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Abstract: In this paper, we explore a nonlinear interactive network system comprising nodalized
flapping-wing micro air vehicles (FMAVs) to address the distributed H∞ state estimation problem
associated with FMAVs. We enhance the model by introducing an information fusion function,
leading to an information-fusionized estimator model. This model ensures both estimation accuracy
and the completeness of FMAV topological information within a unified framework. To facilitate the
analysis, each FMAV’s received signal is individually sampled using independent and time-varying
samplers. Transforming the received signals into equivalent bounded time-varying delays through
the input delay method yields a more manageable and analyzable time-varying nonlinear network
error system. Subsequently, we construct a Lyapunov–Krasovskii functional (LKF) and integrate it
with the refined Wirtinger and relaxed integral inequalities to derive design conditions for the FMAVs’
distributed H∞ state estimator, minimizing conservatism. Finally, we validate the effectiveness and
superiority of the designed estimator through simulations.

Keywords: flapping-wing micro air vehicles; distributed state estimation; information fusion
correction; non-uniform sampling; Lyapunov–Krasovskii functional

1. Introduction

Bionics-based FMAV introduces a novel vehicle concept that emulates the flight
patterns observed in birds or insects. This type of vehicle not only replicates the agile
flight mechanisms found in actual birds and insects, but also demonstrates superior perfor-
mance in executing intricate and demanding missions [1–6]. This enhanced performance is
attributed to its high maneuverability, strong adaptability, and low noise characteristics.
Furthermore, from a bionic perspective, it is imperative for FMAVs to possess the capability
to execute tasks in scenarios characterized by incomplete information.

Most of the current FMAVs primarily concentrate on flapping-wing flight, with limited
research dedicated to the distributed state estimation of multiple FMAVs’ post-stabilized
flight. Notably, significant advancements have been achieved in the domain of flapping-
wing flying vehicles, exemplified by noteworthy creations such as the Nano Humming-
Bird [7] from the United States, SmartBird [8] from Germany, and Dove [9] from the
Northwestern Polytechnical University of China. Despite the progress in position con-
trol, trajectory tracking, and formation control facilitated by advancements in sensor
networks, wireless communication, bionics, and aerodynamics, there remains a substantial
gap in exploring the distributed state estimation of multiple FMAVs following stabilized
flight [10–14]. In practical applications, the distributed information interaction network
among FMAVs is susceptible to information incompleteness phenomena, encompassing
missing sampling signals, time delays, and various internal or external interferences. These
factors inevitably compromise overall estimation performance, impacting the accuracy and
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reliability of the entire system [15–19]. Consequently, the effective integration of interac-
tion information within the FMAV network is crucial for achieving efficient, prompt, and
reliable distributed state estimation.

State estimation and filtering are integral components of FMAV research, serving as the
cornerstone for achieving autonomous flight, trajectory scheduling, tracking, and localiza-
tion. Therefore, it is imperative to design robust estimators/filters to enhance the system’s
stability. Numerous research outcomes related to distributed state estimation and filter
design for traditional FMAV information interaction networks, sensor networks, and more,
have been documented. Mousavi S.M. et al. [20] introduced an improved adaptive neural
network filtering algorithm to rectify the control volume of FMAVs, achieving real-time
tracking and state estimation. Liu G et al. [21] devised a multisensor integrated state
sensing and estimation method to address the substantial FMAV flight fluctuation problem
using Kalman principles, thereby enhancing state estimation accuracy. Yang R et al. [22]
proposed a data fusion and attitude estimation algorithm based on the EKF algorithm
to counteract instability caused by jitter during FMAV sensor data acquisition’s transient
oscillation. He W et al. [23] formulated a state estimator based on uncertain perturba-
tion to address the challenges of unknown time delay and nonlinearity in FMAVs. This
design ensures the stability of the bounded control signal and the closed-loop system.
Qian W et al. [24] established a multichannel stochastic attack model for various network
systems, including FMAVs and sensor networks. They utilized the LKF method to craft
a distributed state estimator, satisfying mean-square asymptotic stability for a given H∞
metric. However, many traditional estimator/filter models primarily express the gain of
received information of FMAVs by solving a single estimator parameter, resulting in a
relatively fixed model. While these models can mitigate the impact of system and external
perturbations to some extent—ensuring that the system maintains a normal performance
level—they face challenges when the system or its environment becomes harsh. This in-
evitably leads to performance degradation or destabilization. Consequently, exploring how
to leverage known communication information in FMAV networks to maintain superior
performance in more general communication environments remains largely uncharted.
Building upon this premise, this paper introduces an information fusion correction mech-
anism within the framework of the classical FMAV distributed state estimator structure.
This mechanism enables the fusion of additional state and sampling information during
the information interaction process, ensuring the estimation accuracy of the target network.

In the FMAV network system, the acquisition of communication signals, including
position and velocity, relies on digital transmission. Before being transmitted to the state
estimator, these communication signals received by the FMAV must be obtained as data
signals. The traditional approach involves modeling the target flight signal as a discrete-
time signal system through a period of uniform sampling. However, this method falls
short of capturing the true signal characteristics of FMAV communication, particularly
when the sampling period coincides with the signal period [25,26]. This situation proves
highly detrimental to the accurate reconstruction of the actual signal. Consequently, the
non-uniform sampling method for digital signals is widely adopted. This method not only
yields more precise FMAV data signals, but also enhances adaptability when confronting
unknown effects. For non-uniform signal sampling, the input delay method proposed
in [27] is commonly employed. The main idea is to convert the sampled data system into
a continuous-time system with a bounded time delay. For instance, Fridman E et al. [28]
and Wang L C et al. [29] proposed data sampling methods for distributed state estimation
schemes for time-varying multi-rate systems with channel redundancy and multisensor
systems, respectively, and the problem of state estimation for distributed time delay systems
based on the input delay method was also addressed in [30]. For the study of non-
uniform sampling methods for UAVs, Sun D et al. [31] realizes non-uniform sampling of
signals by dividing the aperture of the acquired signals non-uniformly and proposes a
method that can ensure that the non-uniform signals have high resolution and consistency.
Wang J H et al. [32] introduces time-varying non-uniform communication signals for the
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topology of UAVs, and utilizes the time delay information and the state information of each
intelligent body to establish a discrete formation protocol and gives a sufficient condition
for the formation of closed-loop stabilization. Therefore, another objective of this paper
is to employ a non-uniform sampling method to ensure a more accurate reconstruction
process and enhance the state estimation performance of FMAV communication signals.

