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Abstract: To address the shortcomings of the recently proposed Fick’s Law Algorithm, which is prone
to local convergence and poor convergence efficiency, we propose a multi-strategy improved Fick’s
Law Algorithm (FLAS). The method combines multiple effective strategies, including differential
mutation strategy, Gaussian local mutation strategy, interweaving-based comprehensive learning
strategy, and seagull update strategy. First, the differential variation strategy is added in the search
phase to increase the randomness and expand the search degree of space. Second, by introducing
the Gaussian local variation, the search diversity is increased, and the exploration capability and
convergence efficiency are further improved. Further, a comprehensive learning strategy that simul-
taneously updates multiple individual parameters is introduced to improve search diversity and
shorten the running time. Finally, the stability of the update is improved by adding a global search
mechanism to balance the distribution of molecules on both sides during seagull updates. To test the
competitiveness of the algorithms, the exploration and exploitation capability of the proposed FLAS
is validated on 23 benchmark functions, and CEC2020 tests. FLAS is compared with other algorithms
in seven engineering optimizations such as a reducer, three-bar truss, gear transmission system,
piston rod optimization, gas transmission compressor, pressure vessel, and stepped cone pulley. The
experimental results verify that FLAS can effectively optimize conventional engineering optimization
problems. Finally, the engineering applicability of the FLAS algorithm is further highlighted by
analyzing the results of parameter estimation for the solar PV model.

Keywords: Fick’s law algorithm; differential variation; Gaussian local variation; comprehensive
learning; seagull update strategy; engineering optimization

1. Introduction

Optimization algorithms are always asked to find optimal or near-optimal solutions [1].
Heuristic algorithms and meta-heuristic algorithms (Mas) are concrete implementations
of optimization algorithms. Separately, heuristic algorithms optimize the performance
of the algorithm by searching the solution space through heuristic rules and empirical
guidance [2]. In addition, MAs ensure that the algorithm achieves optimal results by
combining and adjusting different heuristic algorithms.

MAs are widely used and essential in science, technology, finance, and medicine.
For example, in artificial intelligence (AI), MAs improve the model’s performance and
accuracy [3]. It can also be used to optimize problems in AI applications such as intelligent
recommendation systems, image processing, and natural language processing to provide
better user experience and quality of service. In the financial field, MAs can be used
to optimize investment portfolios and risk management to improve investment returns
and reduce risks. In the medical field, the MAs can be used to optimize the allocation
and scheduling of medical resources to optimize work efficiency in medical services. In
transportation, MAs can be used to optimize traffic signal control and route planning to

Biomimetics 2024, 9, 205. https://doi.org/10.3390/biomimetics9040205 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9040205
https://doi.org/10.3390/biomimetics9040205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-2274-7482
https://doi.org/10.3390/biomimetics9040205
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9040205?type=check_update&version=2


Biomimetics 2024, 9, 205 2 of 48

reduce traffic congestion and improve transportation efficiency [4] and so on. In addition,
the application of MAs presents some opportunities for algorithmic improvement, multi-
objective optimization, and integration with machine learning, but also some challenges,
including high complexity, parameter selection, and local optimal solutions.

There are many different types of MAs. This paper mainly classifies them according to
animal, plant, discipline, and other types. Animal-based optimization algorithms simulate
the social behavior of animals in groups and collectives. For example, the best known is
Particle Swarm Optimization (PSO), which simulates specific behaviors of birds during
flight or foraging [5]. Krill Herd (KH) [6] simulates the grazing behavior of individual
krill. Harris Hawk Optimization (HHO) [7] is mainly inspired by the cooperative behavior
and chasing style of Harris hawks in nature. Abdel-Basset et al. proposed a Nutcracker
Optimizer (NO) [8]. NO simulates two different behaviors exhibited by Nutcracker at
different times. Whale Optimization Algorithm (WOA) [9] was developed, inspired by
the feeding process of whales. The Genghis Khan Shark Optimizer (GKSO) simulates [10]
predation and survival behaviors.

A plant-based optimization algorithm simulates the intelligent clustering behavior of
plants. Dandelion Optimizer (DO) simulates the process of dandelion seeds flying over
long distances relying on the wind [11]. Invasive Weed Optimization (IWO) simulates the
basic processes of dispersal, growth, reproduction, and competitive extinction of weed
seeds in nature [12]. Tree Growth Algorithm (TGA) [13] is an algorithm that simulates the
competition among trees for access to light and food.

Discipline-based approaches include primarily chemical, mathematical, and physical
approaches. They both accomplish optimization by simulating natural physical, fundamen-
tal laws, and chemical phenomena. Physics-based methods, such as those seen in Zhang
et al., propose a Growth Optimizer (GO) subject to the learning and reflective mechanisms
of individuals during social growth. It mathematically simulates growth behavior [14].
Abdel-Basset and El-Shahat proposed a Young’s Double-Slit Experiment (YDSE) optimizer.
The YDSE optimizer was inspired by Young’s double-slit experiment [15]. Special Relativity
Search (SRS) simulates the interaction of particles in a magnetic field [16]. Chemistry-based
methods, such as Atomic Search Optimization (ASO), mathematically models and simu-
lates the movement of atoms in nature [17]. Nature-inspired chemical reaction optimization
algorithms mimic the principles of chemical reactions in nature [18]. Smell Agent Optimiza-
tion (SAO) considers the relationship between odor agents and objects that vaporize odor
molecules [19]. Ray Optimization (RO) [20] is proposed based on the idea of Snell’s light
refraction law. Algorithms based on mathematical methods have also been extensively
studied, for example, the Arithmetic Optimization Algorithm (AOA) [21] simulates the
distributional properties of four basic operators. The Sine Cosine Algorithm (SCA) [22] is an
algorithm proposed by the ideas of sine and cosine. Subtraction-Average-Based Optimizer
(SABO) [23] proposes an individual updating the position of an individual by subtracting
the average of the position idea.

Other types of algorithms include, but are not limited to, optimization algorithms
based on human acquisition, e.g., Social Group Optimization (SGO) simulates the social
behavior of humans in solving complex problems [24]. Social Evolution and Learning
Optimization (SELO) simulates the social learning behavior of humans organized in families
in social settings [25]. Student Psychology-Based Optimization (SPBO) simulates the
process of students improving their level of proficiency in multiple ways during the
learning process [26]. Further, the corresponding algorithms and publication dates are
given, as shown in Figure 1.
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To increase the broad application of MAs in various fields, researchers constantly
update the design and performance of MAs and develop more efficient and accurate algo-
rithms. Fatma A. Hashim [27] proposed a physics-based MA called Fick’s Law Algorithm
(FLA) to optimize the process by constantly updating the position of molecules in different
motion states under the concentration difference. It has been proven that FLA leads to
optimal solutions with high robustness when confronted with real-world engineering opti-
mization problems. However, some experimental studies have also found that FLA suffers
from local convergence as well as degradation of convergence accuracy when faced with
high-dimensional, high-complexity problems [28]. Therefore, we try to improve the FLA
algorithm by introducing some efficient but non-redundant strategies and the proposed
multi-strategy improved FLA algorithm (FLAS).

The proposed FLAS adopts many strategies to improve its performance and effect.
Specifically, at the beginning of the exploration phase, the FLAS adds differential and
Gaussian local mutation strategies to expand the search range in the later iteration. During
the transition process phase, FLAS uses intersectional integrated learning strategies to
enhance the ability to inquire about the overall situation and randomness. FLAS also
adopts the Levy flight strategy in location updates and generates random steps with Levy
distribution, which can carry out an extensive range of random searches in the search space.
This randomness has an excellent global search ability and effectively controls the degree
of the search and convergence rate. Finally, in the exploitation phase, FLAS also adds a
global search mechanism for the migration phase of the seagull algorithm, aiming to speed
up its convergence by avoiding molecular aggregation. Through the organic combination
of these strategies, FLAS can effectively solve the problems of FLA in convergence accuracy
and the convergence process and achieve better performance. The competitiveness and
validity of FLAS are validated in 23 benchmark functions and CEC2020 tests, 7 engineering
design problems, and solar PV parameter estimation applications. The results of FLAS are
compared with those of other recent Mas, and are statistically analyzed using the Wilcoxon
rank sum test.

The main contributions of this study are as follows:
(1) To overcome the shortcomings of the original algorithm FLA, a new optimization

algorithm named FLAS is proposed by introducing the differential variational strategy,
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Gaussian local variational strategy, interleaving-based integrated learning strategy, and
seagull updating strategy.

(2) Some classical and newly proposed algorithms are selected as comparison algo-
rithms, and the optimization ability of FLAS is evaluated on 23 benchmark functions and
the CEC2020 test set. The computational results of various performance metrics show that
the proposed FLAS has the best overall performance in most of the tested functions.

(3) The FLAS is applied to seven engineering optimizations and the solar PV model
parameter estimation, respectively. The results show that FLAS can stably provide the most
reliable optimization design strategies for most practical problems.

The remainder of this paper is as follows: first, Section 2 analyzes, summarizes, and
improves FLA. Then, in Section 3, the multi-strategy improved Fick algorithm is presented
by adding five different strategies. Secondly, we test the performance of FLAS in Section 4.
The results of FLAS on the CEC2020 test set are compared with other methods. In Sections 5
and 6, FLAS is applied to seven practical engineering design problems and the solar PV
parameter estimation application. Finally, this study is summarized and prospected.

2. An Overview of the FLA

Fick’s law describes the fundamental principle of diffusion of substances in physics
and chemistry. Therefore, Fick’s law algorithm simulates Fick’s law process of substance
diffusion [27]. According to Fick’s law, the greater the concentration gradient, the faster
the diffusion rate [29]. Therefore, Fick’s algorithm changes the concentration relationship
between the two sides by adjusting the position of molecules in different regions to ensure
a stable position of the molecules, thus realizing the optimization process. Figure 2 shows
the schematic diagram of molecular movement in Fick’s law.
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In the FLA algorithm, the optimization process first requires randomly initializing a
set of candidate populations (X), whose matrix can be expressed as Equation (1).

X =


X1,1 X1,2 · · · X1,D
X2,1 X2,2 · · · X2,D

...
...

...
...

XN,1 XN,2 · · · XN,D

, (1)

where N is the population size, and D is the individual dimension. In addition, Xi,j in
the matrix represents the jth dimension of the ith molecule. The formula for random
initialization is as follows:

Xi,: = lb + rand(1, dim)× (ub − lb), (2)

where ub and lb represent the upper and lower bounds. The rand (1, D) is the random
number uniformly generated in the search region. Divide N into two equal-sized subgroups,
N1 and N2, and the fitness of the populations of N1 and N2 were calculated, respectively.
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The molecule constantly moved from high to low concentration, and TFt was a parameter
of the iteration function. TFt is described by Equation (3).

TFt = sinh(t/T)c1 (3)

where t represents the tth iteration and T represents the maximum number of iterations. sinh
serves as a nonlinear transfer function that ensures an efficient transition from exploration
to exploitation [27]. Further, the molecular position equation is updated by Equation (4).

Xt
i =


DO TFt < 0.9
EO 0.9 ≤ TFt ≤ 1
SSO TFt > 1.

(4)

The FLA update process consists of three stages (diffusion operator (DO), equilibrium
operator (EO), steady-state operator (SSO)). Through the three ways, FLA can find the best
value of the system. We will specifically describe these three parts below.

2.1. Exploration Phase

In the first stage, the diffusion of a molecule from high concentration to low concentra-
tion is called DO, as shown in Figure 3. When TFt < 0.9, due to the different concentration
differences between the two regions i and j, the molecule will be transferred from one area
to the other by the given parameter Tt

DO, which can be provided by Equation (5):

Tt
DO = C5 × TFt − r (5)

where C5 represents a fixed constant with a value of 2, and r means a random number with
a value between 0 and 1.

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 51 
 

 

respectively. The molecule constantly moved from high to low concentration, and TFt was 
a parameter of the iteration function. TFt is described by Equation (3). 

1sinh( / )ctTF t T=  (3) 

where t represents the tth iteration and T represents the maximum number of iterations. 
sinh serves as a nonlinear transfer function that ensures an efficient transition from 
exploration to exploitation [27]. Further, the molecular position equation is updated by 
Equation (4). 

DO 0.9

EO 0.9 1

SSO 1.

t

t t
i

t

TF

TF

TF

 <
= ≤ ≤
 >

X  (4) 

The FLA update process consists of three stages (diffusion operator (DO), 
equilibrium operator (EO), steady-state operator (SSO)). Through the three ways, FLA can 
find the best value of the system. We will specifically describe these three parts below. 

2.1. Exploration Phase 
In the first stage, the diffusion of a molecule from high concentration to low 

concentration is called DO, as shown in Figure 3. When 0.9tTF < , due to the different 
concentration differences between the two regions i and j, the molecule will be transferred 
from one area to the other by the given parameter tTDO  , which can be provided by 
Equation (5): 

rTFCT tt −×= 5DO  (5) 

where C5 represents a fixed constant with a value of 2, and r means a random number with 
a value between 0 and 1. 

 
Figure 3. Molecule diffusion direction. 

From the parameter tTDO , the flow direction of the molecule is determined by the 
following formula Equation (6). 



 <=

.  to from
  to from DO

, otherseij
randTji t

t
ipX  (6) 

where rand is a random number with a value between 0 and 1. Consider that some 
molecules move from region i to region j. The formula for the number of molecules that 
move from region i to region j is as follows: 

1 4 3 3( )ij i iNT N r C C N C≈ × × − + ×
 (7) 

where C3 and C4 represent the fixed constant with values of 0.1 and 0.2, respectively. NT12 
and Ntransfer denote the number of molecules flowing at different stages, respectively. r1 
is the random number in the interval [0, 1]. The specific formulae are as follows: 

Figure 3. Molecule diffusion direction.

From the parameter Tt
DO, the flow direction of the molecule is determined by the

following formula Equation (6).

Xt
p,i =

{
from i to j Tt

DO < rand
from j to i otherwise.

(6)

where rand is a random number with a value between 0 and 1. Consider that some
molecules move from region i to region j. The formula for the number of molecules that
move from region i to region j is as follows:

NTij ≈ Ni × r1 × (C4 − C3) + Ni × C3 (7)

where C3 and C4 represent the fixed constant with values of 0.1 and 0.2, respectively. NT12
and Ntransfer denote the number of molecules flowing at different stages, respectively. r1 is
the random number in the interval [0, 1]. The specific formulae are as follows:

NT12 ≈ N1 × r1 × (C4 − C3) + N1 × C3 (8)
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Ntrans f er ≈ N2 × r1 × (C4 − C3) + N2 × C3. (9)

The molecule NT12 will move to another, and its position will be updated mainly on
the best-balanced molecule in the j region using Equation (10).

