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Abstract: Here, the single-target parameterization of alternatives to leading-edge noise is carried out
using analytical models based on the Wiener–Hopf technique. Four leading-edge serration profiles
with different frequencies, amplitudes, and phases are implemented to aid the understanding of
sound suppression mechanisms. The effects of the serrated shape factor, wavelength, and amplitude
are analyzed at tip-to-root ratios of 0.5, 1, and 2, respectively. An effective double-wavelength
sinusoidal serration design can substantially reduce the noise emissions of 5.2 dB at h = 2. Additionally,
compared to single-wavelength serrations, an additional 1.47 dB noise reduction effect can be obtained
by double-wavelength serrations under the appropriate design parameters. The surface pressure and
phase distribution of different spanwise-varying leading edges indicate that the phase interference
effect affected by source-radiated noise reduction is enhanced by this serration at the hills for
serrations with a small curvature, and noise emission in the low-frequency band is more effectively
suppressed. The sharper the serration is, the more conducive it is to a reduction in high-frequency
noise. Nevertheless, the effectiveness of serrations is usually partially limited by the non-negligible
trailing-edge self-noise. The sound source intensity of the root is decreased by the ogee-shaped
serrations with a large curvature transition. A secondary noise reduction mechanism with a local
source cut-off effect caused by nonlinearity is demonstrated.

Keywords: aerodynamic noise; serration structure; the leading edge of the airfoil; noise suppression;
numerical prediction

1. Introduction

Organisms have developed unique characteristics throughout billions of years of
evolution to adapt to the natural world. With the need for production and the development
of science and technology, human beings gradually realized that the silent flight capacity of
a flying owl is one of the important ways to open up new technologies, which provides a
steady stream of inspiration for researchers. Hersh et al. explored the feasibility of utilizing
leading-edge serrations to suppress aeroacoustics for the first time [1]. Distinguishingly, the
silent flight capability of owls profits from the comb-like features of the leading edge and
trailing edge, as well as downy upper surface features [2]. In recent years, a large number
of studies have also demonstrated the effectiveness of leading-edge serrations in sound
suppression in actual applications [3–8]. This research on leading-edge structures is mostly
based on serrations with a single shape or wavelength, and it is difficult to give full play
to the noise reduction potential of biomimicry. Therefore, this paper aims to explore the
greater noise reduction capacity of biomimetic serration designs, employing a method for
quickly predicting acoustics.

Noise generated by the strong interaction between the unsteady wakes and leading
edge of downstream blades manifests as leading-edge noise in general [9]. This efficient
noise radiation, regarded as the dominant noise source, forms in multi-row rotor systems.
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Moreover, leading-edge noise plays a crucial role in the noise emission of wind turbines
on account of unsteady flow in sophisticated natural incoming flows. Noise, one of the
most important design indicators, has been incorporated into the aerodynamic design of
advanced wind turbines [10]. It is of prime importance in achieving economic benefits
and of practical significance for decreasing the aerodynamic self-noise generated by wind
turbines. Although the study of serrated leading-edge noise reduction has made great
progress in experimental research and numerical simulation, critical noise reduction mech-
anisms that can only be speculated from experimental and numerical results can be more
easily highlighted through analytical solutions. In particular, previous studies [8,11,12]
demonstrate that varying leading-edge serrations in different flow environments exhibit
different acoustic performance. Furthermore, if the scattering acoustic field of an arbitrary
leading-edge geometry is determined, the noise reduction effect can be quickly predicted
by an analytical model over a corresponding flow parameter range without repeating
experiments or numerical simulation. Therefore, this analytical solution is equivalent to
providing an effective theoretical method for quickly predicting the noise reduction ability
of different leading-edge serrations in the corresponding flow state.