Time delay is a prevalent phenomenon in various aircraft control systems, and its
existence is a primary contributor to system instability and performance degradation.
In the context of FMAV distributed systems, the focus of research has shifted towards
stability analysis and estimator design. This shift is necessitated by the impact of the
system state influenced by topology, the sampling process, and noise. To ensure asymptotic
stabilization of a continuous-time system with bounded time delay under the desired
decay index, researchers adopt a dual approach. Firstly, they enhance the information
content of the upper and lower bounds of the generalized function by incorporating more
time delay information. Secondly, they mitigate conservativeness in the deflation results
through the construction of a suitable LKF and the application of a novel integral inequality
deflation method. It is crucial to emphasize that achieving less conservative results is not
solely dependent on the complexity of the generalized function or the sophistication of
the deflation method. Instead, a synergistic collaboration between the two is imperative
to enhance result conservatism while considering factors such as computation load and
decision variables. In [33], the authors utilized generalized free-weight matrix integral
inequalities in conjunction with augmented LKF that feature a pair of integral terms,
leading to two stability criteria with superior outcomes. Meanwhile, the authors of [34]
employed generalized free-matrix-based integral inequalities alongside the LKF, containing
a dual integral, establishing a stability criterion associated with time delay. In another
instance, [16] addressed the stability problem in the presence of time delay by constructing
an LKF incorporating a time delay dependence matrix. They utilized a single integral
inequality based on a relaxation function to derive a new design condition for a distributed
H-inf state estimator. Despite the effectiveness of these methods in alleviating conservative
conditions, there remains considerable room for improvement, serving as the motivation
for our research.

In summary, studying the design of a distributed state estimator based on the non-
uniform sampling method and maximizing the utilization of information from FMAV
nodes is crucial. In this paper, we aim to establish a distributed state estimator model for
information fusion correction and investigate the distributed H∞ state estimation of FMAV
network systems under non-uniform sampling. The main highlights of this paper include
the following:

• Improving the traditional distributed state estimator and introducing information fusion
correction between nodes in the FMAV network system to enhance estimation accuracy.

• Equipping each FMAV with an independent sampler, featuring variable sampling
periods and utilizing a time delay study method to transform the state estimation
problem based on non-uniform sampling into a problem with multiple bounded
time delays.

• Constructing the LKF by fully exploiting time delay information induced by non-
uniform sampling. This approach avoids the introduction of complex multiple inte-
grals and generalized functions, effectively reducing the computational burden.

• Proposing an easy-to-implement distributed H∞ state estimation method with minimal
conservatism by employing relaxed and Wirtinger integral inequalities in deflating
generalized functions.
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The relevant symbol notes used in this chapter are as follows: Rn represents n-
dimensional Euclidean space. Rn×m is a set of n × m real matrix. AT is the transpose
of A. P > 0 means positive definite matrix. ∗ in the matrix denotes the symmetric element.
I is an identity matrix with the appropriate dimensions. col{...} is a column vector repre-
senting the constituent elements in parentheses. diagN{·} exhibits block diagonal matrix
composed of elements in the bracket, diagi

N{Ai} = diagi
N{A1, ..., AN}. A ⊗ B means the

Kronecker product of matrices A and B.

2. Problem Formulation

The system model studied in this paper is the traditional FMAV network system model,
which consists of N FMAVs. Since the current FMAVs are mainly bionic from the flight
mode, i.e., they rely solely on the fluttering wing to generate lift and thrust simultaneously
for flight, there is still a big gap between aerodynamic efficiency and birds. In addition, the
research on the flight mechanism of birds in terms of sensing, driving, and controlling is
still in the primary stage; therefore, if the construction of the system model is convenient,
ignoring its complex dynamics and treating all the FMAVs as a single mass point, then the
following network system model can be established:{

ẋ(t) = Ax(t) + f (x(t)) + Bω(t)
z(t) = Mx(t)

(1)

with N FMAVs modeled by

yi(t) = Cix(t) + Div(t) (2)

where x(t) ∈ Rn is the state vector; z(t) ∈ Rn is the signal to be estimated; ω(t) ∈ Rn,
v(t) ∈ Rn is the exogenous disturbance input ω(t), v(t) ∈ L2[0 , ∞). yi(t) ∈ Rn is the
measurement output of i. System matrices A, B, M, and Ci, Di(1 ≤ i ≤ N) are given as
constant matrices.

Assumption 1 ([35]). The nonlinear function f (x(u)) satisfies Rn → Rn, f (0) = 0, and

[ f (x)− f (ϖ)− U1(x − ϖ)]T [ f (x)− f (ϖ)− U2(x − ϖ)] ≤ 0 ∀x, y ∈ Rn (3)

where U1, U2 ∈ Rn×n are constant matrices describing the linearization direction or error bounds.

This paper considers a state estimator configuration model with N FMAVs, and
the topology of the FMAV network system is described by an N-order directed graph
G = (V , E ,A), where V = {1, 2, . . . , N} is the node set of the FMAVs network, E ⊆ V × V
is the edge set, and A= [aij]N×N(aij ≥ 0) is the weighted adjacency matrix. (i, j) indicates
an edge in the graph G, and aij > 0 ⇔ (i, j) ∈ U indicates that node i can accept information
from node j, and for each i ∈ V , if there is aii = 1 (i ∈ V), the set of adjacent nodes is
recorded as Ni = {j ∈ V : (i, j) ∈ E}.

