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Abstract: Biological fish exhibit a remarkably broad-spectrum visual perception capability. Inspired
by the eye arrangement of biological fish, we design a fish-like binocular vision system, thereby
endowing underwater bionic robots with an exceptionally broad visual perception capacity. Firstly,
based on the design principles of binocular visual field overlap and tangency to streamlined shapes, a
fish-like vision system is developed for underwater robots, enabling wide-field underwater perception
without a waterproof cover. Secondly, addressing the significant distortion and parallax of the vision
system, a visual field stitching algorithm is proposed to merge the binocular fields of view and obtain
a complete perception image. Thirdly, an orientation alignment method is proposed that draws scales
for yaw and pitch angles in the stitched images to provide a reference for the orientation of objects of
interest within the field of view. Finally, underwater experiments evaluate the perception capabilities
of the fish-like vision system, confirming the effectiveness of the visual field stitching algorithm
and the orientation alignment method. The results show that the constructed vision system, when
used underwater, achieves a horizontal field of view of 306.56◦. The conducted work advances the
visual perception capabilities of underwater robots and presents a novel approach to and insight for
fish-inspired visual systems.

Keywords: fish-like vision system; underwater perception; underwater robot; field of view stitching;
robotic fish

1. Introduction

In recent years, autonomous underwater vehicles have been continuously developed
and have a wide range of applications in underwater searches and environmental monitor-
ing. The demand for underwater vehicles with visual perception has drawn attention to
the study of underwater computer vision. Although some underwater robots are capable
of carrying visual devices to capture images and videos, research in underwater vision
remains a relatively under-explored field [1].

In underwater environments, visual perception has advantages over common sonar
imaging [2], as reflected in being cost-effective, feature-rich, and containing semantic
information. Visual perception is widely used in underwater vehicles [3]. For example,
Huang et al. focused on improving the operational precision of the end-effector system
of underwater robots through visual servo control [4]. This research demonstrates that
uncalibrated visual perception, guided by reinforcement learning, can direct the robot to
perform repeatable actions. Visual perception, when used for control feedback, requires
high frequency and low latency, and hence, in underwater robots, it is more commonly
employed for target identification and tracking, navigation, and positioning [5].

Biomimetics 2024, 9, 171. https://doi.org/10.3390/biomimetics9030171 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9030171
https://doi.org/10.3390/biomimetics9030171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0009-1849-6108
https://orcid.org/0000-0003-4337-7767
https://orcid.org/0000-0002-6347-572X
https://doi.org/10.3390/biomimetics9030171
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9030171?type=check_update&version=2


Biomimetics 2024, 9, 171 2 of 16

Identifying and tracking underwater equipment such as cables and pipelines is a
common task for underwater robots with vision perception [6,7]. Onboard vision systems
detect targets in visual images by using feature points or lines in order to achieve tracking
and inspection. A robot navigation system that combines visual data with acoustic data
can provide the relative spatial position of the cable, achieving autonomous cable tracking
and inspection [8]. In the task of underwater fiber-optic cable inspection, existing solutions
face limitations in the field of view, often requiring the tracking strategies to compensate
for the shortcomings in visibility [7].

In terms of positioning, visual odometry is a natural technological approach and is
often used for self-localization of underwater robots [9]. Research on underwater visual
odometry aids with solving precise positioning and navigation in unstructured underwa-
ter environments. Furthermore, facing the harshly changing underwater environment,
Wang et al. combined depth information with 2D visual images to obtain continuous and
robust self-localization information [10]. The integration of underwater visual positioning
systems with inertial measurement devices enhances accuracy, offering a cost-effective
alternative to expensive acoustic positioning solutions. This is a one of the key factors in the
growing interest in underwater visual systems. In recent years, underwater visual simulta-
neous localization and mapping (SLAM) has also been a focus of research, particularly in
terms of precise positioning and mapping [11].

The visual system is crucial for enhancing the autonomy of underwater robots and is
now used in advanced tasks such as the recovery of AUVs in shallow water [12], docking
of underwater vehicles [13], and hitchhiking of bionic robotic fish [14]. Visual perception is
the fundamental base for expanding the application fields of underwater robots. However,
current research on the visual systems of underwater robots still faces the following diffi-
culties. First, image calibration is complex. In underwater environments, it is necessary
to consider the refraction of the water medium and to establish a refraction model for the
waterproof cover. This makes camera calibration complex, and the refraction from the
waterproof cover results in loss of field of view [15]. Second, the range of visual perception
is limited. The narrow underwater perceptual field of view can cause missing of targets,
often necessitating additional strategies to compensate for the constraints of the narrow
visual range [7]; however, multi-camera systems can expand the field of view to improve
the success rate of target tracking [13]. A wider or even panoramic field of view is beneficial
for the efficiency and accuracy of underwater searches or target tracking, but this usually
requires a redundant number of cameras. Third, the movement of underwater robots can
cause jitter, making the stability of the visual system a consideration. Especially in bionic
robot systems, vision stabilization methods are necessary [16].

