
Citation: Li, J.; Yang, S.X.

Bio-Inspired Neural Network for

Real-Time Evasion of Multi-Robot

Systems in Dynamic Environments.

Biomimetics 2024, 9, 176. https://

doi.org/10.3390/biomimetics9030176

Academic Editors: Pengcheng Liu,

Qinbing Fu and Tiong Hoo Lim

Received: 29 January 2024

Revised: 11 March 2024

Accepted: 13 March 2024

Published: 15 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Bio-Inspired Neural Network for Real-Time Evasion
of Multi-Robot Systems in Dynamic Environments
Junfei Li † and Simon X. Yang *,†

School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada;
jli64@uoguelph.ca
* Correspondence: syang@uoguelph.ca
† These authors contributed equally to this work.

Abstract: In complex and dynamic environments, traditional pursuit–evasion studies may face
challenges in offering effective solutions to sudden environmental changes. In this paper, a bio-
inspired neural network (BINN) is proposed that approximates a pursuit–evasion game from a
neurodynamic perspective instead of formulating the problem as a differential game. The BINN is
topologically organized to represent the environment with only local connections. The dynamics
of neural activity, characterized by the neurodynamic shunting model, enable the generation of
real-time evasive trajectories with moving or sudden-change obstacles. Several simulation and
experimental results indicate that the proposed approach is effective and efficient in complex and
dynamic environments.

Keywords: bio-inspired algorithms; pursuit–evasion games; neurodynamic models

1. Introduction

The pursuit–evasion game is a classic issue in robotics, in which one or more “pursuers”
attempt to capture one or more “evaders” in different environments [1–4]. The traditional
pursuit–evasion algorithms used differential game formulation for the modeling and
analysis of the pursuer and evader [5–7]. As the number of agents involved in the pursuit–
evasion game increases, the complexity of the problem increases. Tian et al. [8] proposed a
distributed cooperative pursuit strategy for an evader in an obstacle-cluttered environment.
Cheng and Yuan [9] proposed a parameter-adaptive method to update the pursuit and
evasion strategies when considering collision avoidance in the multiplayer. Sani et al. [10]
considered a pursuit–evasion game based on the nonlinear model predictive control in static
obstacle environments, where the pursuer and the evader are nonholonomic mobile robots.
The pursuit–evasion problem has a wide range of applications, including navigation [11],
surveillance [12,13], human–robot cooperation [14] and robotic foraging behaviors [15].

The problem of multiple evaders against a single pursuer requires the pursuer to
capture multiple evaders in a finite amount of time. Therefore, the pursuer typically has
some advantages over the evaders, such as faster speed, greater maneuverability, or more
information about the environment [16]. The main challenge for the evaders is to increase
the survival time. One approach that has been developed to guide multiple evaders is
to formulate them as a group moving together and following a single leader [17]. Scott
and Leonard [18] analyzed a dynamic model of multiple heterogeneous evaders against
a faster pursuer and presented pursuit and evasion strategies considering global or local
detection. However, their study only considered collision-free obstacle environment. The
LoS (line-of-sight) guidance principle has been widely used in the pursuit–evasion game
due to its simplicity, intuition, and low computational burden [19]. However, a singular
escape direction may lead the evader to a local minimum constituted by obstacles in
complex environments. Scott and Leonard [20] proposed a strategy for evaders not initially
targeted to avoid capture and considered the limited sensing condition through a local
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risk reduction strategy. However, they only considered that multiple evaders work in
collision-free obstacle environments. Some studies focused on the influence of the obstacle
in the pursuit-evasion game. The traditional methods impose some limitations to the
physical states for both pursuers and evaders to formulate the game in a bounded area
or obstacle environment. Fisac and Sastry [21] proposed a two-player game where the
obstacle is able to delay or avoid capture from the pursuer. Oyler [22] considered the
effect of asymmetric obstacles, where the obstacle has different influences on each player.
Bhadauria and Isler [23] considered a bounded environment with some static obstacles.
When considering the effect of the obstacle, the visibility may not be full for the pursuer
and evader. Wu et al. [24] proposed a flock control algorithm that can guide swarming
aerial vehicles with obstacle avoidance in a dynamic and unknown 3D environment.
Dong et al. [25] incorporated the artificial potential field method to design a collision-free
evasion model. Oyler et al. [22] proposed dominance regions to generate the evasion path
considering the presence of obstacles. However, these studies often rely on assumptions
about the behavior of the pursuer. These assumptions may not always hold in practice,
which makes it difficult to develop strategies for unpredictable pursuit behavior.

