicate that the algorithm that
considers slippage produces significantly more accurate results than the algorithm that
does not consider slippage. In fact, in the worst-case scenario, the algorithm that considers
slippage reduces the error caused by slippage by 30%. Therefore, it can be concluded that
the control effect after slip estimation is superior.

Table 6. The performance of linear trajectory tracking with or without slip consideration.

RMSE of Linear
Tracking

x y

HP 50◦ IP 60◦ IP VP HP 50◦ IP 60◦ IP VP

Without slip
consideration 0.0112 0.0283 0.0525 0.0632 0.0217 0.0247 0.0553 0.0604

Considering slip 0.0087 0.0067 0.0108 0.0073 0.0099 0.0138 0.0072 0.0092
Improvement 77.68% 23.67% 20.57% 11.55% 45.62% 55.87% 13.02% 15.23%
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6. Conclusions

This study aimed to address the slipping phenomenon that occurs when a CMo-R
turns. To achieve this, a four-wheel kinematic model that considers slip rate effects was
constructed, and an adaptive kinematic control algorithm based on Lyapunov theory was
designed. Furthermore, a control law for slip estimation was developed for slip-affected
systems. To obtain the tracking performance, a traditional PID algorithm was also imple-
mented for comparison. Simulations were conducted to tackle trajectory-tracking problems
for shipborne climbing manipulation. The results revealed that during a circular trajectory-
tracking case with a minimum curvature radius of 0.5 m, precision was maintained below
15 mm. Similarly, during linear tracking in mobile operations, the precision remained below
10 mm. The precision slightly decreased for a circular trajectory with a minimum curvature
radius when it was applied for climbing manipulation on 50◦ IP and 60◦ IP. However,
the precision for a linear trajectory remained around 10 mm. Finally, the proposed ap-
proach was deployed for a real shipborne climbing robot, and experiments were performed
on uncertain inclined planes, e.g., HP, 50◦ IP, 60◦ IP, and VP. All the errors of shipborne
climbing-oriented linear trajectory tracking are less than 15 mm, with a minimum RMSE
of 6 mm. The algorithm that considers slippage reduces the error caused by slippage by
30% even in the worst-case scenario. As a result, the simple yet stable skid-steering method
demonstrates good applicability in the field of wall-climbing manipulation.
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