Imitating human eye perception and with an understanding of vision, human-like
stereovision has been designed and used for robust perception in vehicles [17]; in underwa-
ter environments, inspired by the fish eyes of biological fish, fish-like vision systems are
easier to deploy on robots with fish-like streamlined shapes and can achieve a wider field
of view at a lower cost.

A fish-like vision system is a type of binocular system characterized by a minimal over-
lap region and severe distortion. The depth calculation of conventional binocular cameras
is not effective in the minimal overlap regions of the fish-like vision system. However, re-
search on binocular visual field stitching algorithms can be conducted to obtain continuous,
ultra-wide-range perception images, which can enhance the practical application value of
the fish-like vision systems. Binocular visual field stitching combines images with overlap-
ping regions to form wide-field and high-resolution images. Its main steps include feature
matching, image registration, and seam removal [18]. Due to the constraints of adverse
visual environments, there are fewer feature points and a higher matching error rate, which
lead to difficulties in underwater image stitching [19]. Although improvements in natural
feature extraction and matching can improve the accuracy of underwater stitching [19–21],
they are more commonly used on image sequences for which the adjacent images them-
selves have a higher degree of overlap. Leveraging the characteristic of unchanged relative
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positions of cameras, some binocular-vision-based methods have significantly enhanced
processing efficiency and robustness compared to traditional stitching algorithms that rely
solely on image appearance information [22,23]. However, past research has often utilized
binocular cameras with parallel optical axes and has relied on accurate stereo calibration.
The latter poses challenges for fish-like vision systems with minimal overlap regions and
severe distortion. In the post-processing stage of the registration, seam cutting can produce
visually appealing stitched images from partially aligned images [24]. Various optimization
methods based on colors [25], edges [26], depths [27], and other features have been studied
to adapt to different scenes.

Considering the current state of underwater vision research, this paper presents a
fish-like binocular vision system for underwater robots. Compared to common underwater
vision systems, it is expected to obtain a wide field of view perception through a reasonable
combination of two fisheye cameras. The contributions of this paper primarily include
the following three aspects. Firstly, a fish-like binocular vision system is designed and
implemented and features a structure adapted to the streamlined shape of the robot and
biomimetic field of view characteristics. Through the field of view design method proposed,
the fish-like vision system can be successfully deployed on robotic fish. Secondly, in con-
sideration of the characteristics of significant distortion and disparity in the visual system,
a field of view stitching method is proposed to obtain complete perceptual images, and the
field of view of the stitched images is tested and showed a maximum field of view reaching
306.56◦. Thirdly, with the assistance of a calibration board, an orientation alignment method
is employed to draw orientation indicators in stitched images, providing reference for the
localization and tracking of targets within the field of view by underwater robots.

The rest of this paper is organized as follows. Section 2 presents the fish-like vision
system, corresponding visual field design method, and deployment process. In Section 3,
a visual field stitching method is proposed for merging images from two fisheye cameras
and obtaining complete perceptual images. In Section 4, an orientation alignment method is
proposed for drawing yaw and pitch scales within the field of view. Section 5 describes the
experimental tests. Finally, the conclusions are summarized and future works are presented
in Section 6.

2. Fish-like Binocular Vision System

The research objective of the fish-like vision system is twofold: on the one hand, it
aims to obtain a larger perceptual field of view with as minimal visual hardware as possible,
primarily by mimicking the positional distribution of biological fish eyes; on the other hand,
it seeks to provide a vision system solution that has minimal field loss and a large field of
view while also being adapted to the streamlined shape of the bionic robotic fish. Therefore,
we develop a fish-like vision system as shown in Figure 1, which mainly includes two parts:
a design method for a wide field of view adapting to streamlined shapes and a deployment
method without waterproof compartments.

Figure 1. Schematic diagram of fish-like binocular vision system.
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2.1. Field of View Design

The fish-like vision system needs to adapt to irregular streamlined shapes on the one
hand and achieve the widest possible field of perception on the other hand. Based on the
design requirements, a field of view design method is proposed that considers three key
elements, as shown in Figure 2.
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Figure 2. Field of view design: three key factors and camera mount geometry.