Flat plates have important theoretical reference value in studying acoustic mech-
anisms [13]. As an early representative study, Amiet [14] utilized the procedure of
Schwarzschild and Landahl to obtain a closed-form approximate solution for the pressure
and lift of the airfoil with the characteristic of a flat plate and infinite span. The far-field
acoustic performance was confirmed to be related to the wave number spectral density
of the vertical velocity fluctuations. In addition, if the wave number spectral density is
extraordinarily precise, it is supposed to accurately predict the precise far field by Amiet’s
theory and show good agreement with experiments [9]. To predict the noise emitted by
airfoils with leading-edge serrations in a subsonic turbulent stream, Lyu et al. [15] expanded
Amiet’s theoretical model and applied it to an airfoil with a serrated leading edge. Fourier
expansions and Schwarzschild techniques were adopted to develop an analytical model.
The purpose was to solve a set of coupled differential equations iteratively. Moreover,
the far-field sound power spectral density was established by the statistics of incoming
turbulent velocity. In light of this model, the destructive interference of scattered pressure
is considered as the primary noise reduction mechanism. Recently, Huang et al. [16] pro-
posed a theoretical model for exploring the scattering of sound waves generated from an
arbitrary but periodical serrated flat edge in a uniform flow. Fourier series expansions
and the Wiener–Hopf method were incorporated in this method to find the analytical
solution. It was concluded that the cut-off of the scattered frequency caused the noise
reduction. However, the complex details are hidden by the Fourier series expansions, as
well as numerical Wiener–Hopf factorization. Since it is difficult to distinguish the final
solution and determine when and where each term comes from, it has become a struggle to
find a more essential noise reduction mechanism.

Additionally, in a preliminary study by Envia [17], alluding to the problem of an
isolated finite-span swept airfoil interaction with convective gusts, Fourier transform
methods and the Wiener–Hopf technique were employed to calculate an approximate
solution. This was conducive to obtaining a closed-form expression of the acoustic far
field and performing a parameter study. Subsequently, inspired by this research, a more
concise analytical solution proposed by Ayton and Kim in 2018 promotes understanding
of the noise reduction mechanism [18]. Taking analytical solutions corresponding to the
Wiener–Hopf technique into consideration, the control equations and boundary conditions
are converted through a series of variable transformations. As a result, any numerical steps
during the solving of the far-field are avoided. The analytical model gives an insight into
the aeroacoustics involved. This mathematical model is conducive to providing a research
direction on aerodynamic noise mitigation for efficient design criteria for serrations.

Recent studies have shown that the optimization of different shapes of serrations
have considerable potential for reducing aerodynamic noise. Lyu et al. [9] proposed
that sharper serrations can acquire greater noise reduction levels in the high-frequency
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region. Compared with traditional serrations, an additional 7 dB noise reduction effect
is achieved in the intermediate-frequency range, while there is no significant increase in
the noise spectrum in other frequency bands. Wang et al. designed airfoils with serrated
leading edges with different bionic elements. The iron-shaped leading-edge serrations
were found to play a significant role in reducing leading-edge noise, with an additional
3.44 dB noise reduction compared with traditional serration [10]. Chaitanya et al. [19]
proposed that double-wavelength serrations composed of the superposition of frequency
components of different frequencies, amplitudes, and phases are sufficiently effective for
specific frequency bands compared with single-wavelength serrations. For accommodating
the intricate situations of practical applications, the double-wavelength characteristics and
optimal noise reduction level of different serrations deserve further research to elucidate
the broader noise reduction mechanisms.

Mathews’s work [20] in 2015 revealed that the optimum level of serrations is difficult
to predict. We cannot acquire a type of serration that is sufficient to reduce noise under
all parameters of any eddy current. The ideal state would be to achieve adaptive noise
reduction in arbitrary incoming flows through varying serrations, which may be feasible in
the future, but it is undoubtedly full of challenges for the time being. Enlightened by the
above research, theoretical noise reduction research on double-wavelength serrations is
conducted on account of the considerable noise reduction potential. This paper adopts the
noise reduction theory of source control and radiation control of an analytical model as the
starting point. Simultaneously, the effect of trailing-edge self-noise on high frequency is also
taken into account. It is expected that this fundamental research can serve as an essential
guide for clarifying how these serrations change acoustic performance and developing
more acoustically effective serrations.

2. Analytical Formulation

The analytical method in this paper was proposed by Ayton and Chaitanya [21]. In this
method, the linear inviscid equation is solved by the technique of the separation of variables
and the Wiener–Hopf method. By integrating the solution of a single-frequency gust, the
acoustic results of isotropic turbulence based on the single-value periodic spanwise-varying
leading edge are obtained. The theory has been verified in relevant experiments [9]. It
is worth noting that this method is highly effective in terms of saving calculation costs
and exploring more essential noise reduction mechanisms. Once the flow parameters of
any leading-edge geometry have been determined, repeated experiments and numerical
simulation can be avoided to quickly obtain low-noise leading-edge shapes.