Recently, the neural network approach has become a hot research topic [26,27]. Many
studies considered using neural networks to deal with the pursuit–evasion problem.
Qi et al. [28] proposed a deep Q-network approach to guide the evader to escape from the
pursuer based on a self-play mechanism. Qu et al. [29] proposed a deep reinforcement
learning approach to generate pursuit and evasion trajectories for unmanned surface ve-
hicles. The proposed approach considered multi-obstacle influences in the water surface
environment. Guo et al. [30] proposed a neural network-based control method to ensure
that the velocities of the pursuer and the evader converge to their desired values with
unknown dynamics. However, pursuit–evasion games that use learning-based neural
network approaches are not efficient and computationally expensive, especially in their
initial learning.

This paper aims to provide a novel approach that approximates a general pursuit–
evasion game from a neurodynamic perspective instead of formulating the problem as a
differential game. In this paper, the neurodynamics-based approach aims to overcome the
limitations of the traditional approach and improve the performance of evaders in dynamic
and uncertain environments. A bio-inspired neural network (BINN) is applied to guide
robots to evade a single faster pursuer in the presence of dynamic obstacles. Compared
with existing research, the contributions of this paper are summarized as follows:

(1) The concept of a pursuit–evasion game with sudden environmental changes is pro-
posed for the first time.

(2) A novel neurodynamic-based approach is proposed to approximate the pursuit–
evasion game instead of formulating the problem as a differential game.

(3) A novel real-time evasion strategy is proposed based on the landscape of the neural
activity without any learning procedures.

This paper is organized as follows. Section 2 offers the preliminaries and a description
of the problem. Section 3 describes the proposed approaches to evasion. Section 4 shows
the simulation and experimental results involving different scenarios. In Section 5, the
results of this research are briefly summarized.

2. Problem Statement

For a group of m evader robots, their time-varying location in the workspace, W, can be
uniquely determined by the spatial position, pe = (xe, ye), e = 1, . . . , m. The time-varying
position of the faster pursuer can be denoted by pu = (xu, yu). Suppose the pursuer has full
knowledge of the environment. However, the pursuer has no knowledge about the evasion
strategy of evaders and their evasion directions. It is the same for the evader, which has
full knowledge of the environment but has no information on the direction of the move
and the pursuit strategy of the pursuer. Because the moving directions and strategies of the
pursuer and evader are unknown to each other, the trajectories of the evader and pursuer
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are not able to predict depending on their kinematics model. Thus, the kinematics model
of the pursuer and evader is not considered in this paper. In the workspace, W, there is
a sequence of i obstacles, and their position can be denoted by po = (xo, yo), o = 1, . . . , i.
The speed of moving obstacles can be denoted by vo. The boundary of the workspace is
assumed to be a sequence of static obstacles. If the evader reaches the environmental limit,
the evader is considered a collision with obstacles.

The speed of the pursuer is denoted by vu, whereas the speed of the evader is denoted
by ve. Suppose that both the evader and the faster pursuer move with constant speeds. In
the workspace, W, assume that the pursuer captures the evader at position f in limit time T.
The position of f can be denoted by f = (x f , y f ). Position f satisfies the following condition:√(

x f − xu

)2
+
(

y f − yu

)2

√(
x f − xe

)2
+
(

y f − ye

)2
=

vuT
veT

= λe, (1)

where λe = vu/ve is the speed ratio of evader and the pursuer. The speed ratio plays
an important role in the evasion task [31]. If speed ratio λe is very large, it means the
evader can be easily captured by the pursuer. In this paper, the pursuer is faster than the
evaders. Thus, λe > 1 in all considerations. The purpose of evasion is to increase the
total survival time ts of evaders. Since the pursuer has full knowledge of the environment
and the pursuer and the evader move with constant speed, the strategy of the pursuer is
equivalent to a multi-target path planning problem [22]. The number of evaders is greater
than that of the pursuers; at each instant of time, the pursuer captures evaders based on the
following sequence:

Ψt = min{deu, e = 1, 2, ..., m}, (2)

where Ψt is the evader assigned for the pursuer to capture at the instant of time t; and
deu = |(xe − xu, ye − yu)| is the Euclidean distance between the pursuer and each evader.
The pursuer captures the nearest robot until all the robots are captured. If two evaders are
equidistant from the pursuer, a random evader is chosen for one of them.

Therefore, the problem studied in this paper can be described as follows: for a group of
m evaders and one faster-moving pursuer, given the initial positions of evaders pe(0) with
e = 1, . . . , m and pu(0) with ∥pu(0)− pe(0)∥ > dc, the collision-free trajectories of robots
are generated to increase survival time ts for the group of evaders. The evader is captured
by a faster pursuer when the distance between the purser and the evader is smaller than
capture distance dc > 0.

Since several movable and sudden change obstacles exist in the workspace, the evaders
should not only escape the pursuer, but also guarantee the evasion trajectories are real-time
collision-free to obstacles. Note that the term “real-time” means that the response of the
robot trajectory generator is instant to the dynamic environmental changes.

3. Proposed Approach

In the proposed approach, the environment is represented one to one by a neural
network with only local connections. The evasion strategy is analyzed and designed from
a neurodynamic perspective. The real-time collision-free evasion trajectories are generated
through dynamics of neural activity.

3.1. Environment Representation via Bio-Inspired Neural Network

In this study, the fundamental idea is to construct a topologically organized neural
network architecture in which the dynamic landscape of neural activity represents the
dynamic environment. By properly defining the external inputs from the dynamic en-
vironment and internal neural connections, the pursuer and obstacles are guaranteed to
stay at the peak and valley of the activity landscape of the neural network, respectively.
The architecture of the proposed neural network is illustrated in Figure 1a. The proposed
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neural network is characterized by its local connectivity structure in which the neuron is
only connected to other neurons within a small region (0, r0). The neighboring neurons
are defined as those whose distance between the kth neuron and the jth neuron is smaller
than r0. The environment is assigned one to one to the neural network, as illustrated in
Figure 1a. The black squares represent the position of the obstacles and the gray circles
represent the corresponding neurons that map to the obstacles. The red square represents
the position of the pursuer, and the blue square represents the position of the evader.

r0
k

j Pursuer

Evader

Excitatory input

Inhibitory input

（a） （b）

−

−

Figure 1. The example of the bio-inspired neural network. (a) Structure of the neural network with
only local connections; (b) example of dynamic landscape of neural activity.

Hodgkin and Huxley [32] proposed an electrical circuit for modeling the membrane
potential in a biological neuron system. Using the state equation technique, the dynamics
of membrane Vm can be obtained as

Cm
dVm

dt
=− (El + Vm)gl + (ENa − Vm)gNa − (EK + Vm)gK, (3)

where Cm is the capacitance of the membrane; EK and ENa are the equilibrium potentials
of potassium and sodium ions, respectively; El is the potentials of passive leak current
due to chloride and other ions; gK and gNa are the ionic conductances of the potassium
and sodium, respectively; gl is conductances of chloride and other ions. Grossberg [33]
developed a shunting neurodynamics model that establishes Cm = 1 and substitutes
xk = Ep + Vm, A = gl , B = ENa + El , D = Ek − El , Se

k = gNa, and Si
k = gK in (3). Therefore,

the shunting equation can be written as

dxk
dt

= −Axk + (B − xk)Se
k − (D + xk)Si

k, (4)

where xk denotes the neural activity of the kth neuron; Se
k and Si

k are the excitatory and
inhibitory inputs to the neuron, respectively; A is the passive decay rate; B and D are
the upper and lower bounds of the neural activity, respectively. The neural activity is
bounded in the area of [−D, B]. Several robotic navigation and control algorithms have
been developed depending on the neurodynamic shunting model [34–36].