In this paper, the communication information around node i is shown in Figure 1.
According to the given FMAV topology, the information received by node i from itself and
its neighbor j can be expressed as

ȳi(t) = ∑
j∈Ni

aij(yj(t)− Cj x̂j(t)) (4)

where ȳi(t) ∈ Rn is the measurement output received by the FMAV i from the system.
For each i(1 ≤ i ≤ N), the sampled signal is generalized by a zero-order hold (ZOH)

function where the sequence of hold times is given by 0 = ti
0 < ti

1 < ... < ti
k < ....

Then, we have

ŷi(t) = ȳi(ti
k) = ȳi(t − (t − ti

k)), ti
k ≤ t < ti

k+1 (5)
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where ŷi(t) is the true input to the estimator, ti
k is the sampling time of the FMAV i, and

limk→∞ti
k = ∞.

Since there is information interaction between each FMAV, considering the information
fusion mechanism of each FMAV, it is possible to obtain

ỹi(t) = ŷi(t) + Hi φi(t) (6)

where φi(t) represents the information fusion from neighbor j to i, Hi represents the gain
in information compensation, and

φi(t) =


 x(t) + ∑

j∈Ni

aijx(t − τi(t))

∑
j∈Ni

aij + 1
− x(t)

−

 x̂i(t) + ∑
j∈Ni

aij x̂j(t − τi(t))

∑
j∈Ni

aij + 1
− x̂i(t)


 (7)

Define τi(t) ≥ t − ti
k on the interval ti

k ≤ t < ti
k+1 and let τi

∆
= max{τi(t)} be the

known scalar of each FMAV i ∈ V , then the i ∈ V estimator for each FMAV can be
written as { ˙̂xi(t) = Ax̂i(t) + f (x̂i(t)) + Ki ỹi(t)

ẑi(t) = Mx̂i(t) ti
k ≤ t < ti

k+1
(8)

where ẑi(t) ∈ Rn is the estimate for z(t) on the FMAV i, and Ki ∈ Rn×n, Hi ∈ R is the
parameter of state estimator i to be determined. It can be easily seen that τi(t) satisfies

τi(t) ∈ [0, τ̄) with τ̄
∆
= maxi∈V{τi} and t ̸= ti

k(k = 0, 1, 2, ..., ∞).

…

…
Estimator_i

Sampler_i

Other Sampler

IFC_φi

Data 

collection

+

+

FMAV _1

Figure 1. Local structure of FMAV i information fusion correction.

Remark 1. To ensure that the system maintains excellent estimation performance despite an
unstable communication environment, this paper introduces a novel estimator model with an
embedded information fusion correction function. This function enhances estimation accuracy
by incorporating an information feedback link. Specifically, the traditional signal sampling and
estimation link, depicted as the light blue solid line in the upper half of Figure 1, is complemented by
the addition of the orange dotted line in the lower right, as illustrated in Figure 1. This addition
aims to enhance the utilization rate of multi-node information transmission. The signals sampled by
each sampler are consolidated at the data aggregation center and transmitted to the corresponding
estimator. Subsequently, all information is fused and calculated by the constructed information
fusion correction function φi(t). The results are then transmitted to each FMAV, where they are
used to correct the estimator and refine parameter values. This process enhances the accuracy of the
information obtained by the estimator and reduces the conservatism of the estimation error system.

Remark 2. In the existing literature, the prevalent sampling method determines the next sampling
moment by providing a time interval, satisfying the formula τk < τ̄. However, this approach results
in a relatively fixed sampling interval for different communication signals, making it challenging for
the signal data to adequately respond to the randomly occurring incomplete information at various
nodes in distinct forms and at different times. This limitation hinders the effective reconstruction of
real signals. In this paper, we address this issue by adopting a non-uniform sampling method deter-
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mined by the time-varying function formula τi(t) for different FMAVs. This approach ensures that
the sampling intervals of various sampling FMAVs are time-varying and independently bounded.

Letting the state estimation error be ei(t) = x(t)− x̂i(t) and the output estimation
error be z̃i(t) = z(t)− ẑi(t) for each i , we have

ėi(t) = Aei(t) + f (ei(t)) + Bω(t)− Ki ∑
j∈Ni

aijCjeτ

− Ki ∑
j∈Ni

aijDjvτ − Gi(αi − 1)ei(t)− Gi(1 − αi) ∑
j∈Ni

aijCjeτ

z̃i(t) = Mei(t)

(9)

where f (ei(t))
∆
= f (x(t))− f (x̂i(t)), αi =

1
∑

j∈Ni
aij+1 , Gi = Ki Hi.

Setting

Ā ∆
= diagN{A}, B̄ ∆

= diagN{B}, C̄ ∆
= diagi

N{Ci}, D̄ ∆
= diagi

N{Di},

M̄ ∆
= diagN{M}, K̄ ∆

= diagi
N{K}, Ḡ ∆

= diagi
N{G}, e(t) ∆

= coli
N{ei(t)},

F (e(t)) = coli
N{ f (ei(t))}, z̃(t) ∆

= coli
N{ẑi(t)}, vτ(t)

∆
= coli

N{v(t − τi(t))},

eτ(t)
∆
= coli

N{ei(t − τi(t))}, Λ̄αi−1 = diagi
N{ᾱi − 1}, Ii

∆
= {0,..., 0︸ ︷︷ ︸

i−1

, I, 0,..., 0︸ ︷︷ ︸
N−i

},

the estimation error system can be further rewritten into the following form:
ė(t) = Āe(t) + F(e(t)) + B̄ω(t)− K̄Ii(A ⊗ I)C̄eτ

− K̄Ii(A ⊗ I)D̄vτ − ḠΛ̄αi−1e(t)− ḠΛ̄1−αi Ii(A ⊗ I)eτ

z̄(t) = M̄e(t)
(10)

In this paper, we aim to design a set of distributed estimators such that the following
two requirements are simultaneously satisfied:

• The estimated error system is asymptotically stable in the case of v(t) = 0 and
ω(t) = 0;

• With zero-initial condition, for all nonzero v(t) and ω(t) , the output estimation error
z̄(t) satisfies ∫ ∞

0
∥z̄(t)∥2dt < γ2

∫ ∞

0

(
∥v(t)∥2 + ∥ω(t)∥2

)
dt (11)

where γ > 0 is a prescribed disturbance attenuation level.