As illustrated in Figure 1, a semi-infinite plate placed in a uniform incoming flow at
a 0

◦
attack angle is assumed to be the serrated airfoil, where x and y are the streamwise

and spanwise directions, respectively. The z axis is parallel to the direction perpendicular
to the airfoil plane [9,22]. Simultaneously, the serrated airfoils are supposed to be zero-
thickness flat plates. Apart from that, the analytical model in this paper also requires
meeting the subsequent conditions: (1) The gust is considered a two-dimensional spectrum
woei(−ωt+k1x+k2y). The involved parameter wo is the gust amplitude of the upstream velocity,
and t denotes the time. k1 and k2 represent the wave numbers in the streamwise and
spanwise directions, respectively. (2) Taylor’s frozen hypothesis is considered in the
incoming boundary layer. That is, the turbulence in the boundary layer is assumed to be
frozen. (3) The investigated airfoil is periodic in the spanwise direction. The spanwise
correlation length of the boundary layer turbulence is deemed to be much less than the
wingspan [23].

Vertical velocity fluctuation is of great concern when the scattered potential mean flow
is induced. This is closely related to the noise emission generated by the leading edge.
Any continuous periodic leading-edge geometry F(y) with piecewise linear approximation
characteristics is a single-valued linear function with a maximum value of 1 and a minimum
value of −1. The geometric dimension is uniformly normalized by the wavelength of the
serration. The spanwise serration is restricted to the smallest normalized period 1, owing
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to the fact that F(y) is periodic. As a consequence, the spanwise region is limited to the
range of 0 ≤ z ≤ 1. The coordinate origin is distributed in the middle of the amplitude of
serrations. The root-to-tip length is defined as h and the geometric profile is modeled as
hF(y). The calculation procedures in light of the acoustic scattering prediction are derived
from the following equations. The tip-to-root length of the serration is normalized by the
wavelength and expressed as h.
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The Fourier transform is performed in the convective Helmholtz equation. Afterward,
the Wiener–Hopf equation and non-orthogonal coordinate system transformation based on
the above equation are combined for variable separation; then, the analytical solution is
obtained. More detailed derivation processes can be found in reference [21]. The far-field
sound power spectral density ψ at a specific monitoring position at a given frequency ω is
given by the following:

ψ ≈ 1
π

cos2 θ

2

∫ +∞

−∞

∣∣∣∣∣∣∑∞
n=−∞

k1
β2 − wncosθ

k1 − wncosθ

1√
k1 + wn

eiwnr
√

r
eiχnyEn(−wncosθ)

∣∣∣∣∣∣
2

Φ(∞)(k1, k2)dk2. (1)

where β2 = 1− M2; k = ω/co; k1 = k/M; k = k/β; k1 = k1/co; w2
n = (δM)2 −χ2

n, χn =±k2
+ 2nπ; δ = k1/β. M is the Mach number and co refers to the local sound velocity.

The radiation integral equation En associated with shape function F(η) is defined by

En(−wncosθ) =
∫ 1

0
ei(k1−wncosθ)ΘF(η)e−i2nπηdη. (2)

where Θ = h/β.
In Equation (1), ϕ(∞)(k1, k2) denotes the energy spectrum (Liepmann spectrum) of the

upstream vertical fluctuation [24]. It is defined by

Φ(∞)(k1, k2) =
3u∗2Λ∗2

4π

Λ2(k2
1 + k2

2
)

(
1 + Λ2

(
k2

1 + k2
2
)) 5

2
, (3)

where Λ is the turbulence integral length scale and Λ∗ is the turbulence integral length
scale nondimensionalized by the wavelength. Here, Λ was set as 7.5 mm and the turbulent
intensity u∗ was defined as 2.5%. p∗ represents dimensional pressure, which is defined as
ρ∗◦ U∗2 p(r, θ, z). ρ∗◦ is the airflow density (1.225 kg·m−3).