Based on (4), the excitatory input Se
k is derived from the pursuer and its neighboring

neurons, while the inhibitory input Si
k is derived from obstacles. Therefore, the neural

activity for the kth neuron is written as

dxk
dt

= −Axk + (B − xk)

(
[Ik]

+ +
n

∑
j=1

wkj[xj]
+

)
− (D + xk)[Ik]

−, (5)

where xj represents the neural activity of neighboring neurons to the kth neuron; n
represents the amount of neighboring neurons to the kth neuron; [a]+ is defined as
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[a]+ = max{0, a}; and [a]− is defined as [a]− = max{0,−a}. Connection weight wkj
is defined as

wkj = f (dkj) =


µ

dkj
, 0 < dkj ≤ r0,

0, dkj > r0,
(6)

where µ is a positive constant and dkl represents the Euclidean distance between the kth
neuron and the lth neuron. The neural activity is bounded in the area of [−D, B] as shown
in Figure 1b. The parameters of the shunting model have been discussed in previous
work [37]. The shunting model exhibits low sensitivity to both parameters and the neural
connection weight function, which allows for a broad selection range of parameters. For
the pursuit–evasion game, only two parameters A and µ are important factors. The neural
network is very easy to saturate when parameter µ > 1. Thus, the value of µ is normally
selected in the interval of µ ∈ (0, 1]. When choosing a small A value, the small transient
response makes the past influence of external inputs (pursuer or obstacle) disappear slowly.
When choosing a big A value, the propagation from the current pursuer position becomes
the domain contribution to the neuron activities.

Theorem 1. The steady-state neural activity is bounded in the area of [−D, B].

Proof of Theorem 1. The shunting Equation (4) can be rewritten as

dxk
dt

=
(
−A − Se

k − Si
k

)
xk + BSe

k − DSi
k, (7)

where dxk/dt is linearly related to xk and this relationship can be categorized into three
distinct scenarios. Firstly, when considering the absence of any inputs (Si

k = Se
k = 0), the

relationship can be described as
dxk
dt

= −Axk. (8)

When xk > 0, dxk/dt is negative and its magnitude increases as xk increases. In
contrast, when xk < 0, dxk/dt is positive and its magnitude increases with decreasing xk.
As a result, at steady state (dxk/dt = 0), the value of xk converges to 0. Secondly, when
only the presence of excitatory input is considered (Si

k = 0 and Se
k ̸= 0), the relationship

can be described as
dxk
dt

= (−A − Se
k)xk + BSe

k; (9)

when xk is at the steady state (dxk/dt = 0), the value of xk can be given as

xk = B
Se

k
A + Se

k
, (10)

where A is a positive constant. Then, A + Se
k > Se

k; thus, xk converges to BSe
k/(A + Se

k) < B.
Finally, when only the presence of inhibitory input is considered (Si

k ̸= 0 and Se
k = 0), the

relationship can be described as

dxk
dt

=
(
−A − Si

k

)
xk − DSi

k; (11)

when xk is at the steady state (dxk/dt = 0), the value of xk can be given as

xk = −D
Si

k
A + Si

k
, (12)

where A+ Si
k > Si

k; thus, xk converges to −DSi
k/(A + Si

k) > −D. Therefore, neural activity
xk is bounded within an interval of [−D, B].
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3.2. Evasion Strategy Based on Neurodynamics

The directions and strategies of the pursuer and the evader are unknown to each other.
Therefore, the evasion strategy cannot be guaranteed to be optimal because the strategy
considers only the current locations of the players and not their locations at future times.
The external input Ik to the kth neuron is defined as

Ik =


E, if it is a pursuer,

− E, if it is an obstacle,

0, otherwise,

(13)

where E is a positive constant. If the corresponding position of the neuron is the pursuer,
the external input becomes a large positive value. If the corresponding position is the
obstacle, the external input becomes a large negative value. As the directions and strategies
of the pursuer and evader are not mutually known, each evader assumes that the pursuer
is pursuing itself specifically. The evasion strategy for each evader can be given as