Before proceeding, we need the following lemmas in deriving our main results.

Lemma 1 ([30]). Under Assumption 1, the following inequalities are obtained:[
e(t)

F (e(t))

]T[ Ũ1 Ũ2
∗ I

][
e(t)

F (e(t))

]
≤ 0

where

Ũ1
∆
=

ÛT
1 Û2 + ÛT

2 Û1

2
, Ũ2

∆
= −

ÛT
1 + ÛT

2
2

, Û2
∆
= diagN{U1}, Û2

∆
= diagN{U1}.
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Lemma 2 ([36]). For any positive definite matrix R ∈ Rn×n, real scalars a, b satisfying a > b and
vector-valued function x ∈ [a, b] → Rn, the following integral inequalities hold:

∫ b

a
xT(α)Rx(α)dα ≥ 1

b − a

(∫ b

a
x(α)dα

)T

R
(∫ b

a
x(α)dα

)
+

3
b − a

ΩT
1 RΩ1∫ b

a

∫ b

β
ẋT(α)Rẋ(α)dα ≥ 2ΩT

2 RΩ2 + 4ΩT
3 RΩ3

where

Ω1 =
∫ b

a
x(α)dα − 2

b − a

∫ b

a

∫ β

s
x(α)dαdβ, Ω2 = x(b)− 1

b − a

∫ b

a
x(α)dα,

Ω3 = x(b) +
2

b − a

∫ b

a
x(α)dα − 6

(b − a)2

∫ b

a

∫ b

β
x(α)dαdβ.

Lemma 3 ([37]). The vector function x ∈ [0, dM] → Rn, time-varying delay d(t) ∈ [0, dM],

symmetric matrix V > 0, and any free matrix T1 satisfy
[

V1 T1
∗ V1

]
≥ 0, where V1 = diag{V, 3V},

we can obtain:

−
∫ t

t−d(t)
ẋT(s)Vẋ(s)ds −

∫ t−d(t)

t−dM

ẋT(s)Vẋ(s)ds ≤ − 1
dM

ζT
1 (t)

[
W1
W2

]T[ V1 T1
∗ V1

][
W1
W2

]
ζ1(t)

where

ζ1(t) =
[

xT(t), xT(t − d(t)), xT(t − h), υT
1 (t), υT

2 (t)
]T

,

ei =
[
0n×(i−1)n, I, 0n×(5−i)n

]
, i = 1, 2, ... , 5

W1 =

[
e1 − e2

e1 + e2 − 2e4

]
, W2 =

[
e2 − e3

e2 + e3 − 2e5

]
,

υT
1 (t) =

1
d(t)

∫ t

t−d(t)
x(s)ds, υT

2 (t) =
1

h − d(t)

∫ t−d(t)

t−dM

x(s)ds.

3. Main Results

Theorem 1. Let the disturbance attenuation level γ > 0 be given. For the network system (1)
and FMAVs (2), the dynamic estimation error system (10) with double gain (information fusion
correction) is asymptotically stable and satisfies the H∞ performance constraint (11) if there exist
scalars ε1 > 0, τ̄ > 0 and matrices with P2 > 0, Qi > 0, Zi > 0, Ri > 0, diagonal matrix P1 =

diagi
N{P1i}, X̄ = diagi

N{Xi}, Ȳ = diagi
N{Yi}, and any free matrices Si =

[
S1i S2i
S3i S4i

]
(i ∈ V)

with appropriate dimensions such that the following LMIs hold:

[
βiZυ + Qυ Si

∗ Qυ

]
> 0 (i ∈ V), (12)

Θ[τi(t)=τ̄] Π1 Π2 Π3
∗ −γ2 I 0 B̄T P1
∗ ∗ −γ2 I −X̄T

D
∗ ∗ ∗ −2P1 + L

 < 0, (13)


Θ[τi(t)=0] Π1 Π2 Π3

∗ −γ2 I 0 B̄T P1
∗ ∗ −γ2 I −X̄T

D
∗ ∗ ∗ −2P1 + L

 < 0. (14)
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where

Θ =



Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 3R̄
∗ Ξ22 Ξ23 0 Ξ25 Ξ26 0 24Ẑ
∗ ∗ Ξ33 0 Ξ35 6Q̄ 0 0
∗ ∗ ∗ −ε1 I 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 −4Ŝ4 48Ẑ 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 48Ẑ
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88