3. Comparison with Experiments

To verify the validity of this analytical model, the mathematical analytical results were
compared with the experimental results [21]. In the experiment, flat plates were established
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to reduce manufacturing costs. The mean chord measuring 150 mm and span measuring
450 mm were taken to complete the parameter setting of the flat-plate airfoils. Also, the
flat plates were composed of 1 mm thick metallic sheets superimposed with 2 mm thick
serrated flat plates embedded in the middle. Serrations with tip-to-root ratios h of 1, 2, and
4 were implemented to analyze the acoustic sensitivity of the sound source in this study.
More details of the experimental equipment are elaborated in Ref. [25]. The dimensions
concerning the open jet test facility in an anechoic chamber were 8 m × 8 m × 8 m. The
airflow was provided by a centrifugal fan installed on the ceiling of the anechoic chamber
and driven by a variable-speed motor. Moreover, to generate a quiet, uniform, and low-
turbulence flow, a number of grids and honeycomb structures located in the silencing
channel were set up. Moreover, the microphones of the sound source were distributed at
the position on the circular arc with a radius of 1.2 m, away from the leading edge of the
airfoil. The array of these receiving points was covered over the angle range relative to the
downstream jet axis of 40◦ to 140◦. The sampling frequency was 50 KHz and the window
size was 1024 data points. Hence, the corresponding frequency resolution was 48.83 Hz.
Here, the velocity spectrum with a mean flow velocity was extracted and compared with
the analytical velocity spectrum at the corresponding flow rate.

The one-dimensional streamwise velocity spectrum was estimated by the von Kármán
spectrum in Equations (4) and (5). Apart from that, the Liepmann spectrum illustrated
in Equation (6) is also discussed here. The isotropic turbulence assumption was adopted
here. And the homogeneous turbulence spectrum model as S11(k1) = ϕ11(k1)/U1 was
estimated by Taylor’s hypothesis [26]. Notably, division by mean velocity (U1 = 60 m/s)
is necessary to ensure that S11(k1) integrates into the mean square velocity fluctuation.
Figure 2 compares the streamwise velocity spectrum produced by boundary layer turbu-
lence estimated by the Liepmann and von Kármán spectra, respectively. Except for some
nonessential discrepancies in the mid-frequency region, the estimates of both spectra show
good consistency with the velocity spectrum measured in the experiment. The Liepmann
spectrum, more fitting for this experiment, was employed in this paper.

ϕ11(k1) =
1√
π

Γ(5/6)
Γ(1/3)

u2

ke

1[
1 + (k1/ke)

2
]5/6 , (4)

ke =

√
π

Λ
Γ(5/6)
Γ(1/3)

, (5)

´ϕ11(k1) =
u2Λ

π

1

1 + (k1Λ)2 . (6)

On account of ignoring the trailing-edge self-noise, Lyu’s analytical model [22] differs
greatly from the experimental results at the high-frequency band, especially for serrations
with a considerable tip-to-root ratio. However, the effect of self-noise emitted by the trailing
edge is inevitable in the experimental setup. Narayanan et al. [26] mentioned that trailing-
edge self-noise plays a more dominant role over leading-edge self-noise in some specific
frequency ranges. The acoustic performance of leading-edge serrations has declined to
some extent due to the emergence of trailing-edge self-noise. Afterward, Ayton’s study
took into account the contribution of trailing-edge self-noise, meaning that the results of
the analytical model are in good agreement with the experiment. Since the influence range
of self-noise is within the frequency band in question, the effect of trailing-edge self-noise
must be considered when performing the acoustic evaluation.

The sound pressure level contributed by the trailing-edge self-noise SPLTE is acquired
by the method of Brooks, Pope, and Marcolini [27]. The fundamental theory established
by Amiet does not serve as a very practical prediction tool in evaluating the relationship
between the trailing edge and the boundary layer pressure fluctuations. Based on that,
Brooks, Pope, and Marcolini (BPM) measured the self-noise of airfoils over a range of
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conditions. Furthermore, some empirical correlations with the measurement data were
established. The BPM method has been the primary choice for baseline comparison for
some sophisticated noise prediction schemes since it was proposed. It is worthwhile to
note that the measured sound spectrum of the BPM method is derived from Amiet and
Ffowcs-Williams and Hall [28]. Then, the normalized spectral forms and correlations of
boundary layer scaling variables can be obtained precisely under a specified condition.
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The total TBL-TE (turbulent boundary layer–trailing edge) is defined as

SPLTE = 10log
(

10
SPLα

10 + 10
SPLs

10 + 10
SPLp

10

)
. (7)

where SPLp and SPLs denote the noise spectral functions caused by the pressure and
suction side, respectively. SPLα denotes the angle-dependent noise spectral functions. The
definitions of them are as follows:

SPLp = 10log

(
δ∗p M5LDh

r2
e

)
+ A

(
Stp

St1

)
+ (K1 − 3) + ∆K1, (8)

SPLs = 10log
(

δ∗s M5LDh
r2

e

)
+ A

(
Sts

St1

)
+ (K1 − 3), (9)

SPLα = 10log
(

δ∗s M5LDh
r2

e

)
+ B

(
Sts

St2

)
+ K2. (10)

The Strouhal definitions of Stp and Sts are

Stp =
f δ∗p
U

, Sts =
f δ∗s
U

, (11)

St1 = 0.02M−0.6, (12)

St2 = St1 ×


1

(
α∗ < 1.33

◦)
100.0054(α∗−1.33)2(

1.33
◦
< α∗ < 12.5

◦)
.

4.72
(
α∗ > 12.5

◦) (13)

where α∗ is the attack angle. δ∗p, δ∗s , and δ∗α are the boundary layer displacement thicknesses
caused by the pressure side, the suction side, and the angle of attack, respectively; L is the
span length (L = 450 mm); and Dh is the directivity function. More details on the definition
of related parameters are elaborated in Ref. [27].

The sound pressure level is described as
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SPL = 10log10

(∫ ∞

−∞

∣∣p*
∣∣2ϕ(∞)(k1, k2)dk2

p2
re f

)
+ SPLTE, (14)

where pre f = 2 × 10−5 Pa.
We considered the most sensitive range of human hearing: 0~10,000 Hz. The Kutta

condition is that the airflow on the upper and lower surfaces of the airfoil gathers at the
trailing edge of the airfoil, and then generates velocity circulation to provide lift for the
airfoil. However, this theory is based on a semi-infinite flat plate, so the Kutta condition
cannot be applied here. Therefore, the Kutta condition affected by the Coanda effect is not
considered in this analytic model, which impacts noise prediction within the frequency
range of f ≲ 500 Hz [21]. Accordingly, the frequency range of 500 Hz to 10,000 Hz was
taken for comparison between analytical solutions and experiments. It should be noted
that there is an obvious contrast between the analytical solution in the low-frequency range
and the experimental result. Previous studies [22,26] have shown that low-frequency noise
measured in the far field is dominated by jet noise, so noise prediction in the low-frequency
region was not our focus. Moreover, the analytical model is in good agreement with the
experimental results when the frequency f is greater than 2000 Hz.

Both the predicted and experimental measurements exhibited similar oscillation be-
havior. Filtering was performed to more clearly compare the noise reduction performance
of each serration. However, in the evaluation of the overall sound pressure level (OASPL),
broadband noise, and the directionality of different azimuths, the data before the filtering
were adopted to capture more local details of the sound pressure spectrum. The BPM model
was verified by a standard NACA0012 airfoil under a mean flow state. The trailing-edge
noise spectrum for a tripped NACA0012 at an angle of attack of zero evaluated by the BPM
model is depicted in Figure 3. The key parameters are listed as follows. This experiment
was performed at a flow speed of 55.5 m/s, a chord length of 0.23 m, and a span of 1.22 m.
The observation angle was located 3 m above the mid-span of the trailing edge. With
these key parameters, we can estimate the trailing-edge noise of model 2 (NACA0012
airfoil) at the corresponding operation condition. Except for the lower-frequency band,
the sound pressure level of the higher-frequency band shows good consistency with the
experimental results measured by Devenport et al. [29]. The effectiveness of the BPM
model was confirmed. Furthermore, the trailing-edge noise of the investigated subject
corresponding to model 1 (flat plate) in this study is also exhibited in Figure 4. Similar to
model 2, the analytical results and Ayton’s experiment are in good agreement for the SPL
distribution in the frequency band over 2000 Hz. As described in Figures 4–6, when the
trailing-edge self-noise is incorporated in the overall sound pressure level, taking Ayton’s
analytical model as a reference, it can be seen that the analytical models of smooth airfoils
and serrated airfoils have a high degree of coincidence with the experiment in the medium-
and high-frequency regions.
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4. Acoustic Performance of Single-Wavelength Serrations