Optical axis perpendicular to the tangent plane: On the premise of initially replicating
the shape of a robotic fish, the fisheye camera is placed in a position mimicking that of a
biological fish eye. The protective lens of the fisheye camera is directly and tightly integrated
with the streamlined shape of the robot and does not rely on additional waterproof covers.
The waterproof-cover-free solution not only prevents attenuation of the camera’s field
of view but also replicates the central position of the biological fish’s eye as closely as
possible. To minimize the loss of the streamlined shape of the robotic fish, it is necessary
for the optical axis to be perpendicular to the tangent plane of the streamlined shape.
To satisfy the tangency condition, the position of the camera can be represented by two
angles (ψ, τ). Specifically, the left and right cameras rotate clockwise and counterclockwise
by ψ/2 respectively from facing directly left and right and then rotate by τ around the
camera’s horizontal axes l1 and l2 respectively. Since the camera is placed tangentially to
the streamlined shape, (ψ, τ) can also be used to describe the streamlined shape features at
the installation location.

Binocular visual field overlap: In biological fish, the intersection of the fields of view
of both eyes is usually small, and in some cases, there is virtually no intersection. For the
fish-like vision system, the two fisheye cameras correspond to the two eyes of a biological
fish, and the binocular visual field overlap [28] is beneficial for forming a continuous and
complete field of view. Therefore, in the field of view design, there should be a certain
degree of overlap angle φ between the two eyes’ fields of view; this is typically around 10◦

and need not be excessively large.
As large a field of view as possible: In underwater scenarios, a large field of view

is beneficial for robots to capture more information, and reducing the blind spots of the
binocular vision system is expected to enhance the efficiency of autonomous tasks such as
underwater searching and inspection. The discussion on the field of view design is focused
on the field of view design plane, as shown by the plane Πζ in Figure 2. On the design
plane Πζ , the overlapping projected area of the two fisheye cameras is maximized, and the
angle of overlap on this plane is defined as φ. When the field of view angle of the fisheye
camera is θ, the range of the field of view can be represented as Θ = 2θ − φ. Therefore,
the condition for maximizing the field of view is expressed as follows:

max 2θ − φ (1)
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To further clarify the relationship between the field of view, the streamlined shape,
and the camera mounting angle, the field of view design geometric model in Figure 2
is established, which thereby allows us to design a field of view that meets the desired
expectations. First, the mathematical symbols in Figure 2 are clarified.

l1 The intersection line of the left camera plane with the horizontal plane.

l2 The intersection line of the right camera plane with the horizontal plane.

ψ The angle between l1 and l2.

τ The angle of rotation along the l1 and l2 axes when installing the camera. The angles

of rotation are the same for both cameras but are in opposite directions.

Πζ The field of view design plane with the maximum extent of binocular overlap.

Πl The outer tangent plane of the streamlined shape at the camera mounting location.

φ The degree of overlap angle between two eyes.

ξ The angle of the direction of maximum overlapping in the image,

i.e., the angle between the intersection line of the camera plane and the design plane,

and the mounting axes l1, l2.

ζ The angle between the field of view design plane Πζ and the horizontal plane.

The field of view design plane is formed by the directions of maximum overlapping
of the left and right fisheye camera views. This plane has two characteristics: firstly,
the binocular visual images on the field of view design surface are continuous; thus, the
images from both eyes can be stitched along this direction; secondly, the angle of overlap
is the largest on this plane, allowing the field of view Θ on this plane to be used as the
measurement standard for the visual field range of the fish-like vision system.

Furthermore, by analyzing the geometric features, the relationship between the field of
view design surface angle ζ and the angle ξ of the maximum overlap direction in the image
with the angles (ψ, τ) of the streamlined shape can be obtained. Firstly, (ψ, τ) determine
the angle of the tangent plane Πl . Generally, the streamlined shape is symmetrical, so
when considering the tangent plane of the left eye alone, its rotational characteristics can be
represented by (ψ/2, τ). The tangent plane of the left eye is derived by rotating the vertical
plane around the z-axis by ψ/2 and then around the x-axis by τ. To facilitate the analysis
of geometric features, a simplified diagram of the geometric relationships between planes
and axes is depicted in Figure 2, with all geometric relationships contained within the
tetrahedron OhO1O2Oc. The three colors in Figure 2 refer to elements on the three planes,
respectively. Analyzing the simplified geometric diagram, OhOc is the tangent to lo1 and
lo2, C is the projection of Oc onto the horizontal plane, and Q1 and Q2 are the foot points
on planes Πl and Πζ , respectively. The symbol τ− refers to the angle between the tangent
plane Πl with the horizontal plane Πh, where τ− = 90◦ − τ. The symbol ζ refers to the
angle between the design plane Πζ and the horizontal plane Πh. Therefore, based on the
radius R of the image plane circle, the lengths of the sides can be represented as

|OhOc| = R tan ξ, |OhO1| = R/ cos ξ, |OhQ1| = R/ cos ξ − R cos ξ

|OCQ1| = |OhQ1| tan (90◦ − ξ), |CQ1| = |OhQ1| tan (ψ/2)

|OhQ2| = |OhO1| cos (ψ/2)

(2)