Ξ11 = Sym{P1 Ā − ȲT

α1
}+ P2 − 6

N

∑
i=1

Zi − 4
N

∑
i=1

βiZi − 4
N

∑
i=1

Qi − ε1W̃1

+ h2
N

∑
i=1

Ri + MT M,

Ξ12 = −X̄C − Ȳα2 − 2βiZ̄ − 2Q̄ − S̄1 − S̄2 − S̄3 − S̄4,

Ξ13 =
N

∑
i=1

(S1i + S3i − S2i − S4i), Ξ14 = P1 − ε1W̃2, Ξ15 = 6Z̄ − 6βiZ̄ + 6Q̄ − 4R̄,

Ξ16 = 2S̄2 + 2S̄4 − 4R̄, Ξ17 = 3R̄ + 24Z̄,

Ξ22 = −6Ẑ − 4βiẐ − 8Q̂ + Sym{Ŝ1 + Ŝ2 − Ŝ3 − Ŝ4},

Ξ23 = −2Q̄T − S̃1 − S̃4 + S̃2 + S̃3, Ξ25 = 6βiẐ + 6Q̂ + 2ŜT
3 + 2ŜT

4 ,

Ξ26 = −2Ŝ2 + 2Ŝ4 + 6Q̂ − 6Ẑ, Ξ33 = −P2 − 4
N

∑
i=1

Qi,

Ξ35 = −2S̄3 + 2S̄4, Ξ55 = −18Ẑ − 12βiẐ − 12Q̂, Ξ66 = −12Q̂ − 18Ẑ,

Ξ77 = −144Ẑ − 3R̂, Ξ88 = −144Ẑ − 3R̂,

Π1 =
[

BT P 0 0 0 0 0 0 0 0
]T ,

Π2 =
[
−X̄T

D 0 0 0 0 0 0 0 0
]T ,

Π3 =
[

Π31 −X̄C 0 P1
T 0 0 0 0 0

]T , Π31 = P1 A − Ȳα1 ,

Z̄ = veci
N{Zi}, R̄ = veci

N{Ri}, Q̄ = veci
N{Qi}, Ẑ = diagi

N{Zi}, R̂ = diagi
N{Ri},

Q̂ = veci
N{Qi}, Ŝh = diagi

N{Shi}, S̃h = coli
N{Shi}, S̄h = veci

N{Shi}, (h = 1, ..., 4),

Zυ = diag{Zi, 3Zi}, Qυ = diag{Qi, 3Qi}, X̄C = veci
N{X̄Ii(A⊗ I)C̄},

X̄D = veci
N{X̄Ii(A⊗ I)D̄}, Ȳα1 = veci

N{ȲΛ̄αi−1 Ii},

Ȳα2 = veci
N{ȲΛ̄1−αi Ii(A⊗ I)}, L =

N

∑
i=1

τ̄2Qi +
N

∑
i=1

τ̄2

2
Zi, βi =

τ̄ − τi(t)
τ̄

.

Moreover, the estimator gain matrices are given by Ki = P−1
1i Xi and Gi = P−1

1i Yi.

Proof. Consider an LKF such that

V(e(t)) = V1(e(t)) + V2(e(t)) + V3(e(t)) (15)
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where

V1(e(t)) = eT(t)P1e(t) +
∫ t

t−τ̄
eT(s)P2e(s)ds (16)

V2(e(t)) =
N

∑
i=1

∫ t

t−τ̄

∫ t

θ
τ̄ėT(s)Qi ė(s)dsdθ +

N

∑
i=1

∫ t

t−τ̄

∫ t

θ
τ̄eT(s)Rie(s)dsdθ (17)

V3(e(t)) =
N

∑
i=1

∫ t

t−τ̄

∫ t

θ

∫ t

λ
ėT(s)Zi ė(s)dsdλdθ (18)

Calculating the time derivative of V(e(t)) along the trajectory of Equation (10) with
ω(t) = 0 and vτ(t) = 0 yields

V̇1(e(t)) = 2eT(t)P1 ė(t) + eT(t)P2e(t)− eT(t − τ̄)P2e(t − τ̄) (19)

V̇2(e(t)) =
N

∑
i=1

τ̄2 ėT(t)Qi ė(t) +
N

∑
i=1

τ̄2eT(t)Rie(t)

−
N

∑
i=1

τ̄
∫ t

t−τ̄
ėT(s)Qi ė(s)ds −

N

∑
i=1

τ̄
∫ t

t−τ̄
eT(s)Rie(s)ds (20)

V̇3(e(t)) =
N

∑
i=1

τ̄2

2
ėT(t)Zi ė(t)−

N

∑
i=1

∫ t

t−τ̄

∫ t

θ
ėT(s)Zi ė(s)dsdθ (21)

According to the following relationship

∫ t

t−h
f (s)ds =

∫ t

t−h(t)
f (s)ds +

∫ t−h(t)

t−h
f (s)ds (22)

∫ t

t−h

∫ t

v
f (s)dsdv =

∫ t

t−h(t)

∫ t

v
f (s)dsdv +

∫ t−h(t)

t−h

∫ t

v
f (s)dsdv

=
∫ t

t−h(t)

∫ t

v
f (s)dsdv +

∫ t−h(t)

t−h

∫ t

t−h(t)
f (s)dsdv +

∫ t−h(t)

t−h

∫ t−h(t)

v
f (s)dsdv

=
∫ t

t−h(t)

∫ t

v
f (s)dsdv +

∫ t−h(t)

t−h

∫ t−h(t)

v
f (s)dsdv + (h − h(t))

∫ t

t−h(t)
f (s)ds (23)

we can obtain

−
N

∑
i=1

∫ t

t−τ̄

∫ t

θ
ėT(s)Zi ė(s)dsdθ = −

N

∑
i=1

∫ t

t−τi(t)

∫ t

θ
ėT(s)Zi ė(s)dsdθ

−
N

∑
i=1

∫ t−τi(t)

t−τ̄

∫ t−τi(t)

θ
ėT(s)Zi ė(s)dsdθ − (τ̄ − τi(t))

N

∑
i=1

∫ t

t−τi(t)
ėT(s)Zi ė(s)dsdθ (24)

−
N

∑
i=1

τ̄
∫ t

t−τ̄
ėT(s)Qi ė(s)ds = −

N

∑
i=1

τ̄
∫ t

t−τi(t)
ėT(s)Qi ė(s)ds −

N

∑
i=1

τ̄
∫ t−τi(t)

t−τ̄
ėT(s)Qi ė(s)ds (25)