Xt+1
p,i = Xt

EO,j + DFt
p,i × DOF × r2 × (Jt

i,j × Xt
EO,j − Xt+1

p,i ), (10)

where DOF is the change of flow direction with time, Jt
i,j is the diffusion flux, Xt

EO,i denotes
the balance position of region i. r2 is the random number in the interval [0, 1].

DOF = exp(−C2(TFt − r1)), (11)

Jt
i,j = −D

dct
i,j

dxt
i,j

, (12)

dct
i,j = Xt

m,j − Xt
m,i, (13)

dxt
i,j =

√
(Xt

EO,j)
2 − (Xt

p,i)
2
+ eps, (14)

where C2 represents a fixed constant with a value of 2. Xt
m,j and Xt

m,i are the positions of the
j and i regions, respectively and eps is a small value. D is the effective diffusion coefficient

constant,
dct

i,j

dxt
i,j

is the concentration gradient. In addition, NR1 denotes molecules that remain

in region i; the molecules in the NR1 are updated in their positions by Equation (15).

NR1 ≈ N1 − NT12. (15)

The positions of molecules in the formula are divided into three different strategies
and position of region i; their positions do not change.

Xt+1
p,i =


Xt

EO,i, rand < 0.8
Xt

EO,i + DOF × (r3 × (U − L) + L), rand < 0.9
Xt+1

p,i , otherwise
(16)

where r3 is the random number in the interval [0, 1]. U and L are the max and min limit.
For molecules in the j region, because the concentration in the j region is higher, the j

region, boundary problem is treated with the following Equation (17):

Xt+1
p,j = Xt

EO,j + DOF × (r4 × (U − L) + L), (17)

where r4 is the random number in the interval [0, 1].

2.2. The Transition Phase from Exploration to Exploitation

In the second phase, for the second stage where the concentration difference is almost
zero, the molecule tries to reach an equilibrium state called EO, as shown in Figure 4.
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This phase is considered a transition from the exploration phase to the exploitation
phase. Molecules update their location by the following Equation (18).

Xt+1
p,g = Xt

EO,p + Qt
EO,p × Xt

p,g + Qt
EO,p × (MSt

p,EO × Xt
EO,g − Xt

p,g), (18)

where Xt
p,g and Xt

EO,g are the positions in group p and g, MSt
p,EO is the relative quantity of

group g, calculated by the following Equation (25). Qt
EO,g is the diffusion rate factor of the

group g region, and the calculation formula is as follows:

Qt
EO,g = Rt

1 × DFt
g × DRFt

EO,g, (19)

where DFt
g is the direction factor equal to ±1, Rt

1 is a random number in the interval [0, 1],
and DRFt

EO,g represents the diffusion rate.

DRFt
EO,g = exp(−Jt

p,EO/TFt), (20)

Jt
p,EO = −D

dct
g,EO

dxt
p,EO

, (21)

dct
g,EO = Xt

g,EO − Xt
m,g, (22)

dxt
p,EO =

√
(Xt

g,EO)
2 − (Xt

p,g)
2
+ eps, (23)

DFt
g = ±1 direction f actor, (24)

MSt
p,EO = exp(−

FSt
g,EO

FSt
p,g + eps

) motion step, (25)

Rt
1 = rand[0, 1]d d = 1 : D. (26)

where FSt
g,EO is the optimum of group g at time t, and FSt

i,g is the optimum of molecule p
in group g at time t.

2.3. Exploitation Phase

In the third phase, we move the barrier so that the molecule moves to the most stable
position to achieve a more stable molecule distribution. In the SSO phase, the molecule
updates its position by the following Equation (27).

Xt+1
p,g = Xt

ss + Qt
g × Xt

p,g + Qt
g × (MSt

p,g × Xt
ss − Xt

p,g), (27)

where Xt
ss and Xt

p,g are the position of the stable phase and p molecule, and Qt
g and MSt

p,g
respectively represent the relative quantity of g region and the motion step, the calculation
formula is as follows:

Qt
g = Rt

1 × DFt
g × DRFt

g, (28)

DRFt
g = exp(−Jt

p,ss/TFt), (29)

MSt
p,g = exp(− FSt

ss
FSt

p,g + eps
), (30)

Jt
p,ss = −D

dct
g,ss

dxt
p,ss

, (31)

dct
g,ss = Xt

m,g − Xt
ss, (32)

dxt
p,ss =

√
(Xt

ss)
2 − (Xt

p,g)
2
+ eps. (33)
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From the above overview, the pseudo-code for FLA is obtained in Algorithm 1.

Algorithm 1 FLA Algorithm
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3. An Enhanced FLA (FLAS)

FLA can effectively mitigate the imbalance between exploration and utilization. How-
ever, it faces the same challenge as other MAs, being that it falls into local optimal solutions.
Its main primitive is that the physical simulation search strategy of FLA leads to the inabil-
ity of the molecules to get out of the local optimal solution. Therefore, to overcome this
problem, this study proposes a multi-strategy improved FLA by introducing four effective
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search strategies, including differential variation, Gaussian local variation, Levy flight, and
global search strategies.

3.1. Improvement Strategy
3.1.1. Differential Variation Strategy

Differential variational strategy, as an effective strategy, has the advantages of diversity,
efficient searchability, low computing cost, strong robustness, and ease of implementation
and understanding [3]. Introducing random perturbations into the population helps
algorithms maintain diversity in the search process and avoid the population falling into
excessive convergence. At the same time, it can generate a new solution, often different from
the parent solutions. Controlling the mutation operator makes more extensive exploration
possible in the search space, which helps find potentially better solutions.

In the DO phase, FLA may have locally optimal solutions due to uneven diffusion of
molecules when solving the optimization problem. Therefore, in order to better optimize
the results, we try to introduce a differential variation strategy to improve the problem
that the original algorithm tends to fall into local solutions. First, the weighted position
difference between the two individuals is calculated. Further, the obtained result is then
added to the position of a random individual to generate the variant individually. The
specific formula is as follows:

X1new = X1 + F0 × (X1(randi(NT12), :)− (X1(randi(NT12), :), (34)

where X1new represents the new position after updating, X1 represents the different indi-
viduals in the tth iteration, and X1(rand(NT12)) represents the random individual position
in the population NT12. In additional, F = 0.3 represents the scaling factor. The adaptive
adjustment mutation operator F0 is described as follows:

F0 = 1 +
Fu2

NT2
12

. (35)

In addition, the differential variation strategy is more adaptable to the constraints of
the boundary. By setting appropriate parameters, the amplitude and direction of variation
operation can be controlled to ensure that the generated variation solution satisfies the
constraint conditions of the problem.

3.1.2. Gauss Local Variation Strategy

In fact, the development phase affects the convergence accuracy of the algorithm.
To facilitate the low accuracy problem of FLA, we introduce a variational strategy in the
development phase to improve the convergence performance. As a result, the Gaussian
local variation can effectively help the algorithm further search for the optimal solution,
expanding the search range of FLA in the later iteration stage [11]. The Gaussian local
variation is specifically calculated by Equation (36):

X1new(i, j) = X1(i, j) + DOF × ((ub(j)− lb(j))× r3 + lb(j))× normrnd(0, 1). (36)

where normrnd(0, 1) represents a random number between 0 and 1. In the first t iteration,
X1new(i, j) denotes the current individual optimum. r3 is the random number in the interval
[0, 1].

3.1.3. Integrated Learning Strategies Based on Intersections

In the DO and EO phases, the optimal individuals contribute to the bidirectional
search of the whole population. However, the individual optimal values in FLA are not
representative, and cannot lead to realizing the global search. Therefore, in order to obtain
the most representative optimal individuals, we are inspired by the crossover operator and
introduce a crossover-based comprehensive learning (CCL) strategy [12]. The CCL strategy
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can mutate better individuals through the crossover operator to guide the individual global
search. The specific calculation formula is Equation (37):

X1new = r1 × X1(i, j) + (1 − r1)× Xeo1 + c1 × (X1(i, j)− Xeo1), (37)

where c1 is a randomly generated number evenly distributed among [−1, 1], and both r1
and r2 are randomly numbers evenly distributed among [0, 1].

3.1.4. Levy Flight Strategy

For better convergence and global optimization, the proposed FLAS employs Levy
flight for position update of subgroup N2 [30]. After the FLA updates the position, a Levy
flight is performed to update the individual position. Levy flight strategy is designed to
simulate the stochastic and exploratory nature of Levy flights. It can perform a global
search in the search space to achieve the desired result of jumping out of the local optimum.
The specific calculation formula is described as Equation (38):

X1new = al f a × levyrand(beta)× X1, (38)

where levyrand means the Levy distribution [30]. In addition, alfa means the levy scale
parameter, and the value of alfa is 0.05 + 0.04 × rand and beta= 2/3.

3.1.5. Global Search Strategy of Gull Algorithm during Migration Phase

In the stable phase (SSO), due to the local development of the algorithm, a large
number of molecules may gather around the current environment, which restricts the
development of the FLA, thus causing the FLA to be unable to break through its intrinsic
limitations. At this time, the global search strategy of the seagull algorithm [31] is added to
accelerate the convergence rate of FLA and avoid the collision between molecules in the
process of motion [32]. D_alphs indicates that the new position of molecules has no conflict.
The update process is shown in Figure 5, and the formula is as follows:

D_alphs = Fc × X1(i, :) + A1 × (Xss − X1(i, :)), (39)

where Fc = 2 − sin(I)× 2
T is the control factor, I = [0, 0.8π], A1 = 2 × Fc × r1 − Fc.
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In the seagull optimization algorithm, the moving direction of each seagull individual,
is calculated as the position. The moving distance is adjusted based on the fitness. The
higher the fitness, the smaller the moving distance. Therefore, this strategy is employed
to update the molecule positions during the stable phase. The specific position update
formula is as follows

Xe = D_alphs · eI I × cos(I I · 2π), (40)
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where Xe is a new position that is reached by moving in the direction of the optimal
position. I I = (Fc − 1)× rand + 1 represents a random number that balances global and
local searches.

3.2. The Improved FLA Steps

The FLAS improved algorithm is established by introducing the differential variation
strategy, Gaussian local variation strategy, interleave-based comprehensive learning strat-
egy, Levy flight strategy, and the global search strategy in the migration phase of the Gull
algorithm. The FLAS algorithm process is as follows:

When TFt < 0.9 and Tt
DO < rand, the position of NT12 obtained by Equation (10) in N1

population is updated by Equation (34).

X1new(i, ) = X1new(i, ) + F0 × (X1(Randi(NT12), :)− (X1(Randi(NT12), :)). (41)

At the same time, for the remaining individuals (N1 − NT12) and the population
individual position update, the strategies in Equations (36) and (37) are adopted. The
formula is as follows:

rand < 0.8, X1new(i, j) = Xeo1(j), (42)

rand < 0.9, X1new(i, j) = X1(i, j) + DOF × ((ub(j)− lb(j))× r3 + lb(j)× normrnd(0, 1), (43)

rand > 0.9, X1new(i, j) = r1 × X1(i, j) + (1 − r1)× Xeo1 + c1 × X1(i, j)− Xeo1(j)). (44)

In the N2 population, individual location updating adopts the strategies in Equations
(36) and (38).

X2new(i, :) = Xeo2 + DOF × ((ub − lb)× r4 + lb)× normrnd(0, 1), (45)

X2new(i, :) = al f a × levyrand(beta)× X2new(i, :). (46)

when Tt
DO < rand, the position update of Ntransfer obtained with Equation (10) in N2

population is:

X2new(i, :) = Xeo1 + DFg × DOF × rand(1, dim)× (J × Xeo1 − X2(i, :)). (47)

For the remaining individuals (N2 − Ntransfer), the same strategies in Equations (36) and
(37) were adopted as the individual renewal mode of N1 population in Tt

DO < rand phase.

rand < 0.8, X2new(i, j) = Xeo2(j), (48)

rand < 0.9, X2new(i, j) = X2(i, j) + DOF × ((ub(j)− lb(j))× r3 + lb(j)× normrnd(0, 1), (49)

rand > 0.9, X2new(i, j) = r1 × X2(i, j) + (1 − r1)× Xeo2 + c1 × X2(i, j)− Xeo2(j)). (50)

In this phase, the same strategies Equations (36) and (38) are used to update the
positions of N1 population in the same phase as those of N2 population in Tt

DO < rand
phase. The formula is as follows:

X1new(i, :) = Xeo1 + DOF × ((ub − lb)× r4 + lb)× normrnd(0, 1), (51)

X1new(i, :) = al f a × levyrand(beta)× X1new(i, :). (52)

When TFt ≤ 1, the EO phase will be entered, and the strategy Equation (36) will be adopted
for both N1 population individual location renewal and N2 population individual location
renewal. The formula is as follows:

X1new(i, :) = (Xeo1+Qeo×X1(i, :)+Qeo× (MS×Xeo1−X1(i, :)× normrnd(0, 1), (53)

X1new(i, :) = (Xeo2+Qeo×X2(i, :)+Qeo× (MS×Xeo2−X1(i, :)× normrnd(0, 1). (54)
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When TFt > 1, entering the SSO phase, Equations (55) and (56) were adopted for individual
location updates of the N1 population and N2 population, and the formula was as follows:

X1new(i, :) = Xss1 + Qg × Xe + Qg × (MS × Xss1 − Xe), (55)

X2new(i, :) = Xss2 + Qg × Xe + Qg × (MS × Xss2 − Xe). (56)

The basic steps of the FLAS:
Step 1. Specify both N and T, divide N into two equal small populations N1 and N2,

randomly generate the initial positions of N1 and N2 individuals in the solution search
space, and set the current iteration number t = 1.

Step 2. The fitness values of N1 and N2 individuals were calculated, and the optimal
individual position was obtained.

Step 3. When TFt < 0.9, Tt
DO ≥ rand and N1 population enters the exploration phase

(DO), and Equation (41) is used to update individual locations for NT12.
Step 4. When Tt

DO ≥ rand, for the remaining population of individuals in N1, if
rand < 0.8, the individual location is updated using Equation (43); if 0.8 < rand < 0.9, the
individual location is updated using Equation (44); Others, using Equation (45) to update
individual position.

Step 5. When Tt
DO ≥ rand, in the population of individuals in N2, the individual

locations were updated using Equation (46).
Step 6. In the case of Tt

DO < rand, in the N2 population, individual positions are
updated using Equation (46) for Ntransfer. For the remaining individuals (N2 − Ntransfer),
if rand < 0.8, the individual position is updated using Equation (46); if 0.8 < rand < 0.9, the
individual location is updated using Equation (49); otherwise, the individual location is
updated using Equation (50).