According to the trigonometric relationships, the following equations hold in the right
triangles OCQ1C and OCQ2C:

cos τ− = |CQ1|/|OCQ1|, sin ζ = |OhOc|/|OhQ2| (3)
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Combining Equations (2) and (3), the relationship between the angles ψ, τ, ζ, and ξ is
as follows:

cot (ξ) = tan (ψ/2)/ sin (τ)

sin (ζ) = sin (ξ)/ cos (ψ/2)

Θ = 2θ − φ
(
on the plane Πζ

) (4)

Therefore, the field of view characteristics of the fish-like vision system can be de-
scribed as (ζ, ξ, Θ), the streamlined shape or installation angles are represented by (ψ, τ),
and the camera parameters are denoted by θ. Among these, the field of view characteristics
(ζ, ξ, Θ) affect the visual perception range. A larger ζ indicates a visual perception tendency
towards observing upper regions, a smaller ξ means the overlapping perception area is
more focused in the forward direction, and a larger Θ signifies a larger observational field
of view.

According to Formula (4), on the one hand, the system’s field of view characteristics
can be calculated based on known streamlined shapes and camera parameters; on the
other hand, the field of view characteristics can be designed based on observational task
requirements; thereby, users can select the required camera characteristics and adjust the
streamlined shape accordingly.

2.2. Deployment on Robotic Fish

The fish-like vision system is designed without a waterproof cover; when deployed
on a biomimetic robotic fish, it requires the design of a connector that fits the streamlined
shape and a reliable sealing solution. The deployment process is shown in Figure 3.

Connector

Step I. Design the connector Step II. Sealed connection 

with the camera

Streamlined 

shape

Base curved 

surface

Sealed connection

Step III. Firmly connected to the shell

with the camera

Deployed on the bionic robotic fish

Figure 3. Deployment of fish-like vision systems in underwater environments.

To adapt to the streamlined shape of the bionic robotic fish, at the selected optical axis
position, a ring area fitting the streamlined shape is cut out to serve as the base curved
surface for the connector. The inner diameter of the ring area matches the outer diameter
of the lens, and the ring area has a certain width. Based on this structure, an incremental
expansion forms the connector, as shown in Figure 3. The connector is tightly connected to
the camera, and the outer curved surface is sealed at the connection interface. Subsequently,
the connector is firmly connected to the shell of the streamlined shape with screws.

In this work, the built vision system is specifically installed on a type of bionic robotic
tuna that is intended for underwater search tasks. A 210◦ ultra-wide-angle fisheye camera
is chosen, and the angle of the overlapping area set to around 20◦. The underwater robotic
fish platform deploying the fish-like vision system is shown in Figure 3, and subsequent
image algorithms are also deployed on this platform.

3. Binocular Visual Field Stitching for Fish-like Vision System

The fish-like vision system is suitable for underwater applications of bionic robotic
fish: not only does it conform to the streamlined shape of the fish, but it also significantly
increases the range of the perceptual field of view. However, when applied to higher-level
algorithms such as target recognition, separately processing the left and right eye images
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may result in errors, such as incomplete detection of targets or redundant counting of
targets in binocular overlap regions, as shown in Figure 4.

Original images Stitched image

“There are six blue fish.” “There are four blue fish 

and one orange fish.”
Error1: Redundant counting of blue fish 

Error2: missed incomplete targets (orange fish)

Field of view overlap region

Field of view independent region

Objects in overlap region

Objects in left independent region

Objects in right independent region

Figure 4. Stitched image helps to avoid ambiguity in target recognition in fish-like binocular vision.

The image stitching method can merge binocular images to obtain a continuous
and complete image, effectively avoiding ambiguity in processing left and right images.
However, the fish-like vision system has the characteristics of large distortion and large
disparity, posing certain challenges to the stitching of left and right fields of view. This
section proposes a binocular visual field stitching method for a fish-like vision system with
large disparity and distortion, and the process is illustrated in Figure 5.
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Figure 5. Process of binocular visual field stitching algorithm of fish-like vision system.

The stitching algorithm transforms the original images from the left and right eyes
(Iorigin,left, Iorigin,right) into a field of view stitched image (Istitch). For fisheye cameras with
significant distortion, the notion of panoramic stitching can be adopted, where multiple
fisheye lenses are arranged to obtain a panoramic projection image. For stitching scenes
with large disparity, a method based on seam lines can be utilized [24]; it does not require
perfect alignment of two images but achieves visually appealing stitching by key joining at
the seam lines. The binocular visual field stitching algorithm mainly includes the following
four steps.

(1) Camera calibration: Fisheye cameras exhibit significant distortion, and pinhole
camera calibration algorithms may not yield accurate results. For fisheye cameras, OCam-
Calib [29–31] provides a convenient means to obtain the parameters for the two fisheye
cameras. This process requires the capture of checkerboard pattern images from two
cameras.