−
N

∑
i=1

τ̄
∫ t

t−τ̄
eT(s)Rie(s)ds = −

N

∑
i=1

τ̄
∫ t

t−τi(t)
eT(s)Rie(s)ds −

N

∑
i=1

τ̄
∫ t−τi(t)

t−τ̄
eT(s)Rie(s)ds (26)

From Lemma 3, the following can be obtained:

− (τ̄ − τi(t))
N

∑
i=1

∫ t

t−τi(t)
ėT(s)Zi ė(s)dsdθ − τ̄

N

∑
i=1

∫ t

t−τ̄
ėT(s)Qi ė(s)dsdθ

≤ −τ̄
N

∑
i=1

∫ t

t−τi(t)
ėT(s)(Qi + βiZi)ė(s)dsdθ − τ̄

N

∑
i=1

∫ t−τi(t)

t−τ̄
ėT(s)Qi ė(s)dsdθ

≤
[

W1
W2

]T[ −βiZυ − Qυ −Si
∗ −Qυ

][
W1
W2

]
(27)



Biomimetics 2024, 9, 167 10 of 18

where

W1 =

[
e(t)− e(t − τi(t))

e(t) + e(t − τi(t))− 2η1(t)

]
, W2 =

[
e(t − τi(t))− e(t − τ̄)

e(t − τi(t)) + e(t − τ̄)− 2η2(t)

]
.

From Lemma 2, it can be determined that

−
N

∑
i=1

∫ t

t−τi(t)

∫ t

θ
ėT(s)Zi ė(s)dsdθ ≤ −2

N

∑
i=1

ΓT
1 ZiΓ1 − 4

N

∑
i=1

ΓT
2 ZiΓ2 (28)

−
N

∑
i=1

∫ t−τi(t)

t−τ̄

∫ t−τi(t)

θ
ėT(s)Zi ė(s)dsdθ ≤ −2

N

∑
i=1

ΓT
3 ZiΓ3 − 4

N

∑
i=1

ΓT
4 ZiΓ4 (29)

where

Γ1 = e(t)− η1(t), Γ2 = e(t) + 2η1(t)− 6η3(t),

Γ3 = e(t − τi(t))− η2(t), Γ4 = e(t − τi(t)) + 2η2(t)− 6η4(t).

From Lemma 2, it can be determined that

−
N

∑
i=1

τ̄
∫ t

t−τi(t)
eT(s)Rie(s)ds ≤ −

N

∑
i=1

ηT
1 (t)Riη1(t)− 3

N

∑
i=1

(η1(t)− η3(t))
T Ri(η1(t)− η3(t)) (30)

−
N

∑
i=1

τ̄
∫ t−τi(t)

t−τ̄
eT(s)Rie(s)ds ≤ −

N

∑
i=1

ηT
2 (t)Riη2(t)− 3

N

∑
i=1

(η2(t)− η4(t))
T Ri(η2(t)− η4(t)) (31)

where

η1(t) =
1

τi(t)

∫ t

t−τi(t)
e(s)ds, η2(t) =

1
t − τi(t)

∫ t−τi(t)

t−τ̄
e(s)ds,

η3(t) =
1

(τi(t))
2

∫ t

t−τi(t)

∫ t

θ
e(s)ds, η4(t) =

1

(t − τi(t))
2

∫ t−τi(t)

t−τ̄

∫ t−τi(t)

θ
e(s)ds

Remark 3. Given that the estimator structure employed in this paper incorporates FMAV network
topology information, and the sampling interval of each vehicle varies over time, the construction
of the generalized function and the deflation method of the integration term play a crucial role
in determining the complexity and conservatism of the results. To enhance computational ef-
ficiency, we introduce single and double integration terms in the construction of the general-
ized function, making full use of the time delay information introduced by non-uniform sam-
pling. This approach avoids the introduction of complex multiple integration and generalization
terms, effectively sidestepping unnecessary computational burden. Specifically, when dealing

with the integral terms
N
∑

i=1
τ̄
∫ t

t−τ̄ eT(s)Qie(s)ds and
N
∑

i=1
τ̄
∫ t

t−τ̄ eT(s)Rie(s)ds in V̇2(e(t)), we em-

ploy time delay segmentation to obtain
N
∑

i=1
τ̄
∫ t

t−τi(t) eT(s)Qie(s)ds,
N
∑

i=1
τ̄
∫ t−τi(t)

t−τ̄ eT(s)Qie(s)ds,

N
∑

i=1
τ̄
∫ t

t−τi(t) eT(s)Rie(s)ds, and
N
∑

i=1
τ̄
∫ t−τi(t)

t−τ̄ eT(s)Rie(s)ds. Subsequently, estimation is carried

out by Lemma 2, producing four vectors, η1(t), η2(t), η3(t), and η4(t), which are influenced by
the number of FMAVs in the network and change over time. The intersection relationship between
the four vectors and the state vectors e(t), e(t − τi(t)), and e(t − τ̄) is established through the
introduction of the free matrix Si. Compared with the Jensen inequality, commonly used in exist-
ing distributed state estimation, the deflation accuracy of the generalized derivatives is improved,
contributing to reduced conservatism. Furthermore, compared with free-matrix- and auxiliary-
function-based methods utilized in the stability analysis of time delay systems, the introduction of
decision variables is significantly reduced, resulting in reduced complexity.
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Considering Lemma 1 and Equations (10), (19)–(31), we have

V̇(e(t)) ≤ ϖT(t)Θ1ϖ(t)− ε1

[
e(t)

F (e(t))

]T[ Ũ1 Ũ2
∗ I

][
e(t)

F (e(t))

]
+ ėT(t)Lė(t)