For the sake of clarifying the noise reduction mechanism and noise reduction effect of
diverse serrations as clearly as possible, eight kinds of serrations, as exhibited in Figure 7,
were initially picked to evaluate the sound pressure level in this paper. Each representative
serration has various laws of curvature variation within the interval of each segment
function. The mathematical expression related to LE 1–3 (leading-edge serrations 1–3) is
described in Equation (16), where the b-values of LE 1, LE 2, and LE 3 are close to 0, 1.4π,
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and 1.8π, respectively. Similarly, the shape of LE 4–5 is controlled by Equation (17), where
the b-values of LE 4 and LE 5 are 4 and 3.5, respectively. Relatedly, when the b value of LE 1
is close to 0, it represents the traditional trailing-edge serrations, and the remaining four
b-values of LE 2–5 represent ogee-shaped serrations with different curvatures, respectively.
The sinusoidal serrations depicted as LE 5 are modeled as Equation (18). Moreover, the
iron-shaped serrations represented by LE 7–8 are expressed as Equation (19), where the
b-values of LE 7 and LE 8 are 1.4π and π, respectively. What is noteworthy is that different
b-values control the sharpness of different curvature shapes.
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The 10log10|En|2 distributions for the 0-order and 2-order modes of eight kinds of
serrations are shown in Figures 8 and 9. In general, not all modes contributed equally to
the response, and higher-order modes had less effect on low frequencies. Therefore, modal
truncation was performed, and higher-order modes were discarded. In this way, the matrix
orders of the frequency response function were greatly reduced, which greatly reduced
the workload. Concerning this serrated model, only the finite-order modes need to be
considered, which is related to the degree of freedom of the system. In this system, the 0th-
order mode is dominant, which is related to the degrees of freedom of this system. Overall,
as the modal order increases,

∣∣∣En
2
∣∣∣ in the low-frequency region is dissipated partially, and

the difference between different serrations moves toward the high-frequency region.
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On the basis of the experimental results, the finite modal numbers corresponding to
the studied serrations with different root-to-tip ratios were obtained, as well as the SPL
distribution in Figures 10–12. It is worth noting that the LE 2, LE 4, and LE 5 with ogee
shapes performed well at h = 2 in sound suppression. Thus, the serrations in Figures 13
and 14 based on the tan and arcsine functions were carefully studied as two representatives.
LE a1–a7 based on different b-values (b = 0, π, 1.4π, 1.6π, 1.7π, 1.8π, 1.9π) in Equation (16)
and LE b1–b7 based on different b-values (a = 0, 2, 3, 3.5, 3.9, 3.95, 4) in Equation (17)
were investigated in detail. As shown in Figures 15 and 16, the overall SPL distribution of
different b-value arcsine functions performs better than tan functions based on different
b-values. This is related to the characteristics of the arcsine function, placing the b-values
in the range of more effective noise reduction.
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5. Acoustic Sensitivity of Double-Wavelength Serrations

The double-wavelength serrations proposed by Chaitanya et al. [19] are arranged in a
manner in which adjacent roots are separated in the flow direction. In addition, the adjacent
root distance is required to be close enough to the turbulence integral length scale. This
double-wavelength serrated design based on phase interference provides inspiration for
noise mitigation. Nevertheless, the noise reduction capabilities and influence mechanism
of double-wavelength serrations composed of different amplitudes and shapes are still
unclear, which is worth investigating further.

Four representative geometries of serrated, ogee-shaped, sinusoidal, and iron-shaped
serrations with different curvatures were employed to explore the aeroacoustics of double-
wavelength serrations. The parameter settings for the double-wavelength serrations are
depicted in Figure 17. A comprehensive trial design of five factors and four levels was
performed, as shown in Table 1. Taking serrations of h = 1 as an example, the wavelengths
of the double-wavelength serrations were all fixed at 25 mm. All length dimensions were
normalized by wavelength. If one of the wavelengths of the double-wavelength serrations
was determined, the other was also determined. After controlling partial variables, a
comprehensive trial design of two factors (B, C) and four levels was formed when factor A
remained stable, as demonstrated in Table 2.

Table 3, related to the trial results, summarizes the ranges of impact factors for different
serrations. Rh=0.5, Rh=1, and Rh=2 denote the range of three factors corresponding to shape
factor A, wavelength B, and amplitude C. Aiming at h = 2, it was concluded that A was
the factor of maximal impact and B was the factor of minimal impact. This implies that the
variation in shape factor had the greatest influence on the sound pressure level at h = 2,
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followed by the amplitude, and the wavelength had the least influence on it. Similarly, the
order conclusions of the factors’ sensitivity to other operation conditions were also derived.
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Table 1. Trial design of different levels and factors.