(2) Feature point extraction and matching: The underwater environment is complex
and constantly changing and has poor lighting conditions and limited availability of natural
features. This poses challenges for feature detection and matching in the overlapping
regions of binocular images. Attempts have been made to produce calibrated images using
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classic feature detection methods such as SIFT, SURF, ORB, as well as the deep-learning-
based SuperPoint feature detection method [32], but obtaining a sufficient and accurate
set of feature point matches has proved to be difficult, which makes image registration
and stitching difficult to perform. Therefore, for the proposed fish-like visual system,
a marker-assisted feature-enhanced matching method was designed.

First, we introduce positioning markers such as ARUCO [33] and patterned markers
like chessboards into the overlapping region to enhance the feature points within the area,
as shown in Figure 5. Unlike natural feature points, these artificial marker features are
specially designed and are easier to detect. Secondly, by detecting the ARUCO marker,
we obtain the placement directions oleft and oright of the artificial markers and simultane-
ously detect chessboard feature points in the left and right views. Then, we number the
incomplete chessboard points in the left and right views. In the left view, numbering starts
from the (0, 0) point relative to oleft in terms of pixel distance and direction. In the right
view, numbering starts from the (0, n) point relative to oright in terms of pixel distance
and direction, with the maximum number reaching (m, n), where m and n represent the
length and width, respectively, of the corner point array within the chessboard grid. Finally,
points with the same numbering are matched feature point pairs in the left and right views,
as shown in the blue-numbered region in Figure 5.

In natural underwater scenarios, features are sparse. The proposed feature matching
method uses low-cost chessboard markers, which are easier to make and obtain compared
to specially designed three-dimensional markers [34,35]. The proposed marker-assisted
feature-enhanced matching method avoids time-consuming and laborious underwater
scene setting and provides the feature point pairs needed for image stitching in a cost-
effective manner. Through the marker-assisted feature-enhanced matching method, the dif-
ficulties of feature detection and matching in the underwater environment are addressed.

(3) Image stitching: Based on the feature point pairs between the left and right views,
we compute the homography matrix H using RANSAC [36], and we subsequently calculate
the projection relationship. Let w be the image width, and (u1, v1) and (u2, v2), respectively,
represent the average pixel coordinates of all matched feature points in the two images.
The following coordinate relationships can be obtained:

(u1, v1, 1)T ≈ H(u2 + w, v2, 1)T (5)

To center the field of view, we left-multiply both sides by 2(H−1 + I)/2, yielding H1 =
(H−1 + I)/2 and H2 = (H + I)/2, which are used to simultaneously transform the left and
right images. To achieve a stitching result wherein the feature points overlap as much
as possible, further optimization of some camera intrinsic and extrinsic parameters is
necessary for re-projection. We assuming the position of each camera remains unchanged,
while slight rotations along the X, Y, Z axes are permissible, and the focal lengths f1 and f2
of the cameras can vary within a certain range. We use the quasi-Newtonian method to
minimize the following function:

L = ∑
i
∥pi − qi∥ (6)

where pi and qi are the re-projection vectors of the i-th pair of pixel feature points after pa-
rameter adjustment. We save the optimized camera parameters and homography matrices
H1 and H2 so that subsequent real-time stitching of binocular images can be performed
without relying on calibration boards.

(4) Image optimization: Optimization of the stitched images consists primarily of two
steps: color correction and seam cutting. Color optimization is achieved by histogram
equalization of the image color to ensure color consistency in the stitched field of view.
Based on pixel differences [25], we compute an energy map of the overlapping region to
locate the seam line, and then, inspired by [37], we implement SSIM-based seam evalua-
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tion [38], misaligned component extraction, local patch alignment, and seam merging to
improve the smoothness and prevent having a noticeable seam line in the stitched image.

4. Orientation Alignment for Fish-like Vision System

For underwater robots, visual perception plays a vital role in applications such as
underwater searches and facility maintenance. When tracking underwater targets based on
a visual system, the orientation information of hot-spot targets in the field of view can be
fed back from the visual image, providing reference data for the robot’s tracking motion.
For a bionic robotic fish, the orientation information mainly includes the heading angle and
pitch angle. Therefore, we design an orientation alignment method for the fish-like vision
system and draw the yaw and pitch indicators on the stitched image Istitch, as shown in
Figure 6.
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Istitch,right

Orientation alignment image for right eye
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Figure 6. Orientation alignment of fish-like vision system.