≤ ϖT(t)Θ̃ϖ(t) + ėT(t)Lė(t) (32)

where

Θ̃ =



Ξ̃11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 3R̄
∗ Ξ22 Ξ23 0 Ξ25 Ξ26 0 24Ẑ
∗ ∗ Ξ33 0 Ξ35 6Q̄ 0 0
∗ ∗ ∗ −ε1 I 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 −4Ŝ4 48Ẑ 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 48Ẑ
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88


Ξ̃11 = Sym{P1 Ā − ḠT

α1
P1}+ P2 − 6

N

∑
i=1

Zi − 4β
N

∑
i=1

Zi − 4
N

∑
i=1

Qi − ε1W̃1 + h2
N

∑
i=1

Ri,

ϖ(t) =
[

eT(t) eT
τ (t) eT(t − τ̄) F (e(t)) η1(t) η2(t) η3(t) η4(t)

]
By using the Schur complement, it follows from Equations (13) and (14) that V̇(e(t)) < 0,

which means that the estimation error Equation (10) with ω(t) = 0 and vτ(t) = 0 is
asymptotically stable.

Let us now move to the H∞ performance analysis for the estimation error Equation (10).
For all nonzero ω(t) ∈ L2[0, ∞) and vτ(t) ∈ L2[0, ∞), it can be determined from Equations (10)
and (32) that

V(e(t)) + ∥z̃(t)∥2 − γ2∥ω(t)∥2 − γ∥vτ(t)∥2 ≤ ςT(t)Φ̂ς(t) + ėT(t)Lė(t) (33)

where

ς(t) ∆
=

[
ϖT(t) ωT(t) vT

τ (t)
]
, Φ̂ =

 Φ Π1 Π2
∗ −γ2 I 0
∗ ∗ −γ2 I

.

By using the Schur complement, we can obtain
Θ Π1 Π2 Π3
∗ −γ2 I 0 B̄T P1
∗ ∗ −γ2 I −X̄T

D
∗ ∗ ∗ −P1L−1P1

 < 0, (34)

Furthermore, it can be derived from Equations (13) and (14) that(
V(e(t)) + ∥z̃(t)∥2 − γ2∥ω(t)∥2 − γ∥vτ(t)∥2

)
< 0 (35)

for all nonzero ω(t) and vτ(t). Consequently, we obtain

J(t) =
∫ t

0

(
∥z̃(s)∥2 − γ2∥ω(s)∥2 − γ2∥vτ(s)∥2 + V̇(e(s))

)
ds − V(e(t)) + V(e(0))

≤
∫ t

0

(
∥z̃(s)∥2 − γ2∥ω(s)∥2 − γ2∥vτ(s)∥2 + V̇(e(s))

)
ds < 0. (36)
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By considering the zero-initial value, it is easily known that J(t) < 0, then the H∞
performance constraint Equation (11) is immediately satisfied. Meanwhile, by using the
inequality −P1L−1P1 < −2P1 + L, the LMIs Equation (13) and (14) in Theorem 1 are
guaranteed by LMI (34). The proof of this theorem is now complete.

When only single gain is considered, we can obtain the following estimated error system{
ė(t) = Āe(t) +F (e(t)) + B̄ω(t)− K̄Ii(A⊗ I)C̄eτ − K̄Ii(A⊗ I)D̄vτ

z̄(t) = M̄e(t)
(37)

and derive the following corollary.

Corollary 1. Let the disturbance attenuation level γ > 0 be given. For the network system (1) and
FMAVs Equation (2), the dynamic estimation error system Equation (37) with single gain (tradi-
tional method) is asymptotically stable and satisfies the H∞ performance constraint Equation (11) if
there exist scalars ε1 > 0, τ̄ > 0 and symmetric matrix P2 > 0, Qi > 0, Zi > 0, Ri > 0, diagonal

matrix P1 = diagi
N{P1i}, X̄ = diagi

N{Xi}, and any free matrices Si =

[
S1i S2i
S3i S4i

]
(i ∈ V) of

appropriate dimensions such that Equations (12)–(14) with Yi = 0 are feasible.
Moreover, the estimator gain matrix is given by K̂i = P−1

1i Xi.

4. Simulations

In this paper, five FMAVs are simulated to analyze the system’s state. Each FMAV
employs distributed communication within the system, and the communication topology
between them is depicted in Figure 2. To streamline the simulation calculation, the simula-
tion focuses solely on the XOY transverse plane of mass movement. The system matrix of
the model is as follows:

A =

[
−0.6 0.2

0 −0.8

]
, B =

[
0.5 1

]T , M =
[

0.1 0.1
]
.

1

LW _4

5

43

2

Figure 2. Topological structure of the FMAVs.
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Let the nonlinear functions f (x(t)) be selected as

f (x(t)) = 0.5((U1 + U2)x(t) + (U2 − U1) sin(t)x(t))

where

U1 =

[
0.2 0
0 −0.15

]
, U2 =

[
0.15 0

0 −0.18

]
Consider the following FMAV network:

C1 =
[

0.1 0
]
, C2 =

[
0.2 0.1

]
, C3 =

[
0.5 0.7

]
, C4 =

[
−0.1 0.2

]
,

C5 =
[
−0.2 0.1

]
, D1 = 1, D2 = 0.5, D3 = 0.7, D4 = −0.5, D5 = −0.1.

The topology of FMAV network is represented by a graph G = (V , E ,A) with the set
of nodes V = {1, 2, 3, 4, 5}, the set of edges of E = {(1, 1), (1, 2), (1.4), (2, 2), (2, 4), (2, 5),
(3, 1), (3, 2), (3, 3), (4, 3), (4, 4), (4, 5), (5, 1), (5, 3), (5, 5)}, and the following adjacency

matrix A =


1 1 0 1 0
0 1 0 1 1
1 1 1 0 0
0 0 1 1 1
1 0 1 0 1

.