Step 7. When Tt
DO ≥ rand, individual positions are updated using Equation (52) for

N1 populations.
Step 8. When TFt ≤ 1, individual positions are updated using Equation (53) for N1

populations and individual positions are updated using Equation (54) for N2 populations.
Step 9. When TFt > 1, individual positions of population N1 are updated using

Equation (55), and those in populations of N2 are updated using Equation (56).
Step 10. The boundary treatment of population location is carried out.
Step 11. Output the position and fitness values of the globally optimal individual.
The pseudo-code of FLAS is shown in Algorithm 2.

3.3. Time Complexity of the FLAS

MAs time complexity is influenced by both the dimensionality of variables D, pop-
ulation N, and iteration T. Determining the time complexity (TC) of an algorithm helps
evaluate its operational efficiency. In the FLAS algorithm, first of all, the TC required
during the initialization phase is O(N × D). FLAS then entered an iterative search for an
updated solution. Entering the exploration phase. When the Tt

DO < rand, TC is O(NT12 ×
D) + O((N/2 − NT12) × D) + O(N/2 × D), when the Tt

DO ≥ rand, TC is O(Ntransfer × D) +
O((N/2 − Ntransfer) × D) + O(N/2 × D). The TC entering the EXE phase are O(N/2 × D) +
O(N/2 × D). Finally, the TC for the exploitation phase is O(N/2 × D) + O(N/2 × D). The
total TC of FLAS is calculated:

O(FLAS) = O(N × D) + O(T × O(NT12 × D) + O((N/2 − NT12)× D)
+ O(Ntrans f er × D) + O((N/2 − Ntrans f er)× D)
+ O(6 × N/2 × D)) = O(N × D + (T × 8 × N/2 × D))
= O(N × D × (1 + 4 × T)).
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Algorithm 2 FLAS Algorithm
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End 
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Updating individual locations using Equation (49) 

Else 
Updating individual locations using Equation (50) 

End 
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End 
End 

Else if  
If TFt ≤ 1                           Equilibrium operator (EO) 

Updating individual locations using Equation (53) for N1 molecules. 
Updating individual locations using Equation (54) for N2 molecules. 

Else  
If TFt > 1                           Steady state operator (SSO) 

Updating individual locations using Equation (55) for N1 molecules. 
Updating individual locations using Equation (56) for N2 molecules. 

End 
End if 
Boundary treatment 

End for 
Return. Optimum molecule position Xbest and fitness value f(Xbest) of molecule  

For a clearer description of the situation and the steps of FLAS to solve the optimization
model, Figure 6 shows the algorithm solution flow chart.



Biomimetics 2024, 9, 205 14 of 48

Biomimetics 2024, 9, x FOR PEER REVIEW 15 of 51 
 

 

MAs time complexity is influenced by both the dimensionality of variables D, 
population N, and iteration T. Determining the time complexity (TC) of an algorithm helps 
evaluate its operational efficiency. In the FLAS algorithm, first of all, the TC required 
during the initialization phase is O(N × D). FLAS then entered an iterative search for an 
updated solution. Entering the exploration phase. When the randT tDO < , TC is O(NT12 × 
D) + O((N/2 − NT12) × D) + O(N/2 × D), when the t

DOT rand≥ , TC is O(Ntransfer × D) + 
O((N/2 − Ntransfer) × D) + O(N/2 × D). The TC entering the EXE phase are O(N/2 × D) + 
O(N/2 × D). Finally, the TC for the exploitation phase is O(N/2 × D) + O(N/2 × D). The total 
TC of FLAS is calculated: 

O(FLAS) = O(N × D) + O(T × O(NT12 × D) + O((N/2 − NT12) × D) 

+ O(Ntransfer × D) + O((N/2 − Ntransfer) × D) 

+ O(6 × N/2 × D)) = O(N × D + (T × 8 × N/2 × D)) 

= O(N × D × (1 + 4 × T)). 

For a clearer description of the situation and the steps of FLAS to solve the 
optimization model, Figure 6 shows the algorithm solution flow chart. 

 
Figure 6. Algorithm flow chart of FLAS. 

4. Experimental Results 
To verify the effectiveness of the FLAS method, the 23 benchmark functions and 

CEC2020 test sets are used to examine the optimization capability, and several algorithms 
have been selected for comparison. The selected comparison algorithms include the 

Figure 6. Algorithm flow chart of FLAS.

4. Experimental Results

To verify the effectiveness of the FLAS method, the 23 benchmark functions and
CEC2020 test sets are used to examine the optimization capability, and several algorithms
have been selected for comparison. The selected comparison algorithms include the
differential evolution algorithm (DE) [33], the improved molecule swarm optimization
algorithm (PSO_ELPM) [34], the spectral optimization algorithm LSO [35] inspired by
physics and mathematics, the arithmetic optimization algorithm AOA [36], the Harris
Eagle algorithm (HHO) [7] inspired by animal nature, and the improved Golden Jackal
optimization (IGJO) [37] and improved Grey Wolf algorithm (IGWO) [38]. The parameter
values of the above 10 MAs are depicted in Table 1.

Table 1. Initial parameter Settings of all algorithms.

Algorithms Parameter Parameter Value

FLAS Constant (K1, K2, K3, K4, K5, D) K1 = 0.5; K2 = 2; K3 = 0.1; K4 = 0.2; K5 = 2; D = 0.01;
PSO_ELPM Constant (alpha, delta, u) alpha = 0.1; delta = 0.1; u = 0.0265;
HHO Initial energy E0 E0 = 2 * rand () − 1;
DE Control parameter Cr; Variation scaling factor F Cr = 0.4; F = 0.5;
LSO Constant (Ps; Pe; Ph; B) Ps = 0.05; Pe = 0.6; Ph = 0.4; B = 0.05;
FLA Constant (G1, G2, G3, G4, G5, D) G1 = 0.5; G2 = 2; G3 = 0.1; G4 = 0.2; G5 = 2; D = 0.01;
BWO Constant (alpha, KD) alpha = 3/2; KD = 0.05;
IGJO control parameter E1 E1 = 1.5 * (1 − (l/Maxiteration));
AOA Constant (B1, B2, B3, B4, u, l) B1 = 2; B2 = 6; B3 = 1; B4 = 2; u = 0.9; l = 0.1;
IGWO Control parameter a a = 2 − iter * ((2)/Maxiteration);
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To accurately analyze the performance of FLAS, this article will use the following six
performance metrics:

• Best = min{best1, best2, . . . , bestm};
• Worst = max{best1, best2, . . . , bestm};

• Mean = 1
m

m
∑

i=1
besti;

• std =

√
1

m−1

m
∑

i=1
(besti − Mean)2;

where besti represents the optimal result for the ith run, m implies the number of runs.

• Rank: All algorithms are ranked according to the quality of their performance indi-
cators. The sequence number is the corresponding Rank. If the specific values of the
comparison algorithms are equal, they are recorded as having the same Rank.

• Wilcoxon rank sum test: We estimate whether a noticeable disparity exists between
the two algorithms. Calculate whether the two arrays of fitness values after m runs
come from a continuous distribution with the same median. p-values derived by the
Wilcoxon rank sum test for the other nine algorithms are shown at the α = 0.05 level.
Bolded data show insignificant differences between the comparative algorithms and
FLAS calculations. The “=” symbol indicates the number where there is no distinct
difference between the results of other MAs and FLAS; the “+” symbol represents the
number that outperformed FLAS, while the “−” symbol represents the number of
functions that have inferior results compared to FLAS.

4.1. Parameter Analysis of Levy Scale Alfa

For the update strategy based on Levy flights, the parameter alfa affects the improve-
ment of the algorithm performance with Levy flights. Due to the kinematic nature of each
Levy flight, the random numbers it generates can only guide the overall convergence. The
value of the parameter alfa affects the search range of the molecular neighborhood region.
The larger the value of alfa, the larger the search range of the molecular neighborhood
region and the greater the tendency of the algorithm to converge. If the value of alfa is
too small, the search range of the molecular neighborhood region is small, and the Levy
flight has less influence on the search process, which reduces the search capability and
accuracy. Therefore, an appropriate value of alfa can improve the exploration ability of
FLAS in individual molecular neighborhood locations.

In order to find an appropriate alfa value, the effects of different alfa values on the
convergence performance of the FLAS algorithm are discussed. Ten test functions from the
cec2020 test suite are selected for numerical experiments. Ten correlation parameters were
obtained at intervals of 0.04 in the interval [0.01, 0.5] (0.01 + rand × 0.04, 0.05 + rand × 0.04,
0.1 + rand × 0.04, 0.15 + rand × 0.04, 0.2 + rand × 0.04, 0.25 + rand × 0.04, 0.3 + rand × 0.04,
0.35 + rand × 0.04, 0.4 + rand × 0.04 and 0.45 + rand × 0.04). For each given value of the ten
parameters, the average values obtained using FALS over 20 independent runs of the test
are shown in Table 2. The maximum iteration is 1000 and the population size is 30.
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Table 2. Numerical results of FLAS for different values of the parameter alfa.

Functions
alfa, rank

0.01 + 0.04 × rand 0.05 + 0.04 × rand 0.1 + 0.04 × rand 0.15+0.04 × rand 0.2 + 0.04 × rand

cec01 15,077.0282 6 12,709.1942 1 17,920.14697 10 15,364.27886 7 13,661.36227 3
cec02 1574.938322 5 1575.818157 6 1560.864712 3 1615.712912 9 1561.853461 4
cec03 726.6263789 2 727.6828071 8 727.4858505 5 726.7105188 3 726.041441 1
cec04 1900 1 1900 1 1900 1 1900 1 1900 1
cec05 61,152.90341 9 19,708.71303 4 27,162.80712 6 64,299.9035 10 34,461.35441 8
cec06 1828.744955 10 1752.75968 4 1759.339338 7 1755.905619 5 1746.317333 3
cec07 19,049.10676 10 8395.313019 3 12,561.99941 8 10,579.181 6 6714.90814 1
cec08 2303.174653 6 2299.072839 2 2298.039551 1 2299.304416 4 2357.749022 10
cec09 2741.012613 3 2740.518997 2 2765.743281 10 2737.713151 1 2759.224182 9
cec10 2934.147239 7 2930.806351 6 2935.532381 8 2925.942177 2 2912.618476 1

Total rank 59 37 59 48 41

Functions
alfa, rank

0.25 + 0.04 × rand 0.3 + 0.04 × rand 0.35 + 0.04 × rand 0.4 + 0.04 × rand 0.45 + 0.04 × rand

cec01 14,951.16004 5 15,854.54192 9 12,820.64997 2 14,083.00748 4 15,640.96252 8
cec02 1531.45172 2 1518.090145 1 1598.228861 8 1582.982073 7 1628.40018 10
cec03 729.7738857 10 727.6315489 7 729.228509 9 727.3692146 4 727.6055974 6
cec04 1900 1 1900 1 1900 1 1900 1 1900 1
cec05 12,017.4934 1 22,570.8507 5 18,248.68068 3 28,814.82339 7 15,926.23003 2
cec06 1781.727305 9 1725.543715 2 1764.464157 8 1758.572061 6 1716.517731 1
cec07 10,188.74183 5 11,290.39884 7 8892.825587 4 6925.282563 2 13,162.08088 9
cec08 2304.091653 8 2299.092661 3 2353.816844 9 2303.361191 7 2303.046363 5
cec09 2749.049576 6 2745.304211 4 2752.264893 8 2747.988309 5 2749.320034 7
cec10 2936.867379 10 2930.447954 5 2935.928651 9 2925.977361 3 2927.846478 4

Total rank 57 44 61 46 53

From the results in Table 2, it can be seen that the accuracy of the FLAS solution is
higher when the value of α is taken as 0.05 + 0.04 × rand. The reason for this result is that
smaller alfa allows FLAS to increase the distance connection between the population and
the most available position, which enhances the local development ability of FLAS. Smaller
values of alfa give better experimental results when faced with more complex mixing and
combining functions. This result suggests that smaller alfa values increase the solution
space search in the presence of more comprehensive functions and help the Levy flight
strategy to better utilize its ability to jump out of local solutions. Thus, smaller values of
alfa contribute to the local search ability of FLAS when dealing with complex functions.
The last part of the table lists the rankings for different values of alfa. It can be noticed that
FLAS performs well for all functions when alfa is 0.05 + 0.04 × rand.

4.2. Qualitative Analysis of FLAS

EXE are two important concepts in MAs. Exploration refers to looking for new
solutions or improving existing solutions. Exploitation refers to the optimization and
utilization of existing solutions in the hope of getting better results. To infer whether
a group is currently more inclined to explore or exploit, it can be judged by counting
the differences between individuals. If the differences between individuals are large, it
indicates that the group is currently more inclined to explore; if the differences between
individuals are small, it indicates that the group is currently more inclined to develop [39].
How the algorithm balances these two capabilities will be the key to determining optimal
performance. Therefore, calculate the proportional formula of the two capabilities in the
iterative process, as shown in Equation (58):

Diversityj =
1
N

N

∑
i=1

median(xij)− xij, (57)
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Diversity =
1
D

D

∑
j=1

Diversityj. (58)

where median (j) represents the median value of the J-dimensional variable among all
individuals in the population (N). After taking the median dimension distance of dimension
j of each individual i in the N, the average Diversity is obtained for all individuals in turn.
Then, the average value of Diversity in each dimension is calculated to obtain Diversity. The
percentage of EXE of the population in each iteration formula are Equations (59) and (60).

Exploration(%) =
Diversity

Diversitymax
× 100 (59)

Exploitation(%) =
|Diversity(t)− Diversitymax|

Diversitymax
× 100 (60)

Firstly, the EXE ability of FLAS is tested on 23 benchmark functions, and the single-
peak test function (F1–F7) is related to the capability of finding the optimal solution. The
multimodal function (F8–F13) can test the MA’s capability to explore and escape local
optima values because there are many local minima and the EXE ability of the fixed-
dimensional multimodal function (F14–F23). The EXE diagram of FLAS is displayed in
Figure 6. In the EXE diagram, Exploration is represented by the red area, and the blue
area represents exploitation. The final exploitation should be close to 100% because the
population gradually approaches optimum in the late phase of evolution, and the whole
solution set is concentrated near optimum. In addition, the percentage of EXE should
alternate as the iteration progresses: the blue area should go up and eventually approach
1; the red area is going to come down and eventually approach 0. Figure 7 shows that
FLAS converges very fast on other functions except F8, F17, and F20, and the population
soon approaches the optimal solution. According to the latest research [40], when EXE
accounts for 10% and 90%, respectively, in the search process, the algorithm has the best
performance. Therefore, FLAS meets this requirement; the Exploration of the population
finally accounts for about 90%, and the exploitation accounts for about 10%.