In an underwater environment, both the robotic fish and the calibration board are
placed horizontally, with the orientation of the robotic fish parallel to the chessboard grid.
The center of gravity of the fish body, oc (closer to the camera), is horizontally aligned
with a corner point o on the chessboard grid at a distance of d. In the scenario depicted
in Figure 6, the left eye is first oriented towards the chessboard grid, and visual images
from the left and right eyes are captured. After stitching, the left eye’s alignment image
Istitch,left is obtained. Subsequently, the robotic fish is rotated so that the right eye camera
faces the chessboard grid. Visual images of the left and right eyes are again captured,
and after stitching, the right eye’s alignment image Istitch,right is obtained. Corner detection
is then performed on the registered images of the left and right eyes and acquires the
pixel coordinates p(i,j) corresponding to the physical position coordinates of the chessboard
corners P(i,j). The actual position of the corner point P(i,j) is represented by the grid distance
from point o; for example, for the point P shown in Figure 6, i = 2, j = 3. The angles
between the line connecting P(i,j) and oc with the horizontal and vertical planes are α and β,
respectively, which are related to the yaw and pitch angles of point P relative to the robotic
fish.

tan α =
i · dc

d
, γ = −α

tan β =
j · dc

d
, δleft = 90◦ + β

δright = β − 90◦

(7)

where dc represents the side length of the chessboard grid, and γ and δ are the pitch and
yaw angles, respectively, in the robotic fish’s coordinate system. Assuming point oc is close
to the camera, the targets along the oc direction approximately corresponds to the pixel
coordinates p(i,j) in the stitched image. Ultimately, using the pixel coordinate points and
their corresponding yaw and pitch angles isopleths, the yaw and pitch scales are drawn on
the stitched images.
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5. Experiments and Results

The fish-like vision system is deployed on a bionic robotic fish platform and employs
two 210◦ industrial cameras connected via USB cables in order to capture underwater
image data. The primary data captured includes three categories: stitched calibration
image data, totaling 12 sets; orientation alignment images, totaling 8 sets; and video
stream data, totaling 3 sets. The underwater experiments are performed from four aspects:
field of view test, visual field stitching test, orientation indicator test, and comprehensive
performance test of the fish-like vision system in order to verify the perception ability and
image algorithm effects.

5.1. Field of View Test

The fish-like vision system is capable of obtaining a wide perceptual field of view
with just two cameras, and it is necessary to assess the specific size of the field of view
through testing. In the constructed fisheye vision system, τ = 29.15◦, Ψ = 25.7◦; the-
oretically, φ = 55.7◦, θ = 210◦. Thus, the visual system’s field-of-view characteristic
angles ξ = 64.91◦ and ζ = 68.26◦ are calculated based on Equation (4), and theoretically,
Θ = 364.3◦. However, due to the attenuation of the camera’s field-of-view angle θ and
the binocular overlap angle φ in underwater scenes, the confidence level of the theoretical
calculation value of the field-of-view range Θ is relatively low.

To accurately measure the perception range of the fish-like vision system, an under-
water scene is set up, as shown in Figure 7. In the test scenario, the robotic fish is placed
horizontally at a distance d1 from the rear wall and is perpendicular to the rear wall. At this
point, the edge pixels along the ξ direction, i.e., green points in Figure 7, are determined
from the left and right images, and the real physical points corresponding to the two edge
pixels are found on the rear wall. The horizontal distance between the real physical points,
dΠζ ,2, is measured. The field of view range of the design plane of the field of view can then
be calculated through the geometric relationship using the following equation:

Θ = 360◦ − 2 arctan

(
dΠζ ,2

2d1

)
(8)

After measurement, d1 = 30 cm and dΠζ ,2 = 75.5 cm. Upon calculation, the deployed
fish-like vision system has a field of view of 256.95◦.

Horizontal field of view

 !," !"

 #$,"

 %%

Design plane#$ field of viewg p

&

Red labels on field of view design plane#$Red labels on field of view design plane#

Green labels on horizontal plane #'

&

Figure 7. Experiment environment for field of view test.

Through a similar method, the horizontal field of view is measured. The edge pixels
corresponding to the horizontal plane direction, i.e., red points in Figure 7, and the corre-
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sponding real physical points, i.e., red points on the wall, are found. The distance between
the real physical points is measured to be dH,2 = 30.20 cm. After calculation, the horizontal

field of view range is ΘH = 360◦ − 2 arctan
(

dH,2
2d1

)
= 306.5647◦.

According to the experimental results, the field of view range ΘH on the horizontal
plane is greater than Θ on the field of view design plane. This is because the extent of
binocular overlap is the greatest in the ξ direction on the field of view design plane, making
the field of view angle in this direction the smallest. As the direction deviates from the ξ
direction, the field-of-view range gradually increases until there is no overlap between the
left and right fields of view. At this point, the field of view angle theoretically reaches its
maximum fixed value of 2θ, at which point the images in the left and right eye fields of
view are not continuous.

According to the field of view test results, the fish-like vision system can achieve a
maximum visual perception capability of 306.56◦ in the underwater environment. This
provides a novel ultra-wide field-of-view perception scheme for underwater robots, which
is expected to enhance the perception ability and efficiency of robots in vision-based
underwater operations.