Parameters Shape λ2 h2 λ1 h1

Factors A B C D E

Level 1 Serrated 0.2 0.2 0.8 1
Level 2 Ogee 0.4 0.5 0.6 1
Level 3 Sinusoidal 0.6 0.8 0.4 1
Level 4 Iron-shaped 0.8 1 0.2 1

Table 2. The calculation results based on the trial design regarding h = 1.

Trial
Number

Code
Name λ2 h2 SPL (dB) SPL1 SPL2 SPLCA Results

1 A1B1C1 0.2 0.2 81.3600 −0.3541 −2.3381 −1.3461 I1
2 A1B1C2 0.2 0.5 81.2934 −0.4207 −1.2235 0.8221 I2
3 A1B1C3 0.2 0.8 81.2534 −0.4607 0.0759 0.1924 I3
4 A1B1C4 0.2 1 81.2595 −0.4546 0.9309 0.2382 I4
5 A1B2C1 0.4 0.2 81.5507 0.7586 −2.2048 0.7231 I5
6 A1B2C2 0.4 0.5 81.2268 0.4347 −1.4466 0.5060 I6
7 A1B2C3 0.4 0.8 80.7423 −0.0498 −0.5733 −0.3116 I7
8 A1B2C4 0.4 1 80.4740 −0.3181 −0.0542 −0.1862 I8
9 A1B3C1 0.6 0.2 82.3493 1 8211 −1.4556 0.1828 I9

10 A1B3C2 0.6 0.5 81.9631 1.4349 −0.9077 0.2636 I10
11 A1B3C3 0.6 0.8 81.0968 0.5686 −0.4463 0.0612 I11
12 A1B3C4 0.6 1 80.4483 −0.0799 −0.3438 −0.2119 I12
13 A1B4C1 0.8 0.2 83.1816 2.8530 −0.7657 1.0437 I13
14 A1B4C2 0.8 0.5 82.8609 2 5323 −0.2522 1.1401 I14
15 A1B4C3 0.8 0.8 81.9630 1.6344 −0.1386 0.7479 I15
16 A1B4C4 0.8 1 81.1964 0.8678 −0.5177 0.1751 I16
17 original — — 84.0530 — — — —

Table 3. The multivariate analysis of the different types of serrations regarding h = 0.5, 1 and 2.

Factors A B C

Rh=05 0.809 0.342 0.171
Rh=1 3.092 1.096 1.027
Rh=2 4.301 1.481 1.627
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Table 3. Cont.

Factors A B C

Order of the factors (h = 0.5) A > B > C
Order of the factors (h =1) A > B > C
Order of the factors (h =2) A > C > B

KBi =
1
4

(
n=4

∑
n=1

In+4(i−1)

)
. (19)

Kci =
1
4

(
n=i+3

∑
n=i

Ii+4(n−i)

)
. (20)

Rh=1 = max
(
Kij
)
− min

(
Kij
)
, (21)

where Kij represents the arithmetic average value of all indicators of the factor i at the level
of j. And KCi is the arithmetic mean of all indicators for the factor C at the level i. Rh=1
denotes the range of all calculated results of the factor i at the level j in the case of h = 1.

Affected by a complicated phase-interference mechanism, not every trial result of
double-wavelength serration is superior to the single wavelength serration. So, we propose
a comprehensive assessment index (SPLCA), which is defined as follows:

SPLCA =
log0.5 ((n ◦ + 0.5)/n)

n
∣∣log0.5 ((n ◦ + 0.5)/n)

∣∣ n

∑
i=1

∣∣SPL − SPLλi

∣∣, n ≥ 2,no ≥ 1. (22)

Taking h = 1 as an example, SPLλi is the sound pressure level at the wavelength of
λi (i = 1, 2) and the amplitude of h = 1. no denotes the number of negative values that
occurred for SPL − SPLλi . n is the type of investigated wavelength contained in a period.
Moreover, a negative value of SPLCA indicates that the noise reduction capacity of the
double-wavelength serrations is superior to any of the involved single wavelengths of λi.