To enhance the stability and reliability of the outcomes, give the ability to the EXE.
FLAS continued testing on CEC2022. The EXE diagram on CEC2022 is shown in Figure 8,
from which the FLAS demonstrates its ability to quickly find globally optimal solutions
and flexibly switch between unimodal, fundamental, and combinatorial functions. When
dealing with complex mixed functions, FLAS shows high exploration ability in the later
iteration, and avoids the dilemma of local optimal solutions. FLAS has adopted a strategy
to extend the time required to transition to the exploitation phase, effectively improving
optimization capabilities.

4.3. Comparison of FLAS and Other MAs on 23 Benchmark Functions

In order to validate the effectiveness of the proposed algorithm for FLAS, comparison
experiments with PSO_ELPM, HHO, IGWO, DE, LSO, BWO, AOA, and IGJO algorithms
are conducted in 23 benchmark functions. All comparison algorithms are run 30 times.
In addition, N is chosen to be 500 for all algorithms. The iterative plots and boxplots of
FLAS and the other comparison algorithms for the 23 benchmark functions are given in
Figures 9 and 10, respectively. In addition, the results of the comparison experiments for
the four metrics are given in Table 3. In order to statistically validate the effectiveness of
the proposed algorithms, the statistical results of the Wilcoxon rank sum test for FLAS and
other methods are given in Table 4.
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Figure 7. EXE diagram on 23 functions.
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Table 3. Experimental results of FLAS and MAs on 23 benchmark functions.

F Index FLAS PSO-
ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F1

Best 0 3.950E+03 6.085E-122 2.748E+03 8.675E-09 0 9.594E-253 2.464E-131 7.767E-141 1.831E-23
Worst 2.619e-322 2.060E+04 9.563E-103 5.982E+03 7.578E+03 0 2.230E-241 3.054E-123 3.069E-102 5.133E-03
Mean 9.881e-324 1.427E+04 4.099E-104 4.134E+03 3.170E+03 0 8.802E-243 2.500E-124 1.024E-103 1.805E-04

Std 0.000E+00 3.540E+03 1.758E-103 8.371E+02 2.459E+03 0 0 6.603E-124 5.603E-103 9.357E-04
Rank 2 10 5 9 8 1 3 4 6 7

F2

Best 0 3.037E+01 3.384E-62 7.800E+00 0.000E+00 0 1.053E-127 3.375E-71 3.268E-78 5.971E-20
Worst 6.840E-159 2.308E+03 1.225E-51 2.355E+01 1.739E-01 0 5.219E-122 2.055E-66 7.706E-54 5.510E-03
Mean 2.284E-160 4.568E+02 4.974E-53 1.669E+01 5.797E-03 0 5.908E-123 7.307E-68 2.574E-55 4.294E-04

Std 1.249E-159 6.695E+02 2.237E-52 3.748E+00 3.175E-02 0 1.260E-122 3.744E-67 1.407E-54 1.282E-03
Rank 2 10 6 9 8 1 3 4 5 7

F3

Best 0 6.289E+03 2.029E-108 4.306E+03 0.000E+00 0 9.010E-249 2.210E-76 1.463E-132 1.540E-05
Worst 2.303E-298 2.567E+04 1.061E-84 1.567E+04 9.954E+03 0 2.576E-232 7.453E-65 5.338E-87 1.932E+02
Mean 7.677E-300 1.509E+04 3.536E-86 8.041E+03 4.713E+03 0 9.617E-234 3.179E-66 1.779E-88 1.772E+01

Std 0 5.170E+03 1.937E-85 2.476E+03 2.958E+03 0 0.000E+00 1.362E-65 9.745E-88 4.584E+01
Rank 2 10 5 9 8 1 3 6 4 7

F4

Best 0 3.015E+01 1.020E-58 2.703E+01 3.305E+00 0 6.763E-126 8.298E-51 6.909E-64 8.449E-06
Worst 9.548E-159 7.629E+01 5.870E-49 6.019E+01 5.202E+01 7.733E-09 4.473E-119 1.876E-46 3.971E-49 7.479E+00
Mean 6.732E-160 6.482E+01 2.668E-50 4.398E+01 3.572E+01 6.070E-10 2.517E-120 1.379E-47 3.008E-50 4.429E-01

Std 2.286E-159 9.157E+00 1.101E-49 6.845E+00 1.364E+01 1.643E-09 8.493E-120 3.731E-47 9.010E-50 1.415E+00
Rank 1 10 3 9 8 6 2 5 4 7
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Table 3. Cont.

F Index FLAS PSO-
ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F5

Best 1.437E-05 6.542E+06 4.616E-05 3.313E+05 8.766E+00 8.635E-03 4.710E-03 5.752E+00 8.266E+00 6.671E+00
Worst 7.160E-02 6.327E+07 6.772E-03 4.984E+06 3.993E+06 1.389E+01 1.008E-01 8.701E+00 8.938E+00 3.549E+02
Mean 5.775E-03 3.245E+07 1.207E-03 2.464E+06 3.909E+05 9.913E-01 3.377E-02 6.786E+00 8.658E+00 3.349E+01

Std 1.444E-02 1.445E+07 1.397E-03 1.366E+06 8.554E+05 2.877E+00 2.293E-02 6.604E-01 1.285E-01 8.166E+01
Rank 2 10 1 9 8 4 3 5 6 7

F6

Best 2.477E-10 7.672E+03 1.834E-07 1.539E+03 2.046E+00 5.829E-05 1.198E-04 6.650E-06 3.887E-01 1.723E-02
Worst 2.130E-05 1.905E+04 5.891E-05 7.015E+03 8.885E+03 5.203E-03 5.261E-04 4.881E-01 1.114E+00 4.166E-01
Mean 1.870E-06 1.402E+04 1.420E-05 4.016E+03 2.859E+03 1.066E-03 3.386E-04 1.156E-01 7.584E-01 8.227E-02

Std 3.940E-06 3.378E+03 1.601E-05 1.281E+03 2.764E+03 1.206E-03 1.304E-04 1.521E-01 2.005E-01 9.068E-02
Rank 1 10 2 9 8 4 3 6 7 5

F7

Best 2.12E-07 1.4075 5.83E-06 0.35449 0.00012896 4.02E-05 6.63E-06 6.90E-06 6.55E-05 1.20E-04
Worst 1.62E-04 9.9939 2.12E-04 1.7041 0.011029 1.66E-03 3.09E-04 6.45E-04 1.06E-03 0.011526
Mean 4.28E-05 5.3284 7.13E-05 1.0288 0.0023052 4.50E-04 8.81E-05 1.65E-04 3.83E-04 0.0013873

Std 3.57E-05 2.6361 6.01E-05 0.39221 0.0025144 4.02E-04 6.80E-05 1.67E-04 2.60E-04 0.0020545
Rank 1 10 2 9 8 6 3 4 5 7

F8

Best −4.190E+03 −2.137E+03 −4.190E+03 −2.399E+03 −2.064E+48 −4.190E+03 −4.186E+03 −3.179E+03 −2.314E+08 −3.780E+03
Worst −3.479E+03 −1.806E+03 −2.648E+03 −1.669E+03 −8.041E+07 −4.071E+03 −3.451E+03 −1.744E+03 −4.084E+03 −2.179E+03
Mean −4.099E+03 −1.827E+03 −4.138E+03 −2.005E+03 −6.881E+46 −4.178E+03 −4.000E+03 −2.389E+03 −1.785E+07 −2.977E+03

Std 1.695E+02 6.699E+01 2.815E+02 1.691E+02 3.768E+47 3.621E+01 2.435E+02 3.671E+02 5.104E+07 4.386E+02
Rank 5 10 4 9 1 3 6 8 2 7

F9

Best 0 7.469E+01 0 4.064E+01 0 0 0 0 0 2.140E+00
Worst 0 1.392E+02 0 9.267E+01 4.704E+01 9.950E-01 0 0 2.080E+01 4.135E+01
Mean 0 1.142E+02 0 7.356E+01 2.100E+00 3.320E-02 0 0 3.460E+00 1.493E+01

Std 0 1.379E+01 0 1.196E+01 8.890E+00 1.820E-01 0 0 7.180E+00 1.041E+01
Rank 1 10 2 9 6 5 3 4 7 8

F10

Best 4.440E-16 1.846E+01 4.440E-16 1.173E+01 4.440E-16 4.000E-15 4.440E-16 4.440E-16 4.440E-16 2.040E-10
Worst 4.440E-16 1.997E+01 4.440E-16 1.805E+01 1.853E+01 7.550E-15 4.440E-16 4.000E-15 4.000E-15 5.325E+00
Mean 4.440E-16 1.973E+01 4.440E-16 1.671E+01 1.130E+01 4.230E-15 4.440E-16 3.520E-15 1.630E-15 1.842E-01

Std 0 3.811E-01 0 1.312E+00 5.290E+00 9.010E-16 0 1.230E-15 1.700E-15 9.714E-01
Rank 1 10 2 9 8 6 3 5 4 7

F11

Best 0 7.400E+01 0 1.549E+01 2.124E+00 0 0 0 0 1.240E-02
Worst 0 1.818E+02 0 6.406E+01 8.576E+01 2.120E-01 0 0 5.339E-01 1.011E+00
Mean 0 1.307E+02 0 3.862E+01 4.076E+01 4.902E-02 0 0 4.912E-02 3.595E-01

Std 0 2.749E+01 0 9.445E+00 2.054E+01 5.351E-02 0 0 1.148E-01 2.891E-01
Rank 1 10 2 8 9 5 3 4 6 7

F12

Best 1.190E-10 1.526E+07 1.040E-08 2.907E+04 4.620E-01 9.240E-06 8.260E-06 1.340E-06 6.810E-02 9.740E-04
Worst 7.550E-05 1.437E+08 3.190E-05 1.130E+07 4.729E+06 2.530E-04 1.770E-04 7.870E-02 1.040E+00 5.965E+00
Mean 5.090E-06 6.317E+07 7.580E-06 1.437E+06 5.600E+05 1.110E-04 8.630E-05 3.130E-02 2.710E-01 3.243E-01

Std 1.380E-05 3.489E+07 8.600E-06 2.122E+06 1.400E+06 5.380E-05 4.280E-05 2.080E-02 1.890E-01 1.155E+00
Rank 1 10 2 9 8 4 3 5 6 7

F13

Best 3.220E-07 2.630E+07 2.670E-08 7.094E+05 8.820E-01 6.370E-05 3.270E-05 1.500E-05 2.360E-01 8.880E-03
Worst 8.940E-05 3.183E+08 2.920E-04 3.475E+07 2.373E+07 1.230E-02 3.310E-04 3.030E-01 8.270E-01 4.617E+00
Mean 1.550E-05 1.349E+08 2.950E-05 8.968E+06 2.170E+06 2.030E-03 1.330E-04 9.420E-02 4.600E-01 2.836E-01

Std 2.280E-05 6.868E+07 5.680E-05 7.319E+06 5.490E+06 3.800E-03 7.990E-05 9.110E-02 1.490E-01 8.684E-01
Rank 1 10 2 9 8 4 3 5 7 6

F14

Best 9.980E-01 3.420E+00 9.980E-01 9.985E-01 9.980E-01 9.980E-01 9.980E-01 9.980E-01 9.980E-01 9.980E-01
Worst 9.980E-01 4.169E+02 2.982E+00 9.161E+00 8.847E+00 9.980E-01 9.980E-01 1.267E+01 1.001E+00 1.040E+00
Mean 9.980E-01 5.760E+01 1.230E+00 3.294E+00 3.278E+00 9.980E-01 9.980E-01 4.719E+00 9.982E-01 9.996E-01

Std 1.725E-10 9.906E+01 5.005E-01 2.281E+00 2.423E+00 6.710E-10 5.007E-10 4.256E+00 6.394E-04 7.675E-03
Rank 1 10 6 8 7 3 2 9 4 5

F15

Best 3.080E-04 1.012E-02 3.080E-04 1.828E-03 1.050E-03 3.150E-04 3.090E-04 3.080E-04 3.920E-04 4.270E-04
Worst 3.990E-04 6.114E-01 1.340E-03 2.529E-02 2.603E-02 6.330E-02 5.020E-04 1.220E-03 2.090E-03 1.546E-03
Mean 3.180E-04 9.282E-02 3.950E-04 1.141E-02 4.840E-03 3.440E-03 3.350E-04 4.620E-04 8.620E-04 7.579E-04

Std 1.690E-05 1.052E-01 2.460E-04 6.806E-03 5.560E-03 1.190E-02 3.890E-05 2.770E-04 3.870E-04 2.237E-04
Rank 1 10 3 9 8 7 2 4 6 5

F16

Best −1.032E+00 −9.136E-
01 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00

Worst −1.032E+00 4.132E+00 −1.032E+00 −9.042E-
01 −1.009E+00 −1.032E+00 −1.031E+00 −1.032E+00 −1.031E+00 −1.031E+00

Mean −1.032E+00 1.501E-01 −1.032E+00 −1.016E+00 −1.026E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00
Std 7.278E-07 9.995E-01 1.288E-11 2.369E-02 5.881E-03 1.012E-06 8.137E-05 1.017E-07 1.230E-04 2.068E-04

Rank 3 10 1 9 8 4 6 2 5 7

F17

Best 3.980E-01 4.110E-01 3.980E-01 3.981E-01 3.980E-01 3.980E-01 3.980E-01 3.980E-01 3.980E-01 3.980E-01
Worst 3.980E-01 3.709E+00 3.980E-01 5.625E-01 5.304E-01 4.000E-01 4.110E-01 4.000E-01 4.840E-01 4.012E-01
Mean 3.980E-01 1.482E+00 3.980E-01 4.542E-01 4.360E-01 3.980E-01 4.000E-01 3.980E-01 4.120E-01 3.983E-01

Std 1.000E-05 8.000E-01 1.740E-06 5.073E-02 3.930E-02 4.620E-04 3.130E-03 3.360E-04 2.380E-02 7.667E-04
Rank 2 10 1 9 8 4 6 3 7 5

F18

Best 3 3.155E+00 3 3.004E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
Worst 3 1.319E+02 3 9.748E+00 3.744E+00 3.000E+00 4.958E+00 3.000E+00 9.975E+00 3.030E+00
Mean 3 4.081E+01 3 3.959E+00 3.086E+00 3.000E+00 3.396E+00 3.000E+00 3.414E+00 3.003E+00

Std 5.161E-06 3.400E+01 2.599E-08 1.305E+00 1.498E-01 2.336E-05 5.152E-01 9.271E-07 1.331E+00 6.128E-03
Rank 3 10 1 9 6 4 7 2 8 5
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Table 3. Cont.