Pe ⇐ xPe = min
{

xj, l = 1, 2, ..., n; xj ≥ 0
}

, (14)

where Pe represents the next position of the evader robot and xPe represents the neural
activity of the command neuron. From (5), there are two components in the excitatory
term Se

k. The [Ik]
+ term depends on the corresponding position of the pursuer, and the

∑n
j=1 wkj[xj]

+ term enables the propagation of positive activity to the whole neural network.
The inhibitory term Si

k only consists of [Ik]
−, which depends only on the corresponding

position of the obstacle. Therefore, the pursuer has global effects throughout the neural
network, while the obstacle effect is local without propagation. As shown in Figure 1b, the
neuron with the pursuer position has maximum neural activity and propagates the positive
neural activity to its neighborhoods. The neurons of obstacles have negative neural activity
without propagating.

Theorem 2. The trajectory of the evader is collision-free with the obstacles.

Proof of Theorem 2. The neural activity of obstacle xobs at the steady state can be written as

xobs = −D
Si

k
A + Si

k
< 0. (15)

Since the evader only chooses the positive neural activity for the next position according to
the evasion strategy (14), the obstacle neuron will not be chosen as the next position.

Theorem 3. The proposed neural network has a real-time response to the obstacle.

Proof of Theorem 3. Suppose that the kth neuron is not an obstacle at time instant t1.
Assume that one obstacle moves to the kth neuron at the instant of time t2. The neural
activity of the kth neuron at time instant t2 can be written as

xk(t2) = xk(t1) +
dxk
dt2

= B
∑n

j=1[xj]
+

dkj
− DE ≈ −E. (16)

Thus, for any time instant t, if the position of the neuron becomes the obstacle, the
neural activity of this neuron changes to a very large negative value. Based on the evasion
strategy (14), the evader would not choose the neuron with negative neural activity. There-
fore, the trajectories of the pursuer and evader are collision-free in real time to the obstacle
in any time instant.
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4. Results

To evaluate the performance of the proposed approach, simulations are performed
with three types of obstacles. The positions of the pursuer, obstacles, and robots are
randomly distributed in the workspace. The simulation studies are tested in MATLAB
2021a. The simulation parameters are listed as A = 15, B = 1, D = 1, µ = 1, E = 50, r0 = 2,
λe = 3, and dc = 0.5. The speed of obstacle vo is equal to that of the evader robot. The
workspace is represented by a neural network that has 40 × 40 neurons.

4.1. Evasion with Static Obstacles

In the initial simulation, the proposed approach to avoid static obstacles was tested
using one pursuer and three evader robots. The initial positions of the robots and the
pursuer were as follows: the robots are located at (20, 23), (16, 10), and (30, 14), and the
pursuer is located at (40, 40). The pursuer captured the closest robot, Robot 1, at the 12th
step, as shown in Figure 2a. Subsequently, the pursuer captured Robot 2 at the 18th step, as
shown in Figure 2b. At the beginning of the evasion, Robot 2 kept the same direction as
Robot 1 but was later impeded by an obstacle. Lastly, Robot 3 was captured by the pursuer
at the 24th step, as shown in Figure 2c. During the evasion process, both Robots 2 and 3
altered their evasion direction at the 9th and 15th steps, respectively. When close to the
boundary of the workspace, the robots changed direction to avoid collision.

(c)(a) (b)

10

20

30

40

10 20 30 40

Pursuer
Robot 1
Robot 2
Robot 3

10

20

30

40

10 20 30 40

Pursuer
Robot 1
Robot 2
Robot 3

Pursuer
Robot 1
Robot 2
Robot 3

10

20

30

40

10 20 30 40

Figure 2. The evasion process with static obstacles. (a) The pursuer captures Robot 1 at the 12th step;
(b) the pursuer captures Robot 2 at the 18th step; (c) the pursuer captures Robot 3 at the 24th step.