The upper bounds of the sampling time for each FMAV are taken as τ1 = 0.15, τ2 = 0.18,
τ3 = 0.17, τ4 = 0.20, τ5 = 0.18, where the non-uniform sampling interval is shown in
Figure 3. Respectively, we then have τ̄ = 0.20. According to Theorem 1, the following
distributed state estimation parameters can be obtained:

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
0

0.05

0.1

0.15

0.2

 t/s

 

 

Figure 3. Non-uniform sampling intervals (local).

K1 =

[
0.0613
−0.0086

]
, K2 =

[
0.1637
0.0633

]
, K3 =

[
0.0147
−0.0203

]
,

K4 =

[
0.4115
−0.2534

]
, K5 =

[
0.3439
−0.1601

]
,

G1 =

[
−2.0553
−1.1338

]
, G2 =

[
−1.5527
−0.6826

]
, G3 =

[
−2.2523
−1.3756

]
,

G4 =

[
−2.0324
−1.2511

]
, G5 =

[
−1.8740
−1.1503

]
.

And according to Corollary 1, we can obtain

K̂1 =

[
−0.1087
−0.0698

]
, K̂2 =

[
0.0231
−0.0045

]
, K̂3 =

[
−0.0728
−0.0703

]
,

K̂4 =

[
0.0057
−0.0472

]
, K̂5 =

[
0.0148
−0.02

]
.
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Additionally, the optimal performance levels specified in Equation (11) are
γ∗

T1
= 2.017 and γ∗

C1
= 2.036, respectively, which shows that the system is more resistant to

perturbation under information fusion correction. In the simulation, to better approximate
real-world scenarios, the system noise is chosen as a periodic noise that diminishes over
time, represented by ω(t) = e−0.2t sin(t). Meanwhile, the measurement noise is selected
to mimic the potential high-frequency vibrations encountered during signal transmission,
denoted as v(t) = sin(10t+1)

3t+1 . The initial conditions are set as x(0) =
[

0.3 −0.2
]T , and

x̂i(0)(i = 1, 2, 3, 4, 5) are chosen randomly according to the monomorphic distribution on[
0.3 −0.2

]T .
The simulation results are depicted in Figures 4–7. Among them, Figures 4 and 5

display the estimation errors under the traditional estimator model and the information
fusion correction model, respectively. It is evident that the peak phase errors of each
FMAV are reduced, with a maximum shrinkage of 16.57% and an average decrease of
7.3% (see Table 1). Figures 6 and 7 showcase the estimation outputs of the two estimation
methods, respectively. The mean value of the output signals under the corrective estimation
converges to ±0.001 compared with the traditional method within 0.6s . Furthermore, both
figures reveal that the estimation errors of FMAVs and the output signals of the system
are more centralized. This observation means that the FMAV’s estimation of the system
signals is faster, exhibiting better consistency and synergy. When multiple FMAVs are
performing cooperative missions and flying in formation, the method proposed in this
paper can be effectively utilized to cope with the time delay that occurs randomly during
the communication process and to improve the topological information utilization by
introducing the information fusion correction function. Thus, it can alleviate the perturbing
effects of the current non-constant aerodynamic mechanism of the flapping-wing vehicle
and the strong coupling between the aerodynamics and structure of the flapping wing on
the state estimation, and improve the estimation accuracy of the system as a whole.

0 5 10 15
 t/s

1 1.5 2 2.5 3
 t/s

0

0.01
0.03

0.02

0.01

0

−0.01

−0.02

−0.01

Figure 4. Estimation error under the traditional method.
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0 5 10 15
 t/s

1 1.5 2 2.5 3
 t/s

0

0.01
0.03

0.02

0.01

0

−0.01

−0.02

−0.01

Figure 5. Estimation error under the information fusion correction.
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0

0.01

0.02

0.03

0.04

 t/s

 

 

Output of system
Output of estimator 1

Output of estimator 2

Output of estimator 3

Output of estimator 4

Output of estimator 5

1 2 3
0

0.01

0.02

 t/s

 

 

−0.0  
0

1

Figure 6. Outputs of z(t) and zi(t) under the traditional method.

5 10 15

0

0.01

0.02

0.03

0.04

 t/s

 

 

Output of system
Output of estimator 1

Output of estimator 2

Output of estimator 3

Output of estimator 4

Output of estimator 5

1 2 3
0

0.01

0.02

 t/s

 

 

−0.01
  0

Figure 7. Outputs of z(t) and zi(t) under the information fusion correction.
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Table 1. Peak phase and error decrease ratio for each FMAV.

FMAV1 FMAV2 FMAV3 FMAV4 FMAV5

HC 0.017 0.006 0.013 0.023 0.019
LC −0.007 −0.015 −0.009 −0.003 −0.004
HT 0.017 0.009 0.012 0.023 0.018
LT −0.005 −0.008 −0.008 −0.003 −0.006

5. Conclusions

In this paper, we investigate the distributed H∞ state estimation problem for FMAVs
under non-uniform sampling. We enhance the traditional distributed state estimator model
by introducing an information fusion function to correct the communication information in
the FMAVs’ network system. This improvement aims to enhance the accuracy of signal
transmission while ensuring estimation performance. Utilizing the Lyapunov stability
principle and the method of linear matrix inequality, we provide criteria and a parameter
design method for the distributed state estimator to satisfy the H∞ performance index.
Our approach combines the Lyapunov–Krasovskii functional (LKF) and deflation methods,
along with cooperation with the information fusion function correction. This combination
significantly reduces conservatism in the results and enhances the convergence speed of
the outcomes. Finally, the designed estimator’s effectiveness and superiority are validated
through simulation. In our upcoming study, we aim to enhance the system model by
thoroughly analyzing the aerodynamics of FMAVs. We plan to incorporate information
fusion correction into the framework to address various randomly occurring information
incompleteness phenomena. Additionally, we will explore novel approaches to minimize
the conservatism of conclusions in the distributed state estimation of FMAVs.
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