F Index FLAS PSO-
ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F19

Best −3.860E+00 −3.782E+00 −3.860E+00 −3.861E+00 −3.860E+00 −3.860E+00 −3.860E+00 −3.860E+00 −3.860E+00 −3.860E+00
Worst −3.860E+00 −2.367E+00 −3.860E+00 −3.784E+00 −3.719E+00 −3.090E+00 −3.850E+00 −3.850E+00 −3.810E+00 −3.860E+00
Mean −3.860E+00 −3.393E+00 −3.860E+00 −3.841E+00 −3.820E+00 −3.840E+00 −3.860E+00 −3.860E+00 −3.850E+00 −3.862E+00

Std 7.220E-07 3.343E-01 1.240E-03 1.901E-02 3.400E-02 1.410E-01 2.480E-03 3.560E-03 1.370E-02 7.008E-04
Rank 1 10 3 7 9 8 5 4 6 2

F20

Best -3.320E+00 -
2.809E+00 -3.310E+00 -

3.120E+00 -3.240E+00 -
3.320E+00 -3.320E+00 -3.320E+00 -3.200E+00 -3.320E+00

Worst -3.200E+00 -9.615E-01 -2.830E+00 -
2.306E+00 -2.377E+00 -

3.170E+00 -3.200E+00 -3.020E+00 -2.470E+00 -3.156E+00

Mean -3.270E+00 -
1.882E+00 -3.110E+00 -

2.790E+00 -2.870E+00 -
3.280E+00 -3.300E+00 -3.180E+00 -2.920E+00 -3.248E+00

Std 6.030E-02 5.029E-01 1.300E-01 1.965E-01 1.800E-01 5.970E-02 2.380E-02 9.760E-02 1.800E-01 5.518E-02
Rank 3 10 6 9 8 2 1 5 7 4

F21

Best −1.015E+01 −1.421E+00 −1.013E+01 −4.805E+00 −1.015E+01 −1.012E+01 −1.015E+01 −1.015E+01 −9.951E+00 −9.835E+00

Worst −1.015E+01 −3.417E-
01 −5.049E+00 −9.464E-

01 −3.800E+00 −2.609E+00 −1.004E+01 −2.682E+00 −2.959E+00 −4.089E+00

Mean −1.015E+01 −5.840E-
01 −5.386E+00 −2.025E+00 −7.079E+00 −6.273E+00 −1.015E+01 −8.647E+00 −6.812E+00 −6.363E+00

Std 1.193E-03 2.493E-01 1.264E+00 9.376E-01 2.408E+00 2.592E+00 2.035E-02 2.570E+00 2.154E+00 1.860E+00
Rank 1 10 8 9 4 7 2 3 5 6

F22

Best −1.040E+01 −1.859E+00 −5.088E+00 −7.067E+00 −1.037E+01 −1.034E+01 −1.040E+01 −1.040E+01 −9.108E+00 −1.040E+01

Worst −1.040E+01 −3.932E-
01 −5.081E+00 −1.151E+00 −2.554E+00 −1.818E+00 −1.034E+01 −5.108E+00 −2.510E+00 −2.494E+00

Mean −1.040E+01 −8.135E-
01 −5.086E+00 −2.414E+00 −6.329E+00 −4.669E+00 −1.040E+01 −1.022E+01 −6.651E+00 −7.922E+00

Std 6.842E-04 3.383E-01 1.585E-03 1.355E+00 2.577E+00 1.901E+00 1.163E-02 9.647E-01 1.875E+00 1.915E+00
Rank 1 10 7 9 6 8 2 3 5 4

F23

Best −1.054E+01 −1.704E+00 −1.053E+01 −4.233E+00 −1.053E+01 −1.053E+01 −1.054E+01 −1.053E+01 −1.023E+01 −1.023E+01

Worst −1.053E+01 −4.466E-
01 −5.115E+00 −1.337E+00 −2.913E+00 −1.676E+00 −1.050E+01 −5.128E+00 −2.798E+00 −3.736E+00

Mean −1.054E+01 −9.062E-
01 −5.307E+00 −2.211E+00 −6.205E+00 −5.302E+00 −1.053E+01 −9.990E+00 −7.092E+00 −8.115E+00

Std 7.338E-04 3.164E-01 9.861E-01 6.607E-01 2.372E+00 2.517E+00 5.909E-03 1.640E+00 2.140E+00 1.657E+00
Rank 1 10 7 9 6 8 2 3 5 4

Average
rank 1.7 10.0 3.5 8.8 7.2 4.6 3.3 4.5 5.5 5.9

Final rank 1 10 3 9 8 5 2 4 6 7

Table 4. Wilcoxon rank sum test of FLAS and MAs on 23 benchmark functions.

F PSO_ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F1 2.366E-12 2.366E-12 2.366E-12 2.366E-12 1.608E-01 2.366E-12 2.366E-12 2.366E-12 2.366E-12
F2 2.800E-11 2.800E-11 2.800E-11 8.496E-06 4.788E-08 2.800E-11 2.800E-11 2.800E-11 2.800E-11
F3 1.956E-11 1.956E-11 1.956E-11 1.624E-10 2.934E-05 1.956E-11 1.956E-11 1.956E-11 1.956E-11
F4 2.800E-11 2.800E-11 2.800E-11 2.800E-11 2.904E-02 2.800E-11 2.800E-11 2.800E-11 2.800E-11
F5 3.020E-11 4.119E-01 3.020E-11 3.020E-11 1.464E-10 6.518E-09 3.020E-11 3.020E-11 3.020E-11
F6 3.020E-11 5.186E-07 3.020E-11 3.020E-11 3.020E-11 3.020E-11 9.919E-11 3.020E-11 3.020E-11
F7 3.020E-11 7.013E-02 3.020E-11 3.338E-11 4.200E-10 1.767E-03 4.084E-05 1.094E-10 3.338E-11
F8 5.219E-12 4.290E-01 3.020E-11 3.020E-11 6.097E-03 1.041E-04 3.020E-11 1.695E-09 4.504E-11
F9 1.210E-12 NaN 1.210E-12 4.190E-02 3.340E-01 NaN NaN 1.100E-02 1.210E-12

F10 6.870E-13 NaN 1.210E-12 1.660E-11 4.160E-14 NaN 1.970E-11 6.180E-04 1.210E-12
F11 1.212E-12 NaN 1.212E-12 1.212E-12 1.306E-07 NaN NaN 6.617E-04 1.212E-12
F12 3.020E-11 9.880E-03 3.020E-11 3.020E-11 8.150E-11 1.460E-10 3.470E-10 3.020E-11 3.020E-11
F13 3.020E-11 7.620E-01 3.020E-11 3.020E-11 3.690E-11 3.470E-10 2.440E-09 3.020E-11 3.020E-11
F14 3.020E-11 8.766E-01 3.020E-11 3.338E-11 5.264E-04 3.183E-01 2.372E-10 3.338E-11 6.696E-11
F15 3.020E-11 8.120E-04 3.020E-11 3.020E-11 1.610E-10 1.370E-03 4.840E-02 3.690E-11 3.020E-11
F16 3.020E-11 4.491E-11 3.020E-11 3.020E-11 1.580E-01 4.200E-10 6.787E-02 1.996E-05 9.919E-11
F17 3.02E-11 4.71E-04 3.02E-11 3.02E-11 2.67E-09 4.08E-11 5.27E-05 4.20E-10 1.25E-07
F18 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.00E-03 3.02E-11 1.25E-07 3.02E-11 1.33E-10
F19 3.020E-11 3.340E-11 3.020E-11 3.020E-11 4.500E-11 3.020E-11 3.340E-11 3.020E-11 3.020E-11
F20 3.020E-11 2.030E-07 3.020E-11 1.210E-10 1.220E-02 5.200E-01 2.030E-07 3.020E-11 3.500E-03
F21 3.020E-11 3.020E-11 3.020E-11 3.338E-11 3.020E-11 1.850E-08 5.494E-11 3.020E-11 3.020E-11
F22 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 1.311E-08 3.690E-11 3.020E-11 4.077E-11
F23 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 1.011E-08 4.504E-11 3.020E-11 3.020E-11

+/=/− 0/0/23 0/8/15 0/0/23 0/1/22 1/2/20 0/5/18 1/3/20 0/1/22 0/0/23
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As illustrated in Figure 9, the FLAS demonstrates noticeable superiority over other MAs,
particularly from F1 to F7. For the multimodal test function, F8–F13, the FLAS outperforms
other MAs in convergence speed and accuracy. For low-dimensional multi-peak test functions
(F14–F23), FLAS is better than other MAs, particularly on F14, F15, and F20. Among the
remaining functions, the optimum of 23 benchmark functions can be obtained accurately. For
the F14–F23 function, we can see that FLAS can quickly transition between the early search
and the late transition phase, converging near the optimal position at the beginning of the
iteration. Then, FLAS progressively determines the optimal position and updates the answer
to validate the previous observations. We can find that FLAS performs quite competitively
across the three types of functions and maintains a consistent dominance in most of them.
In addition, convincing results show that the FLAS algorithm is also able to balance both
exploratory and developmental search. To infer information from Figure 10, the FLAS obtains
lower and narrower boxes in most functions. The finding that in most cases, the distribution
of the objectives of FLAS is centered on the other intelligent algorithms also illustrates the
consistency and stability of FLAS. According to the comparison results between Table 3 and
various algorithms, FLAS is generally the first. In addition, the proposed FLAS is ranked first
for 15 of the test functions and is ranked second for the remaining 5 test functions. For the
single-peak functions F1–F7, FLAS is ranked at least second in all of them, indicating that the
proposed FLAS can find the single-peak optimal solution effectively. In addition, FLAS ranks
first in all multi-peak functions, indicating that FLAS can effectively avoid the interference of
localized solutions. Competitive performance is also demonstrated in complex problems such
as fixed dimension. Considering the contingency of the test results, we further analyze the
experimental results from the perspective of statistical tests. From Table 4, only two functions
are better than the algorithm. FLAS is obviously superior to PSO_ELPM, HHO, DE, LSO,
FLA, BWO, IGJO, AOA, and IGWO algorithms. Therefore, in the reference function, the FLAS
converges significantly better. From the experimental results, it can be found that the proposed
algorithm can effectively solve the single-peak as well as multi-peak optimization problems,
and obtain better optimization results. But it can and will have a longer running time.

4.4. Comparison between FLAS and Other MAs on CEC2020

FLAS and other MAs are analyzed on the CEC2020 test set. The value has 20 di-
mensions and runs 30 times independently. As shown in Table 5, FLAS ranks first in F1,
F4-F5, and F10. Among the ten algorithms, FLAS was in the top three on 90% of the tested
functions. In Figure 11, FLAS converges the fastest of all functions except F6. Figure 12
shows a boxplot of MAs and data distribution for MAs. Figure 13 shows the radar plot
of MAs. According to the data listed in Table 6, among the nine groups of comparison
algorithms, only one function of the PSO_ELPM algorithm is superior to FLAS, and the
others are inferior to FLAS.

Table 5. Experimental results of FLAS and comparison algorithm on CEC2020.

F Index FLAS PSO_ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F1

Best 7.466E+06 8.032E+08 8.379E+07 1.046E+11 7.643E+10 3.711E+07 9.403E+10 1.604E+10 8.590E+10 3.678E+09
Worst 3.003E+07 3.692E+09 3.827E+08 1.682E+11 1.271E+11 6.351E+07 1.101E+11 4.308E+10 1.184E+11 3.938E+10
Mean 1.834E+07 1.714E+09 1.347E+08 1.291E+11 1.065E+11 4.689E+07 0 3.010E+10 1.040E+11 1.814E+10

Std 5.277E+06 6.741E+08 5.266E+07 1.481E+10 1.379E+10 7.056E+06 4.320E+09 6.361E+09 8.753E+09 8.636E+09
Rank 1 4 3 10 9 2 7 6 8 5

F2

Best 6.186E+03 6.341E+03 7.210E+03 1.475E+04 1.399E+04 5.894E+03 1.274E+04 7.608E+03 1.288E+04 6.712E+03
Worst 9.313E+03 1.021E+04 1.018E+04 1.733E+04 1.679E+04 9.328E+03 1.497E+04 1.540E+04 1.508E+04 1.538E+04
Mean 7.503E+03 8.223E+03 8.590E+03 1.651E+04 1.603E+04 7.749E+03 1.423E+04 1.096E+04 1.413E+04 1.282E+04

Std 8.692E+02 9.685E+02 9.668E+02 5.490E+02 5.961E+02 7.884E+02 4.629E+02 2.475E+03 5.424E+02 2.784E+03
Rank 1 3 4 10 9 2 8 5 7 6

F3

Best 9.779E+02 1.453E+03 1.779E+03 3.401E+03 2.072E+03 9.909E+02 2.012E+03 1.232E+03 1.899E+03 9.895E+02
Worst 1.166E+03 1.768E+03 2.205E+03 4.324E+03 3.361E+03 1.245E+03 2.172E+03 1.778E+03 2.198E+03 1.672E+03
Mean 1.069E+03 1.621E+03 1.964E+03 3.982E+03 2.788E+03 1.094E+03 2.113E+03 1.514E+03 2.097E+03 1.392E+03

Std 5.121E+01 8.501E+01 9.869E+01 2.145E+02 4.015E+02 5.291E+01 3.710E+01 1.084E+02 7.650E+01 1.316E+02
Rank 1 5 6 10 9 2 8 4 7 3
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Table 5. Cont.