In terms of the fish-like vision system, due to the loss caused by the water medium
to the field of view of a single camera, the underwater perception range is smaller than
that in the air, and the overlapping area of the binocular field of view becomes narrower.
Therefore, for the design of fish-like vision system, the design of the overlapping angle of
the field of view φ and the angle of the field of view Θ must take into account the refraction
loss in the underwater environment plus allowing for a margin.

5.2. Visual Field Stitching Test

An underwater scene is set up, the angle of the robotic fish is adjusted, and images
are captured with markers filling the overlapping area to obtain original images Iorigin.
After calibrating the original images using OCamCalib v3.0, feature matching methods
are performed on the calibrated images Icalib. Figure 8a shows the results of left and
right eye feature matching using the SIFT, SuperPoint, and proposed marker-assisted
feature-enhanced matching methods.

(a) (b)
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Figure 8. Stitching algorithm testing. (a) Comparative test of SIFT, SuperPoint, and proposed
matching methods. (b) Based on original images, images featuring annotated feature points in the
overlapping region are obtained through calibration and feature matching, ultimately resulting in the
corresponding stitched image through the stitching algorithm.
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The first two methods can detect a sufficient number of feature points, but the dis-
tortion of feature points in the left and right eyes is different, making it difficult for both
methods to correctly pair the features. The proposed method, however, first obtains fea-
ture points under binocular vision through chessboard corner detection, then numbers
the feature points based on the detected placement directions oleft and oright, and finally
determines the feature point pairs by filtering the same numbers. Compared to classic
feature detection algorithms, the proposed method successfully obtains correct feature
point pairs in the case of large disparities and distortions in the left and right eyes with the
assistance of markers. The marker-assisted feature-enhanced matching method is more
suitable for feature-sparse underwater scenes and ensures the accuracy of pairing through
the numbering strategy.

Based on the feature point matching pairs, the homography matrix is calculated,
and the stitched image is obtained through camera parameter optimization and seam line
optimization. The complete stitching process is shown in Figure 8b. According to the test,
the visual field stitching algorithm is capable of restoring the complete chessboard grid
image in the overlapping area. Through the visual field stitching algorithm, the fish-like
vision system is able to output complete visual images without field of view loss.

5.3. Orientation Indicator Test

The orientation indicator test is conducted based on a 6 × 9 chessboard grid, with the
images captured as shown in Figure 9a. By identifying the chessboard grid corners in the
image, the pixel coordinates p(i,j) for each position P(i,j) are obtained. The horizontal dis-
tance d is set to 16 cm, and the chessboard grid unit length dc is 3.5 cm; thereby, we calculate
the pitch and yaw angles corresponding to each position P(i,j) as shown in Tables 1 and 2,
respectively. By combining the corresponding pixel coordinate set p(i,j), partial contour
lines are drawn in the stitched image, and the corresponding yaw and pitch angle scales
are marked, with the results shown in Figure 9b.

Table 1. Pitch scale contour values.

i −2 −1 0 1 2 3 4 5

Pitch scale (◦) 23.63 12.34 0 −12.34 −23.63 −33.27 −41.19 −47.56

Table 2. Yaw scale contour values.

j −2 −1 0 1 2 3 4 5 6 7 8

Yaw scale (Left) (◦) 113.6 102.3 90 77.66 66.37 56.73 48.81 42.44 37.30 33.15 29.74
Yaw scale (Right) (◦) −113.6 −102.3 −90 −77.66 −66.37 −56.73 −48.81 −42.44 −37.30 −33.15 −29.74

(a) (b)

Fig8-PPT

−23.63

Figure 9. Results of orientation indicator testing. (a) Orientation alignment images captured by left
and right eyes, respectively. (b) Stitched image with yaw and pitch scales.
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According to the orientation indicator outcomes, the contour lines for the yaw scale
and pitch scale are not oriented horizontally or vertically but are instead inclined at specific
angles. This is due to the installation angle of the fish-like vision system being inclined
relative to the vertical plane; if the vision system meets the condition ξ = 0, the stitched
image will have horizontal and vertical direction indicators. According to the pitch scale in
Figure 9b, the upper view area (pitch angle less than zero) covers a larger range than the
lower view area (pitch angle more than zero), indicating that the constructed vision system
tends to observe the field of view above the robot.

For the wide field of view perception, yaw and pitch angle scales help to provide
reference orientations for targets of interest within the image. When performing underwater
tasks, the robotic fish can swim towards the target based on its reference orientation,
achieving a function similar to visual serving.