4.2. Evasion with Moving Obstacles

In the next simulation, a more complex scenario was considered in which obstacles
were moving within the workspace. In the simulation scenario, the velocity of the obstacles
is equivalent to the evader robots. The gray lines represent the past trajectory of the
obstacles. As shown in Figure 3a, Robot 1 was captured at the 11th step. An obstacle
moving upward hindered the pursuit of Robot 1, leading it to move upward to evade the
pursuer. Robot 2 was captured at the 16th step, as shown in Figure 3b. In contrast to the
previous simulation, the obstacle started moving upward, providing enough space for
Robot 2 to move toward the past position of the obstacle. Finally, Robot 3 was captured
at the 29th step, as shown in Figure 3c. Initially, Robot 3 moved to the left as the obstacle
blocked its evasion direction. However, as the pursuer closed in on Robot 1, Robot 3
reversed its direction and moved toward the right.
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10
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30

40

10 20 30 40

Pursuer
Robot 1
Robot 2
Robot 3
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Robot 1
Robot 2
Robot 3
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20
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40

10 20 30 40

Pursuer
Robot 1
Robot 2
Robot 3

(c)(a) (b)

Figure 3. The evasion process with moving obstacles. (a) The pursuer captures Robot 1 at the 11th
step; (b) the pursuer captures Robot 2 at the 16th step; (c) the pursuer captures Robot 3 at the 29th step.

4.3. Evasion with Sudden Change Obstacles

In this simulation, a case of sudden addition and removal of obstacles is tested to
indicate the real-time response of the proposed approach. Figure 4a shows an L-shaped
obstacle suddenly placed in front of Robot 1. Robot 1 is not able to move forward due to
a sudden obstacle. The neural activity of the L-shaped obstacle immediately becomes a
large negative value. Thus, Robot 1 moves to its right side and passes around obstacles, as
shown in Figure 4b. Compared to the results shown in Figures 3b and 4b, it can be observed
that Robot 2 chose a different direction for evasion. This is because the sudden addition of
the obstacle hindered the evasion of Robot 1, resulting in its early capture. As a result, the
relative position of Robot 2 and the pursuer was greater than in the previous simulation,
leading Robot 2 to move to the left to evade rather than to the right. Another scenario
considered was the sudden removal of an obstacle. As shown in Figure 4c, an obstacle near
Robot 2 was removed. After that, Robot 2 moved to the right, which increased the distance
between the pursuers, as shown in Figure 4d.

10

20

30

0

10 20 30 40

Pursuer
Robot 1
Robot 2
Robot 3

A sudden deleting obtacle

(c)

A sudden adding obstacle

10

20

30

40

10 30 40

Pursuer
Robot 1
Robot 2
Robot 3

20

(a)
 

10

20

30

40

10 30 40

Pursuer
Robot 1
Robot 2
Robot 3

20

(b)

10

20

30

40

10 30 40

Pursuer
Robot 1
Robot 2
Robot 3

20

(d)

40

Figure 4. The evasion process with sudden change obstacles. (a) An L-shaped obstacle that suddenly
adds to Robot 1; (b) the final evasion process with a suddenly adding obstacle; (c) a suddenly deleting
obstacle near Robot 2; (d) the final evasion process with a suddenly deleting obstacle.
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4.4. Comparison Studies

In comparison studies, several experiments are tested in various scenarios to evaluate
the performance of the proposed approach. The proposed approach and the compared
approach are tested 30 times for different scenarios when λe = 3. As mentioned in the
literature review, the following approaches are compared with the proposed method:

1. CM: a collective moving approach is to form multiple evaders as a group moves
together with others following a single leader. In this comparison study, a self-
adaptive collective moving approach is used to guide evaders to move in the opposite
direction of the pursuer [38].

2. LoS-PF: a potential field-based approach that generates attractive and repulsive forces
to guide the evader [25]. The attractive force is based on the virtual target which is
the line-of-sight direction of the pursuer, whereas the repulsive force is based on the
position of obstacles.

3. RL: a reinforcement learning algorithm based on a self-play mechanism to guide
the evader to escape from the pursuer and avoid collisions with obstacles [28]. The
reward function of the evader is defined as follows:

Reva =


− 10, if dt

eu < dc,

− 10, if collide with an obstacle,

c(dt
eu − dt−1

eu ), otherwise,

(17)

where c is a small constant; Reva is the reward value of the evader in self-play training,
and dt

eu is the distance between the pursuer and the evader at time t.