F Index FLAS PSO_ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F4

Best 1.900E+03 1.900E+03 1.900E+03 6.834E+05 1.900E+03 1.900E+03 1.900E+03 1.900E+03 1.900E+03 1.903E+03
Worst 1.900E+03 1.900E+03 1.900E+03 2.492E+06 3.795E+05 1.913E+03 1.900E+03 1.900E+03 1.900E+03 8.196E+03
Mean 1.900E+03 1.900E+03 1.900E+03 1.411E+06 8.422E+04 1.906E+03 1.900E+03 1.900E+03 1.900E+03 2.245E+03

Std 0.000E+00 1.411E-
11 0.000E+00 4.032E+05 1.190E+05 5.373E+00 0.000E+00 0.000E+00 0.000E+00 1.188E+03

Rank 1 6 2 10 9 7 3 4 5 8

F5

Best 7.665E+05 2.681E+06 1.736E+06 2.247E+08 2.480E+08 9.970E+05 1.527E+08 3.831E+06 2.262E+08 7.404E+06
Worst 1.684E+07 3.189E+07 2.482E+07 1.087E+09 8.578E+08 2.618E+07 6.294E+08 2.282E+08 7.650E+08 1.622E+08
Mean 7.848E+06 1.558E+07 9.098E+06 4.616E+08 4.782E+08 1.156E+07 3.620E+08 3.827E+07 4.674E+08 4.060E+07

Std 4.851E+06 9.186E+06 5.653E+06 1.993E+08 1.466E+08 6.664E+06 1.106E+08 4.251E+07 1.494E+08 3.492E+07
Rank 1 4 2 8 10 3 7 5 9 6

F6

Best 2.789E+03 3.233E+03 3.490E+03 6.714E+03 6.417E+03 2.271E+03 6.842E+03 3.057E+03 6.554E+03 2.715E+03
Worst 4.409E+03 5.953E+03 5.792E+03 8.293E+03 8.958E+03 4.401E+03 9.539E+03 6.044E+03 9.949E+03 5.491E+03
Mean 3.614E+03 4.217E+03 4.474E+03 7.470E+03 8.089E+03 3.434E+03 8.148E+03 4.140E+03 8.213E+03 4.485E+03

Std 4.681E+02 6.873E+02 5.240E+02 4.342E+02 5.428E+02 4.185E+02 6.338E+02 5.844E+02 8.839E+02 6.094E+02
Rank 2 4 5 7 8 1 9 3 10 6

F7

Best 9.050E+05 8.392E+06 2.495E+06 6.475E+07 1.340E+08 2.995E+06 8.500E+07 6.238E+05 2.980E+08 5.972E+06
Worst 4.054E+07 8.249E+07 5.507E+07 5.131E+08 4.631E+08 5.691E+07 4.881E+08 1.121E+08 1.142E+09 7.568E+07
Mean 1.386E+07 3.762E+07 2.044E+07 2.517E+08 2.705E+08 1.966E+07 2.490E+08 2.819E+07 6.584E+08 2.615E+07

Std 1.145E+07 2.067E+07 1.614E+07 1.124E+08 9.122E+07 1.555E+07 9.274E+07 2.935E+07 2.329E+08 1.752E+07
Rank 1 6 3 8 9 2 7 5 10 4

F8

Best 7.792E+03 7.168E+03 9.578E+03 1.662E+04 1.632E+04 8.083E+03 1.528E+04 9.071E+03 1.464E+04 3.095E+03
Worst 1.059E+04 1.369E+04 1.438E+04 1.879E+04 1.840E+04 1.065E+04 1.746E+04 1.694E+04 1.723E+04 1.682E+04
Mean 8.887E+03 1.131E+04 1.139E+04 1.791E+04 1.754E+04 9.282E+03 1.647E+04 1.278E+04 1.615E+04 1.229E+04

Std 6.351E+02 1.282E+03 9.061E+02 5.764E+02 5.157E+02 6.825E+02 4.319E+02 2.531E+03 6.701E+02 4.254E+03
Rank 1 3 4 10 9 2 8 6 7 5

F9

Best 3.177E+03 3.311E+03 3.887E+03 3.612E+03 3.990E+03 3.113E+03 4.100E+03 3.264E+03 4.598E+03 3.004E+03
Worst 3.534E+03 3.643E+03 4.793E+03 3.989E+03 4.444E+03 3.415E+03 4.662E+03 3.650E+03 5.452E+03 4.126E+03
Mean 3.328E+03 3.509E+03 4.212E+03 3.778E+03 4.246E+03 3.279E+03 4.426E+03 3.415E+03 4.992E+03 3.390E+03

Std 8.446E+01 9.123E+01 2.386E+02 7.846E+01 9.993E+01 6.390E+01 1.175E+02 9.127E+01 2.591E+02 2.156E+02
Rank 2 5 7 6 8 1 9 4 10 3

F10

Best 3.030E+03 3.213E+03 3.138E+03 1.578E+04 1.287E+04 3.030E+03 1.252E+04 4.187E+03 1.189E+04 3.747E+03
Worst 3.216E+03 3.797E+03 3.307E+03 3.184E+04 2.565E+04 3.154E+03 1.463E+04 7.903E+03 1.635E+04 5.787E+03
Mean 3.090E+03 3.469E+03 3.219E+03 2.487E+04 1.839E+04 3.095E+03 1.371E+04 5.577E+03 1.414E+04 4.383E+03

Std 4.151E+01 1.197E+02 4.649E+01 4.421E+03 2.786E+03 3.541E+01 5.597E+02 8.881E+02 1.293E+03 4.824E+02
Rank 1 4 3 10 9 2 7 6 8 5

Average rank 1.2 4.4 3.9 8.9 8.9 2.4 7.3 4.8 8.1 5.1

Final rank 1 4 3 10 9 2 7 5 8 6

Table 6. Wilcoxon rank sum test of 10 functions on CEC2020 using FLAS and other MAs.

F
Algorithms

PSO_ELPM HHO DE LSO FLA BWO IGJO AOA IGWO

F1 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11 3.020E-11
F2 6.972E-03 2.839E-04 3.020E-11 3.020E-11 2.282E-01 3.020E-11 1.287E-09 3.020E-11 1.429E-08
F3 3.020E-11 3.020E-11 3.020E-11 3.020E-11 9.334E-02 3.020E-11 3.020E-11 3.020E-11 4.616E-10
F4 3.337E-01 NaN 1.212E-12 1.212E-12 2.213E-06 NaN NaN NaN 1.212E-12
F5 9.521E-04 5.395E-01 3.020E-11 3.020E-11 3.917E-02 3.020E-11 7.043E-07 3.020E-11 8.101E-10
F6 1.236E-03 1.157E-07 3.020E-11 3.020E-11 1.297E-01 3.020E-11 5.561E-04 3.020E-11 3.805E-07
F7 2.317E-06 1.055E-01 3.020E-11 3.020E-11 1.087E-01 3.020E-11 7.483E-02 3.020E-11 1.680E-03
F8 3.197E-09 6.696E-11 3.020E-11 3.020E-11 2.608E-02 3.020E-11 1.957E-10 3.020E-11 1.175E-04
F9 1.698E-08 3.020E-11 3.020E-11 3.020E-11 4.060E-02 3.020E-11 2.254E-04 3.020E-11 9.626E-02

F10 3.338E-11 1.613E-10 3.020E-11 3.020E-11 4.290E-01 3.020E-11 3.020E-11 3.020E-11 3.020E-11
+/=/− 1/4/5 0/3/7 0/0/10 0/0/10 0/5/5 0/1/9 0/3/7 0/1/9 0/3/7
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4.5. Comparison of FLAS and DIRECT in CEC2020

In order to further validate the convergence and optimization performance of the
proposed FLAS in the face of complex optimization problems, this section conducts ex-
periments comparing FLAS with the well-known deterministic optimization method, DI-
RECT [41], in the CEC2020 test function. To ensure the validity of the experiments, both
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FLAS and DIRECT perform 10,000 function evaluation times [42]. Meanwhile, the popula-
tion of FLAS is set to 30. for the CEC2020 test function, the dimension of all ten functions is
set to 10. Figure 14 gives the operational zones built using 30 runs performed by the FLAS
method and operational characteristics for the DIRECT method on ten CEC2020 functions.
The upper and the lower boundaries of the zone are shown as dark blue curves [43].
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Figure 14. Operational zones built using 30 runs performed using the FLAS method and opera-
tional characteristics for the DIRECT method on ten CEC2020 functions. The upper and the lower
boundaries of the zone are shown as dark blue curves.
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As can be seen from the experimental result plots, the algorithmic performance of
the proposed FLAS is competitive with the deterministic methods. FLAS demonstrates
absolute optimization advantages in cec02, cec05, cec06, and cec07. The worst results of
FLAS are comparable to or even better than those of DIRECT. For cec01, cec08, cec09, and
cec10 test functions, the results of DIRECT optimize the average results of FLAS and are
comparable to the best results of FLAS. In contrast, the optimal results for FLAS tend to be
optimized better, indicating that FLAS has a higher upper bound. For cec04, both FLAS
and DIRECT obtained optimal results. Only on cec03 did DIRECT obtain better results than
FLAS. Thus, FLAS can also obtain better optimization results than deterministic methods.

In addition, in order to effectively demonstrate the convergence situation of FLAS,
we give plots of the convergence results of the ten test functions of CEC2020 for different
numbers of function evaluations. Considering that the convergence speed of FLAS varies
for different test functions, the number of function evaluations is set to 10,000 for the
cec01–cec04, cec06, and cec08–cec10 test functions. For the cec05 and cec07 test functions,
the number of function evaluations is set to 30,000. The graphs of the convergence of FLAS
are given in Figure 15. In order to minimize the negative impact of the resultant magnitude
on the presentation of the convergence plot results, only the convergence results for cec01
are given in Figure 15a.
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From the results of the convergence plots, it can be found that FLAS guarantees
effective convergence for different test functions.

5. Engineering Examples

In order to further evaluate the ability of FLAS to solve real-world applications,
FLAS is compared with other well-performing MAs on many different engineering design
problems. Two types of optimization problems are selected: (1) Box-constrained problems
have only unique constraints on the upper and lower bounds of the variables, including gear
transmission system design [44], and gas transmission compressor design [45]. (2) General-
constrained problems have more complex constraints and include reducer design [46],
three-bar truss design [47], piston rod optimization design [48], pressure vessel design [49],
and stepped cone pulley problem [50]. We will conduct a comprehensive test and evaluation
of FLAS through these specific engineering design questions to understand its performance
and feasibility in practical applications [51]. This approach can help us better understand
the advantages and limitations of FLAS and provide powerful solutions to optimization
problems in the engineering field [52,53].

5.1. Reducer Design Problems

Designing a reducer that meets specific requirements to achieve a speed ratio between
a given input speed and an output speed achieves optimum [54]. In Figure 16, the reducer
design problem has seven decision variables, namely, surface width (xa1 ), gear module (xa2 ),
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number of pinion teeth (xa3), bearing between the first axial length (xa4) and the second
axis length (xa5 ), the first axis diameter (xa6 ), and the second axis diameter (xa7 ). From the
figure, it can be understood that the problem requires optimization of the design weight
under the constraints of bending stresses, surface stresses, transverse deflections, and axial
stresses in the gear teeth. According to the definition of a gearbox, it is more complex than
many practical applications because it has more constraints. The objective equation with
respect to x = [xa1 , xa2 , xa3 , xa4 , xa5 , xa6 , xa7 ] and 11 constraints are listed below.

min f (xa) = 0.7854xa1 x2
a2
(3.3333x2

a3
+ 14.9334xa3 − 43.0934)

−1.508xa1(x2
a6
+ x2

a7
) + 7.4777(x3

a6
+ x3

a7
) + 0.7854(xa4 x2

a6
+ xa5 x2

a7
),

(61)

Variable values range from:

2.6 ≤ xa1 ≤ 3.6, 0.7 ≤ xa2 ≤ 0.8, 17 ≤ xa3 ≤ 28, 7.3 ≤ xa4 ≤ 8.3,
7.8 ≤ xa5 ≤ 8.3, 2.9 ≤ xa6 ≤ 3.9, 5.0 ≤ xa7 ≤ 5.5.

The constraint conditions are:

g1(xa) =
27

xa1 x2
a2 xa3

− 1 ≤ 0, g2(xa) =
397.5

xa1 x2
a2 x2

a3
− 1 ≤ 0, g3(xa) =

1.93x3
a4

xa2 xa3 x4
a6
− 1 ≤ 0,

g4(xa) =
1.93x3

a5
xa2 xa3 x4

a7
− 1 ≤ 0, g5(xa) =

√
(745xa4 /xa2 xa3 )

2+16.9×106

110x3
a6

− 1 ≤ 0,

g6(xa) =

√
(745xa5 /xa2 xa3 )

2+157.5×106

85x3
a7

− 1 ≤ 0, g7(xa) =
xa2 xa3

40 − 1 ≤ 0, g8(xa) =
5xa2
xa1

− 1 ≤ 0,

g9(xa) =
xa1

12xa2
− 1 ≤ 0, g10(xa) =

1.56xa6+1.9
xa4

− 1 ≤ 0, g11(xa) =
1.1xa7+1.9

xa5
− 1 ≤ 0,
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By combining the FLAS with PSO_ELPM, HHO, DE, FLA, Beluga Whale 
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algorithm (RSA) [57], and the tunica swarm algorithm (TSA) [46], eight algorithms were 
compared. Table 7 shows the minimum total weight obtained using FLAS and other MAs. 
Moreover, the total weight obtained using FLAS is the smallest, which is 2997.0. The total 
weight obtained using RSO is larger, and its value is 8.76E+07. As shown in Table 8, the 

Figure 16. Reducer design problems.

By combining the FLAS with PSO_ELPM, HHO, DE, FLA, Beluga Whale Optimization
algorithm (BWO) [55], Rat colony Optimizer (RSO) [56], Reptile search algorithm (RSA) [57],
and the tunica swarm algorithm (TSA) [46], eight algorithms were compared. Table 7 shows
the minimum total weight obtained using FLAS and other MAs. Moreover, the total weight
obtained using FLAS is the smallest, which is 2997.0. The total weight obtained using RSO
is larger, and its value is 8.76E+07. As shown in Table 8, the FLAS algorithm is the best in
all metrics; their standard deviation is only 5.7526, which indicates that FLAS has a more
accurate and stable result.

Table 7. Optimal results for reducer design problems.

Algorithms
Optimal Variable

Optimal Weight
xa1 xa2 xa3 xa4 xa5 xa6 xa7

FLAS 3.5005 0.7000 17.0000 7.3000 7.8000 3.3512 5.2869 2997.0
PSO_ELPM 3.6000 0.7000 17.0000 8.3000 8.3000 3.4051 5.5000 3211.6
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Table 7. Cont.

Algorithms
Optimal Variable

Optimal Weight
xa1 xa2 xa3 xa4 xa5 xa6 xa7

HHO 3.5202 0.7000 17.0000 7.8000 7.9000 3.3513 5.2913 3015.0
DE 3.5358 0.7000 17.0000 7.6000 8.0000 3.3515 5.3040 3029.4

FLA 3.5209 0.7000 17.0000 7.3000 8.1000 3.3635 5.2908 3082.1
BWO 2.8055 0.7000 17.0000 7.3000 7.8000 3.0775 5.0000 3017.7
RSO 3.5850 0.7000 17.0000 7.3000 8.3000 3.4128 5.5000 8.7600E+07
RSA 3.5076 0.7000 17.0000 7.3000 7.8000 3.3530 5.3106 3199.4
TSA 3.6000 0.7000 17.0000 7.5000 8.1000 3.3719 5.2884 3015.3

Table 8. Statistical results of reducer design problems.