5.4. Comprehensive Performance Test

Combining image stitching and orientation indicators, the comprehensive performance
of the fish-like vision system was tested under different swimming patterns. Figure 10
shows image snapshots of the fish-like vision system with the robotic fish in horizontal
swimming, diving, and rolling swimming states, respectively. As shown in Figure 10a, due
to the installation angle of the fish-like camera, when the robotic fish swims horizontally,
its stitched images capture the view looking upwards from underwater, while the images
to the front, to the left, and to the right are mostly distributed around the periphery of the
stitched image. During diving, the robotic fish’s posture is oriented towards the bottom of
the pool, with the majority of the field of view being underwater images, and the output
images reflect the field of view changes during diving, as shown in Figure 10b. In the
rolling swimming pattern, the water–air interface line in the field of view continuously
rotates, reflecting the rolling state of the robot, as shown in Figure 10c.

Through experimental testing, the comprehensive performance of the proposed fish-
like vision system has been validated. By imitating the characteristics of biological fish’s
eyes, it adapts to the shape of the robotic fish, providing a wide-ranging underwater visual
perception capability. The advantages and practical implications are mainly reflected in
three aspects. Firstly, its design without a waterproof shell increases its field of view in
underwater scenarios. Secondly, through a binocular image stitching method with large
distortion and disparity, the system can achieve an ultra-wide perception range (with a
visual perception range exceeding 300◦). Thirdly, compared to traditional vision systems
that are installed horizontally or vertically, the designed vision system is more suitable for
the shape of the robotic fish and can achieve a greater field of view with fewer hardware
cameras. Given these characteristics, the fish-like vision system demonstrates universal
applicability in underwater scenarios. This is particularly evident in tasks such as visual-
based underwater search and maintenance, where the ultra-wide field of view significantly
reduces the blind spots of underwater robots, increases the probability of detecting targets,
and enhances the efficiency of robots when completing underwater tasks. The proposed
vision system is expected to advance the visual perception capabilities of underwater robots
and expand their application fields in these scenarios.

Our work provides a novel visual configuration scheme and a large-disparity image
stitching algorithm. However, the fish-like vision system still has certain limitations.
Firstly, the edges of the stitched image still have some distortion, which may affect the
correct recognition of objects at the image edges. Secondly, when applying the proposed
vision system to underwater bionic robots, the stability of the output images needs to
be improved. Future research directions to address these limitations include, but are not
limited to, the following aspects. Firstly, based on the visual data set captured by the
proposed system, we can further enhance the training of high-level image algorithms to
improve the accuracy of captured visual images for scenarios such as underwater target
detection. Secondly, we can research real-time image stabilization methods for underwater
bionic robots by cropping or stitching images. Thirdly, based on the large perception range
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of the proposed vision system, we can research a framework for visual-based underwater
search methods to explore strategies for improving search efficiency. The fish-like vision
system has great potential in underwater robots, especially in bionic robotic fish, and further
research is expected to enhance the development of fish-like visual perception capabilities.

15.56 s 24.42 s23.03 s

8.73 s0.00 s 4.18 s

2.23 s 6.63 s 11.08 s

(a)

(b)

(c)

Fig9-PPT

−23.63 −23.63 −23.63

−23.63 −23.63 −23.63

−23.63 −23.63 −23.63

Figure 10. Comprehensive performance results. (a) Horizontal swimming. (b) Diving motion.
(c) Rolling swimming.

6. Conclusions

Inspired by the visual system of biological fish, we propose a fish-like vision system
with a wide field of view that is suitable for deploying on underwater vehicles with
fish-like streamlined shapes. Regarding the proposed fish-like vision system, this paper
primarily encompasses four aspects. Firstly, the visual field design method for the fish-
like vision system is presented, and we elucidate the relationship between streamlined
shape features, field of view demands, and camera parameters. Secondly, based on a field
design method, a fish-like vision system is constructed and deployed on a bionic robotic
fish and uses a solution without waterproof compartments to avoid refraction loss of the
field of view. Thirdly, in consideration of the characteristics of significant distortion and
disparity in the system, a visual field stitching algorithm is designed to merge the images
from binocular eyes, providing a foundation for applications such as target recognition
algorithms. Finally, an orientation alignment method is devised to solve for the relative
orientation between the robot and positions corresponding to visual image points, and yaw
and pitch indicators are overlaid on the stitched image. Experimental results demonstrate
that the proposed vision system possesses a wide-area perception capability of 306.56◦

and validate the effectiveness of the visual field stitching algorithm and the orientation
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alignment method. The experimental results indicate the practical applicability of the
visual system in underwater robotics, and we offer an effective visual perception solution
from a biomimetic perspective.

In the future, the fish-like vision system will be used for target recognition on under-
water robots. Additionally, based on the complete wide-field perception image, research
on electronic vision stabilization methods will be conducted in order to obtain stable
perception video output through real-time cropping of the output image. Furthermore,
vision-based searching strategies will be explored based on the advantage of wide-area
visual perception to further enhance underwater search efficiency.
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