As shown in Table 1, the comparison results indicate that the proposed method obtains
a longer survival time in dynamic scenarios, including moving, adding, and deleting
environments, while the RL method outperforms other methods only in static scenarios.
It is important to note the limitation of the RL method in terms of training time. Due
to the position changes of the pursuer and the obstacle, the training process is restarted
at every step. Therefore, the training time is significantly extended with an increasing
number of evaders or environmental changes, which might pose significant challenges in
real-world applications, where computational resources, time constraints, and the need for
rapid deployment can limit the feasibility of the methods. However, the training process
is not necessary in the proposed approach. The next evasive movement is based on the
dynamic change in neural activity. It is unnecessary to incorporate a learning mechanism to
determine optimal neural weights, which would lead to greater complexity of the algorithm
and increased computational costs. Compared to the LoS-PF method, the evasion of the
proposed method is based on the propagation of neural activity, which is not limited to a
specific evasive direction. In contrast, the LoS-PF method is a direction-selective evasion
strategy, where the chosen direction is the opposite of the pursuer. The opposite direction
of the pursuer is the optimal direction for the evader in a collision-free environment.
However, in environments with obstacles, a singular escape direction may lead the evader
to a local minimum constituted by obstacles, which leads the evader to be trapped at the
current location. This limitation is also present in the CM approach that involves multiple
evaders moving as a group with a single leader, which can lead to a group of evaders in a
single direction.
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Table 1. Comparison of the average survival time in different scenarios.

Approach Static Moving Adding Deleting

CM [38] 14.57 15.07 14.57 14.43
LoS-PF [25] 19.40 15.73 19.87 21.40

RL [28] 23.10 23.57 23.30 22.27
Proposed 21.97 24.70 23.77 23.80

The maximum survival time is highlighted in bold.

4.5. Real-World Experiments on Mobile Robots

To validate the proposed neurodynamic-based evasion method for mobile robots, three
robot operating systems (ROSs) were built for experimental tests, as shown in Figure 5.
Each robot was equipped with a 1080p camera and an RPLIDAR A1 laser scanner and
both were integrated into an Ubuntu system. For control, environment detection, and
localization tasks, the robots used Raspberry Pi 4 Model B and STM32F405 computing
boards. The proposed evasion strategy can be considered as a virtual target path planning
for robots. When the pursuit–evasion game begins, the command position of the evader
Pe = (xe, ye) is sent to mobile robots according to the environment and the current position
of the pursuer. Evader robots set the command position as the current virtual target for path
planning. The experimental results are in reasonable agreement with the simulation results.

（a）

（b）

（c）

Pursuer

Evader 1

Evader 2

Pursuer
Evader 1

Evader 2

Evader 2

Evader 1

Pursuer

Figure 5. The real-world experiment for validating the performance of the proposed method using
three mobile robots.

5. Conclusions

This paper presents a novel neurodynamics-based approach that addresses the general
pursuit–evasion game from a neurodynamic perspective instead of formulating it as a
differential game. A specific evasion task considered the case in which one single pursuer
moves faster than the evader robots. The approach utilizes a BINN with only local con-
nections, which is topologically organized to represent the environment. The pursuer has
global effects on the whole neural network, whereas the obstacles only have local effects to
guarantee evader robots avoid collisions. The proposed approach is capable of generating
collision-free evasion trajectories and has a real-time response to the changing environment
through dynamic neural activity. The simulation and experimental results demonstrate that
the proposed approach is effective and efficient in complex and dynamic environments.
The limitation of the proposed method can be summarized as follows. Firstly, the evasion
direction in the proposed method is constrained to eight fixed directions, whereas the
evasive direction of the real robot can be finely adjusted. Secondly, the proposed method
assumes that the robots are point robots, which ignores the dynamics of actual robotic
systems. This limits the applicability and effectiveness of the method in practical settings.
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Future work will aim to incorporate continuous adjustment of the direction of evasion and
integrate realistic robotic models to improve applicability and effectiveness in real-world
robotic evasion scenarios.
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