Algorithms Mean Std Best Worst

FLAS 3.00E+03 5.7526 2997.0 3.03E+03
PSO_ELPM 9.63E+06 3.49E+06 3211.6 1.30E+07

HHO 5.13E+03 1.03E+03 3015.0 5.74E+03
DE 7.03E+05 3.83E+06 3029.4 2.10E+07

FLA 4.78E+06 4.53E+06 3082.1 1.11E+07
BWO 3.08E+03 31.694 3017.7 3.17E+03
RSO 9.80E+07 3.01E+06 8.76E+07 1.00E+08
RSA 3.28E+03 43.5377 3199.4 3.35E+03
TSA 3.04E+03 12.3493 3015.3 3.06E+03

5.2. Three-Bar Truss Design

The objective of the three-bar truss design problem is to manipulate two parameters
(xA1, xA2) to minimize the weight of the truss. The problem has three constraints: stress
(σ), deflection, and buckling. A schematic diagram of the three-rod truss design problem is
shown in Figure 17. Therefore, the mathematical model for the design of the three-bar truss
is shown below:
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Functions as follows:

min f (X) = (2
√

2xA1 + xA2) ∗ l

s.t.


g1(X) =

√
2x1+x2√

2x2
1+2x1x2

P − σ ≤ 0,

g2(X) = xA2√
2x2

A1+2xA1xA2
P − σ ≤ 0,

g3(X) = 1√
2xA2+xA1

P − σ ≤ 0,

(62)
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where 0 ≤ xA1, xA2 ≤ 1. In addition, l = 100cm, P = 2KN/cm2, σ = 2KN/cm2.
Table 9 shows the HHO has the smallest function value, followed by the FLAS. How-

ever, according to Table 10, FLAS has obtained the best mean value. In addition to the
slightly higher standard deviation, FLAS still has the first-solving effect.

Table 9. Optimal results for TBT.

Algorithms
Design Variable Objective Function

Valuex1 x2

FLAS 0.7861 0.4068 263.46355
PSO_ELPM 0.7868 0.4050 263.46389

HHO 0.7861 0.4069 263.46343
DE 0.7854 0.4094 263.4650

SCA 0.7871 0.4048 263.46364
FLA 0.7858 0.4081 263.46676
BWO 0.7575 0.4957 263.46431
RSO 0.7858 0.4240 264.15644
SMA 0.7861 0.4070 264.66549

Table 10. Statistical results of TBT.

Algorithm\Index Mean Std Best Worst

FLAS 263.3765 0.3850 263.46355 264.8725
PSO_ELPM 263.5856 0.1413 263.46389 264.0082

HHO 263.4989 0.6240 263.46343 263.7109
DE 263.5488 0.2119 263.4650 264.6178

SCA 264.7806 4.8423 263.46364 282.5938
FLA 265.2543 2.8059 263.46676 275.4833
BWO 263.7076 0.1671 263.46431 264.0034
RSO 270.5607 5.9360 264.15644 284.3287
SMA 268.8324 1.9769 264.66549 271.1422

5.3. Design Problems of Gear Group

The number of teeth on the looking for the best to minimize the cost of gear ratios is the
purpose of the gear set design problem [58], as shown in Figure 18. The problem is an integer
unconstrained optimization problem with four design variables. These design variables denote
the number of teeth of the gears and are denoted by TA, TB, TC, TD, respectively [59,60].

Let X = [x1, x2, x3, x4] = [TA, TB, TC, TD], and the following mathematical model is
obtained:

min f (X) = (
1

6.931
− x1x2

x3x4
)

2
, (63)

where 12 ≤ x1, x2, x3, x4 ≤ 60.
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The proposed FLAS is compared with others on this problem. These include improved
molecule swarm optimization (PSO_ELPM), Harris Eagle Optimizer (HHO), Differential
Evolution Algorithm (DE), (SCA) [22] Fick algorithm (FLA), Beluga Whale Optimization
Algorithm (BWO), Mouse Population Optimizer (RSO), Slime mold algorithm (SMA) [61],
and improved Gray Wolf Algorithm (IGWO). In Table 11, except for DE, FLA, RSO, and
SMA, the other algorithms all obtain minimum value, which indicates that MAs have the
same effect on solving the extreme value of this problem. In Table 12, the reference index
calculated using the FLAS algorithm is smaller. FLAS has the best solution effect and
relatively stable results among these MAs.

Table 11. Design results of gear group.

Algorithm
Design Variable

Fitness Value
x1 x2 x3 x4

FLAS 19 17 50 44 2.70E-12
PSO_ELPM 19 16 50 44 2.70E-12

HHO 17 20 49 43 2.70E-12
DE 18 15 35 52 2.36E-09

SCA 31 13 54 52 2.70E-12
FLA 16 20 49 44 2.31E-11
BWO 12 13 28 38 2.70E-12
RSO 22 16 37 59 1.83E-08
SMA 19 17 43 50 3.07E-10

IGWO 19 17 50 44 2.70E-12

Table 12. Statistical results of design problems of gear group.

Algorithm\Index Mean Std Best Worst

FLAS 4.68E-10 8.22E-10 2.70E-12 3.30E-09
PSO_ELPM 7.42E-09 9.44E-09 2.70E-12 2.73E-08

HHO 2.29E-09 3.48E-09 2.70E-12 1.83E-08
DE 1.26E-07 2.25E-07 2.36E-09 9.98E-07

SCA 1.85E-09 1.60E-09 2.70E-12 6.51E-09
FLA 2.38E-09 2.64E-09 2.31E-11 1.31E-08
BWO 6.27E-09 8.07E-09 2.70E-12 2.73E-08
RSO 2.90E-03 5.50E-03 1.83E-08 2.42E-02
SMA 8.04E-09 8.90E-09 3.07E-10 2.73E-08

IGWO 4.31E-9 8.74E-09 2.70E-12 2.73E-08

5.4. Piston Rod Optimization Design

The primary purpose of this engineering design is to guarantee that the oil volume
is minimized during the lifting of the piston from 0◦ to 45◦ by positioning four different
piston components (H (w1), B (w2), D (w3), and X (w4)). Figure 19 is a schematic of the
piston rod [62], a mathematical model is developed as follows:

min f (w) = 1
4 πw2

3(L2 − L1),

s.t.
{

g1(w) = QL cos θ − R × F ≤ 0, g2(w) = Q(L − w4)− Mmax ≤ 0,
g3(w) = 1.2(L2 − L1)− L1 ≤ 0, g4(w) = w3

2 − w2 ≤ 0,
(64)

where R = |−w4(w4 sin θ+w1)+w1(w2−w4 cos θ)|√
(w4−w2)

2+w2
1

, F =
πPw2

3
4 , L1 =

√
(w4 − w2)

2 + w2
1, and L2 =√

(w4 sin θ + w1)
2 + (w2 − w4 cos θ)2.

The variables w1, w2 and w3 fluctuate within [0.05, 500], and w4 belongs to [0.05, 120].
Tables 13 and 14 compare FLAS with PSO_ELPM, HHO, DE, SCA, FLA, BWO, RSO,

SMA, and IGWO, respectively. In Table 13, FLAS obtains the lowest cost. Table 14 shows
that the results of FLAS are slightly better than those of other MAs. In addition, FLAS also
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obtained a small difference between the results obtained by 30 runs, which indicates that
FLAS has better robustness while achieving optimal results.
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Table 13. Optimization results of piston rod design.

Algorithm
Optimal Variable Minimum

Costx1 x2 x3 x4

FLAS 0.0500 0.7943 1.5876 500.0000 8.3410
PSO_ELPM 0.0500 0.7936 1.5854 500.0000 8.3630

HHO 0.0500 1.0891 2.1742 264.8728 9.3236
DE 0.0500 2.8864 2.1166 417.2231 7.9374

SCA 0.0530 0.7986 1.5862 500.0000 8.5800
FLA 0.0500 0.7986 1.5969 500.0000 8.5290
BWO 0.0500 0.8246 1.5942 494.8171 9.0300
RSO 0.0500 1.7789 2.1002 285.0632 30.076
SMA 0.0500 0.7923 1.5846 500.0000 8.6250

IGWO 0.0509 0.7937 1.5863 499.1632 8.3710

Table 14. Statistical results of piston rod design.

Algorithm Mean Std Best Worst

FLAS 0.8578 0.0163 8.341 0.8965
PSO_ELPM 6.7946 32.5143 8.3630 178.9467

HHO 260.4833 157.1277 9.3236 622.5394
DE 325.4745 348.3112 7.9374 1.47E+03

SCA 0.9368 0.05240 8.5800 1.0222
FLA 285.8016 338.5126 8.5290 1.26E+03
BWO 1.27E+00 0.4354 9.0300 2.71E+00
RSO 117.9851 200.9380 30.0760 1.02E+03
SMA 16.6741 48.3553 8.6250 159.3020

IGWO 31.0201 74.5183 8.3710 301.0950
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5.5. Design of Gas Transmission Compressor

In the minimization cost model, total costs need to be kept to a minimum, and D,
pl, ps, L, η(η = pl/ps) are the correlation coefficient [3], as shown in Figure 20. Let m =
[m1, m2, m3] = [L, λ, D], and the following mathematical model is established:

min f (m) = 3.69 × 104m3 + 7.72 × 108m−1
1 m0.219

2 − 765.43 × 106 × m−1
1

+ 8.61 × 105 × m
1
2
1 (m

2
2 − 1)−

1
2 m− 2

3
3 ,

m1, m2, m3 > 0,10 ≤ m1 ≤ 55, 1.1 ≤ m2 ≤ 2, 10 ≤ m3 ≤ 40.
(65)
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The FLAS is compared with nine other MAs, namely FLAS with PSO_ELPM, HHO, DE,
SCA, FLA, BWO, RSO, SMA, and IGWO. The solution results are shown in Table 15. By compar-
ing the data of each algorithm in Table 16, FLAS is the best, which is 2,964,375.810043. Although
the standard deviation of FLAS is not the smallest, the worst value and the mean value are
also relatively small, which indicates that FLAS is more accurate than other comparison MAs.

Table 15. Results of design problems of gas transmission compressor.

Algorithms
Variable

Optimal Total Cost
x1 x2 x3

FLAS 53.4045 1.1898 24.7268 2,964,375.810043
PSO_ELPM 53.3761 1.1902 24.7375 2,964,378.339311

HHO 53.4352 1.1901 24.7191 2,964,375.922331
DE 53.6247 1.1905 24.6288 2,964,390.741786

SCA 54.3003 1.1926 24.927 2,964,439.591532
FLA 53.7641 1.1914 24.6519 2,964,386.475420
BWO 55.0000 1.1978 24.5709 2,964,545.887990
RSO 41.5644 1.1470 22.2803 2,977,866.495387
SMA 53.4466 1.1901 24.7186 2,964,415.619347

IGWO 51.1324 1.1340 37.1395 2,964,380.498417

Table 16. Statistical results of design problems of gas transmission compressors.

Algorithm\Index Mean Std Best Worst

FLAS 2.96E+06 25.4933 2,964,375.810043 2.96450E+06
PSO_ELPM 2.97E+06 3.83E+03 2,964,378.339311 2.978031E+06

HHO 2.96E+06 16.2642 2,964,375.922331 2.96453E+06
DE 2.96E+06 177.0009 2,964,390.741786 2.96535E+06

SCA 2.96E+06 340.4450 2,964,439.591532 2.96563E+06
FLA 2.96E+06 171.8834 2,964,386.475420 2.96534E+06
BWO 2.97E+06 7.17E+03 2,964,545.887990 3.00365E+06
RSO 3.05E+06 6.57E+04 2,977,866.495387 3.27322E+06
SMA 2.96E+06 5.94E-05 2,964,415.619347 2.96437E+06

IGWO 2.96E+06 138.0004 2,964,380.498417 2.96494E+06
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5.6. Pressure Vessel Design Problems (PVD)

The ultimate requirement for pressure vessel design is to minimize the cost of fabri-
cation, welding, and materials for the pressure vessel [63]. Figure 21 prompts us that a
hemispherical head capped the cylindrical vessel at both ends. Four relevant design vari-
ables need to be considered for optimization, including shell thickness Ts, head thickness
Th, internal diameter R, and vessel cylindrical cross-section length L. Let E = [e1, e2, e3, e4] =
[Ts, Th, R, L]. The mathematical optimization model for pressure vessel design is as follows:

min f (E) = 0.6224e1e3e4 + 1.7781e2e2
3 + 3.1661e2

1e4 + 19.84e2
1e3

s.t.
{

g1(E) = −e1 + 0.0193e3 ≤ 0, g2(E) = −e2 + 0.00954e3 ≤ 0,
g3(E) = −πe2

3e4 − 4
3 πe3

3 + 1, 296, 000 ≤ 0, g4(E) = e4 − 240 ≤ 0,
(66)

where 0 ≤ e1 ≤ 99, 0 ≤ e2 ≤ 99, 10 ≤ e3 ≤ 200, 10 ≤ e4 ≤ 200.
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Therefore, FLAS is compared with PSO_ELPM, HHO, DE, SCA, FLA, BWO, RSO, SMA,
and IGWO. From the data in Tables 17 and 18, it is clear that the FLAS algorithm works best
among the 10 MAs, which indicates that FLAS has good applicability in this problem.

Table 17. PVD results.

Algorithms
Design Variable

Fitness Value
e1 e2 e3 e4

FLAS 0.7873 0.3921 40.9869 191.0979 5925.7
PSO_ELPM 0.7984 0.4025 42.6198 170.4482 6075.4

HHO 0.8590 0.4270 44.8368 145.4212 6079.1
DE 0.9593 0.4253 49.2750 111.9953 6805.2

SCA 1.2994 0.2543 65.2013 10.4653 9012.2
FLA 0.8053 0.4019 40.9875 193.4983 6100.4
BWO 0.7553 0.4099 40.6985 197.0376 6095.6
RSO 0.7241 0.3423 53.2952 81.3113 10,771.0
SMA 0.7782 0.3847 40.3196 199.9997 5985.3

IGWO 0.8010 0.3979 41.5499 183.6757 5937.4

Table 18. PVD statistics.

Algorithms Mean Std Best Worst

FLAS 6846.7 575.8469 5925.7 7519.7
PSO_ELPM 6883.7 528.1608 6075.4 7788.2

HHO 6702.3 464.1332 6079.1 7507.1
DE 9993.3 1622.3000 6805.2 15,169.0

SCA 11,044.0 1094.5000 9012.2 11,697.0
FLA 19,821.0 32,279.0000 6100.4 170,480.0
BWO 6622.8 309.9841 6095.6 7281.4
RSO 53,919.0 82,523.0000 10,771.0 375,210.0
SMA 6021.0 361.1613 5985.3 7317.8

IGWO 7036.9 1037.4000 5937.4 9440.7



Biomimetics 2024, 9, 205 40 of 48

5.7. Step Cone Pulley Problem

The goal of the step-cone pulley design problem is to design a four-step-cone pulley
with minimum weight using five design variables, consisting of four design variables for
the diameters of each step, with the fifth being the width of the pulley. Figure 22 displays
the Step cone pulley problem. In this case, it is hypothesized that the tapered pulleys and
the belt are of the same width. There are a total of 11 constraints, 3 of which are equality
constraints and the rest are inequality constraints. The conditions are to make sure that the
belt lengths, tension ratios, and power transmitted by the belt are the same in all steps. The
design power of the stepped pulley is at least 0.75 hp (0.75 × 745.6998 W) with an input
speed of 350 rpm and output speeds of 750, 450, 250, and 150 rpm, respectively [21]. The
mathematical expression for the weight of the four-stage travel cone pulley that can be
optimized is as follows:

min f (w) = ρw5[w2
1
{

1 + (M1
M )

2}
+ w2

2
{

1 + (M2
M )

2}
+ w2

3
{

1 + (M3
M )

2}
+ w2

4
{

1 + (M4
M )

2}
],

s.t.


h1(w) = Cb1 − Cb2 = 0, h2(w) = Cb1 − Cb3 = 0, h3(w) = Cb1 − Cb4 = 0,
Qi(w) = Ri ≥ 2 (i = 1, 2, 3, 4),
Qi(w) = Pi ≥ (0.75 × 745.6998) (i = 5, 6, 7, 8),

(67)

where ρ = 7200 kg/m3, a = 3 m, µ = 0.35, s = 1.75 MPa, t = 8 mm, the mathematical
expressions of Cbi, Pi and Ri are, respectively:

Cbi
= πdi

2 (1 + Ni
N ) +

(
Ni
N −1)

2

4a + 2a,
Pi = stω [1 − exp[−µ{π − 2 sin−1{(Ni

N − 1) di
2a}}]]

πdi Ni
60 ,

Ri = exp[µ{π − 2 sin−1{(Ni
N − 1) di

2a}}], (i = 1, 2, 3, 4)

where, t = 8 mm, s = 1.75 MPa, u = 0.35, =7200 kg/m3, and a = 3 mm.
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The FLAS is compared with PSO_ELPM, HHO, DE, SCA, FLA, BWO, RSO, SMA, and
IGWO in solving the stepped cone pulley problem. Tables 19 and 20 show that the optimal
value of the FLAS algorithm is the closest to the real value among the 10 MAs, which fully
indicates that FLAS works best.



Biomimetics 2024, 9, 205 41 of 48

Table 19. Stepped cone pulley problem.

Algorithm
Variable Minimum

Weightx1 x2 x3 x4 x5

FLAS 38.38439 52.85891 70.5076 84.5168 90.0000 16.5296
PSO_ELPM 20.5373 28.2978 50.9843 84.5432 90.0000 16.8305

HHO 20.7474 28.5272 50.8087 84.5149 89.9795 16.8268
DE 18.1514 28.2883 50.8292 84.9414 90.0000 16.9537

SCA 18.9110 28.6215 51.6447 86.1582 90.0000 17.1977
FLA 39.0286 29.5965 20.1708 49.0977 0.0540 17.0044
BWO 20.3360 28.7842 51.0233 84.8595 90.0000 16.9353
RSO 45.5075 55.7320 53.7411 75.4002 88.2041 17.1085
SMA 20.5423 28.2576 50.7969 84.4959 89.9998 16.8002

IGWO 2.9386 13.1223 32.9869 89.7359 88.1759 16.9241

Table 20. Statistical results of the stepped cone pulley problem.

Algorithm Mean Std Best Worst

FLAS 19.3022 2.4226 16.5296 26.9317
PSO_ELPM 10.1245 0.4252 16.8305 11.5840

HHO 9.9768 0.1607 16.8268 10.5558
DE 10.2580 0.1641 16.9537 10.6296

SCA 10.9584 0.3018 17.1977 11.6602
FLA 0.2474 0.2432 17.0044 1.0666
BWO 10.1119 0.1172 16.9353 10.3983
RSO 2.57E+03 1.35E+03 17.1085 6.17E+03
SMA 9.8007 4.57E-04 16.8002 9.8026

IGWO 10.4245 0.2178 16.9241 10.8051

6. Parameter Estimation of Solar Photovoltaic Model

The high-precision estimation of solar PV parameters is an urgent problem in power
systems and the key to improving the output of power systems. In this section, parameters
of the single diode model (SDM) in the photovoltaic (PV) model [64] are optimized by
using to explore its effectiveness further. In the experiment, two sets of data [65] from the
RTC France PV module and the Photowatt-PWP201 PV module were used to estimate the
parameters of the SDM model of the RTC France PV module; the unknown parameters of
the Photowatt-PWP201 PV module were estimated.

Because of its simplicity, SDM has wide applications in simulating the performance of
solar photovoltaic systems, and its structure is shown in Figure 23.
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The relationship between the PV current, diode current and resistance current in the
circuit and the output current is expressed as follows:

IA
O = IA

PV − IA
d − IA

sh, (68)

IA
d = IA

Rs · [exp(
e(UV

O + UΩ
Is · IA

O )

n · l · TK
)− 1], (69)

IA
sh =

UV
O + RΩ

Is · IA
O

RΩ
Ip

. (70)

where IA
O is the output current of SDM, IA

PV is the photovoltaic current, IA
Rs represents the

reverse saturation current of SDM, UV
O is the output voltage, RΩ

Is and RΩ
Ip warm are the

series resistance and parallel resistance of SDM, respectively, e is the electronic charge,
usually 1.60217646 × 10-19C, n is the ideal factor of a single diode, I is the Boltzmann
constant with a value of 1.3806503 × 10−23 J/K, and Tk is the Kelvin temperature [66].
In Formula (68), since I, e and Tk are all fixed constants, there are five parameters to be
optimized in SDM: IA

PV , IΩ
Rs, IΩ

Ip, IA
Is and n, constituting a decision variable of XSDM =

[IA
PV , IΩ

Rs, IΩ
Ip, IA

Is , n] parameter optimization problem.

PV Parameter Optimization Model and Experimental Setup

In a photovoltaic system, the output voltage UV
O and output current IA

O are the actual
data measured in the experiment. The goal of the model is to find the values of unknown
parameters [67] through MAs to minimize error. Jiao et al. [68] used the root-mean-square
error to measure the deviation, and, based on this, they established a PV system parameter
optimization model as follows:

minRMSEk(X) =

√√√√ 1
Nk

Nk

∑
i=1

hki(UV
Oi, IA

Oi, X)
2, (71)

where X represents the set of unknown parameters, k = 1 represents the label of the
SDM module model, and Nk represents the amount of data obtained for the K-th model.
hk(UV

Oi, IA
Oi, X) represents the error when the i-th output voltage and current of the k type

model are UV
O , IA

O , respectively.

hk(UV
Oi, IA

Oi, X) = IA
Oi,kle f t − IA

Oi,kright, (72)

where IA
Oi,kle f t and IA

Oi,kright represent the left and right ends of the output current, respec-
tively, FLAS is used to find the vector X that minimizes RMSEk(X). The absolute error (IAE)
and relative error are used to evaluate the performance of the algorithm more accurately.

IAE =
∣∣∣IA

O − IA
Om

∣∣∣ (73)

RE =
IA
O − IA

Om
IA
O

(74)

where IA
O is a real current value measured and IA

Om is a model current value calculated
when the parameter is optimized.

In the experiment, the current and voltage values obtained with Nk = 26 pairs of French
RTC photovoltaic cells at temperatures of 1000 W/m2 and 33 ◦C were used as experimental
data to estimate SDM and DDM model parameters. The current and voltage values of
36 polycrystalline silicon cells at 45 ◦C and low irradiance of 1000 W/m2 were connected
as experimental data to estimate [69]. Table 21 lists some relevant parameters of SDM [70],
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Lb and Ub, on behalf of the upper and lower bounds. The parameters of all remaining
algorithms are the same.

Table 21. Comparison and analysis of SDM results.

I Parameter
SDM

Lb Ub

Iph 0 1
Isd 0 1
Rs 0 0.5
Rsh 0 100
n 1 2

Table 22 shows that FLAS performs well in performance evaluation compared to other
MAs, significantly improving processing efficiency and achieving higher accuracy. This
result undoubtedly strengthens the competitive advantage of FLAS in the field of intelligent
computing. Table 22 shows the 26 groups of measured voltage V, current I and power P
data of SDM, as well as the results of current Im, absolute current error IAEI and absolute
power error IAEP estimated using FLAS; the absolute current error is all less than 1.61E-03.
Combined with the curves in Figure 24a,b, the current data Im and voltage data Pm calculated
using FLAS are highly close to the actual data I and P. Figure 24c,d shows the IAE and RE
of the simulated current; there is a high similarity between the experimental data and the
estimated data. The FLAS is a method that can accurately estimate SDM parameters.
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Table 22. Experimental results of FLAS algorithm on SDM.

Serial
Number

Actual Data Algorithmic Estimation Data

I V P Im IAEI IAEP

1 0.7640 −0.2057 −1.572E-01 7.64E-01 1.51E-04 3.10E-05
2 0.7620 −0.1291 −9.837E-02 7.62E-01 4.91E-04 6.34E-05
3 0.7605 −0.0588 −4.472E-02 7.61E-01 7.44E-04 4.38E-05
4 0.7605 0.0057 4.335E-03 7.60E-01 4.00E-04 2.28E-06
5 0.7600 0.0646 4.910E-02 7.59E-01 9.47E-04 6.12E-05
6 0.7590 0.1185 8.994E-02 7.58E-01 9.14E-04 1.08E-04
7 0.7570 0.1678 1.270E-01 7.57E-01 1.76E-04 2.95E-05
8 0.7570 0.2132 1.614E-01 7.56E-01 7.40E-04 1.58E-04
9 0.7555 0.2545 1.923E-01 7.55E-01 2.70E-04 6.88E-05

10 0.7540 0.2924 2.205E-01 7.54E-01 1.85E-04 5.41E-05
11 0.7505 0.3269 2.453E-01 7.52E-01 1.02E-03 3.35E-04
12 0.7465 0.3585 2.676E-01 7.47E-01 9.38E-04 3.36E-04
13 0.7385 0.3873 2.860E-01 7.40E-01 1.61E-03 6.22E-04
14 0.7280 0.4137 3.012E-01 7.27E-01 7.01E-04 2.90E-04
15 0.7065 0.4373 3.090E-01 7.07E-01 2.47E-04 1.08E-04
16 0.6755 0.4590 3.101E-01 6.75E-01 4.87E-04 2.23E-04
17 0.6320 0.4784 3.023E-01 6.31E-01 1.40E-03 6.71E-04
18 0.5730 0.4960 2.842E-01 5.72E-01 1.13E-03 5.61E-04
19 0.4990 0.5119 2.554E-01 4.99E-01 4.17E-04 2.14E-04
20 0.4130 0.5265 2.174E-01 4.14E-01 5.80E-04 3.05E-04
21 0.3165 0.5398 1.708E-01 3.17E-01 9.40E-04 5.07E-04
22 0.2120 0.5521 1.170E-01 2.12E-01 3.90E-04 2.15E-04
23 0.1035 0.5633 5.830E-02 1.03E-01 5.20E-04 2.93E-04
24 −0.0100 0.5736 −5.736E-03 −9.12E-03 8.82E-04 5.06E-04
25 −0.1230 0.5833 −7.175E-02 −1.24E-01 1.48E-03 8.64E-04
26 −0.2100 0.5900 −1.239E-01 −2.10E-01 4.75E-04 2.80E-04

At the same time, using FLAS to seek SDM related Parameters, Table 23 shows the
comparison results of five parameter values obtained using eight other MAs such as FLA,
DMOA [69], IPSO [71], IGWO, ISSA [72], CSA [73], SCHO [74], and TSA to estimate SDM
and RMSE. The RMSE value of FLAS is 1.09E-03. In summary, FLAS can find the solution
faster, and the optimal solution is more accurate and stable. The results show that FLAS
improves the output efficiency of the model.

Table 23. Comparison of different algorithms on SDM.

Algorithm FLAS FLA DMOA IGWO ISSA CSA SCHO BWO TSA

Iph 0.760689 0.760385 0.760556 0.750763 0.760528 0.760608 0.760424 0.762818 0.762663
Io 0.505267 0.323282 0.437245 0.739541 0.239303 0.310693 0.540756 0.454039 0.405659

Rsh 66.009368 67.473579 60.407287 58.065965 52.288364 52.889838 73.901078 38.757679 67.221903
Rs 0.034357 0.037441 0.034849 0.030098 0.037780 0.031066 0.033881 0.037427 0.036881
n 1.527676 1.481111 1.512398 1.571048 1.451453 1.604563 1.534808 1.518459 1.504539

RMSE 1.096E-03 1.396E-03 1.871E-03 1.625E-03 3.852E-03 2.051E-03 1.242E-03 5.030E-03 2.455E-03

7. Conclusions and Future Prospects

This paper proposes a multi-strategy augmented Fick’s law optimization algorithm to
improve performance in facing high-dimensional and high-complexity problems, which
combines the differential mutation strategy, Gaussian local mutation strategy, interweaving-
based comprehensive learning strategy, and seagull update strategy. First, in the DO
phase, FLAS improves the search diversity by adding differential and Gaussian local
variation strategies, which further improves the aggregation efficiency and exploration
capability in later iterations. In addition, the improved algorithm can effectively enhance
search capability and stochasticity by introducing an integrated cross-based comprehensive
learning strategy in the EO phase. Secondly, by introducing the Levy flight strategy in
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the position update, the Levy distribution can be effectively utilized to generate random
steps to improve the search space’s overall randomization ability. Further, influenced by
the idea of a seagull algorithm, FLAS introduces a migration strategy in the SSO stage to
avoid the transition aggregation of molecules effectively. FLAS compares and analyzes
other excellent improved algorithms, and the latest search algorithms on 23 benchmark
functions and CEC2020. The results show that FLAS provides dominant results, especially
when dealing with multimodal test functions. However, there is still room for further
improvement in the ability of FLAS to face unimodal functions. In addition, the FLAS
proposed in this paper is applied to seven real-world engineering optimization problems.
The results show that the proposed algorithm has advantages in terms of computational
power and convergence accuracy. Finally, FLAS is applied to the parameter estimation of
solar PV models, and the experimental results demonstrate the applicability and potential
of the proposed algorithm in engineering applications.

In future work, we will consider adding strategies at the initial population phase,
such as Tent, Cubic chaos mapping, etc., and further improve the optimization capability
of algorithm through different adaptive selection parameter values or combining them
with other strategies. Enhanced optimized performance through more diverse test sets
more challenging engineering applications for detailed testing. In addition, image feature
selection [75,76], multi-objective problems [77], image segmentation [78,79], path plan-
ning [80–82], truss topology optimization [83], and shape optimization [84] can all be
experimentally solved with FLAS.
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