The shape factor, wavelength, and amplitude are the dominant factors affecting the
sound pressure level, respectively. For different serrations, the effects of amplitude and
wavelength exhibit different laws under the influence of different root-to-tip ratios. The
shape factor always dominates regardless of the change in the h-value. In short, the
optimization of the shape function has considerable potential for the suppression of the
overall sound pressure level. The influence of amplitude on the overall sound pressure
level gradually enhances with the increase in h. The variable f, related to the geometric
shape, is introduced here. The variable f is employed to evaluate the effect of different
geometric shapes on aerodynamic noise, which is defined as follows:

f = A − A◦ =
∫ 1

0
F(η)dη −

∫ 1

0
F◦(η)dη, (23)

where A◦ represents the areas enclosed by traditional serrations and the horizontal axis, and
A is the area surrounded by random serrations and the horizontal axis. And, presumably,
if f > 0, it implies that the noise reduction in the low-frequency region is better than the
noise reduction effect in the high-frequency region, and if f < 0, the results obtained are
simply the opposite.

The serration profiles of double-wavelength serrations with minimum test values are
shown in Figures 18–20. LE1–LE4 denote the serrated, ogee-shaped, sinusoidal, and iron-
shaped serrations, respectively. The OASPLs related to different LE serrations are exhibited
in Figures 21–26. Similar to Figures 10–12, smaller sound pressure levels can be achieved
at a larger tip-to-root ratio. That is to say, sharper serrations are more likely to suppress
aerodynamic noise, which is consistent with the conclusions reached by early researchers [9].
When the amplitude corresponding to λ2 is close to the fixed amplitude h1, the noise
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reduction effect of double-wavelength serration is excellent, which is more conducive to
the serrated geometry exacerbating the mutual destructive interference between nonlinear
sound sources. When h1 = 0.5, there is no significant difference in the advantage of each
serration relative to the double-wavelength sawtooth, and the SPLCA values are almost
close to zero, indicating that under this operating condition, the noise reduction ability
of the double-wavelength sawtooth is no greater than single-wavelength serrations. As h
increases, the advantages of double-wavelength serrations gradually emerge. It is worth
noting that when h = 2, the sinusoidal double-wavelength serrations have the advantage
of an additional SPLCA = 2.4 dB over other types of serrated structures. Additionally, the
noise reduction superiority of double-wavelength serrations is extremely sensitive to the
wavelength λ2. In brief, there is enough additional noise reduction potential with the
appropriate double wavelength setting.
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6. Results and Discussion

6.1. The Behavior of the Functions |En|2

The radiation integral |En|2 related to the frequency and modal order play a significant
role in qualitatively judging the acoustic energy radiation of a serrated structure. The
distributions of the radiation integral |En|2 related to the smooth leading edge and double-
wavelength serrations are exhibited in Figures 27 and 28. For the smooth leading edge, it is
clear that only the mode N = 0 takes effect in acoustic propagation. For double-wavelength
serrations, the modal order gradually increases as the frequency increases. The modal
amplitude decreases and the modal distribution is wider. In addition, all investigated
serrations are dominated by the distribution of radiative integrals |En|2 in modes of −10 to
10 orders.

Regarding sinusoidal serrations, modal scattering, whether in the low-frequency or
high-frequency stages, possesses a small radiation integral. Simultaneously, compared
to other serrations, the frequency-dependent modal scattering of sinusoidal serrations
decays more rapidly at h = 2. In combination with the OASPL, the sinusoidal function is
the best shape for overall noise reduction among the several types of serrations studied.
Howe [30] mentions that ∂F(η)/∂η > 1 is necessary for effective serrations. The region
of ogee-shaped serrations with lower derivative ∂F(η)/∂η is smaller than other serrated
airfoils, so it performs worst in the overall radiation integral, with the smallest degree
of modal scattering. Due to the strong penetration of the lower-frequency region noise,
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scattering attenuation slowing down is more harmful to the human body, and secondly,
the sound pressure level of the middle and low frequencies is the key to affecting the total
sound pressure level. Therefore, more attention is paid to the distribution of radiation
integrals in the dominant mode.
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6.2. Sound Pressure Level (SPL)

When evaluating the sound pressure spectrum for a given k1, |k3| < |k1| must be
ensured. On the one hand, this is in order to match the turbulence generated in the
experiment, and on the other hand, it is to ensure a finite acoustic wave assumption in the
spanwise direction regarding a streamwise semi-infinite flat plate. The analytical far-field
acoustic spectra are depicted in the case of M = 0.17, θ = 90

◦
and r = 10. The analytical

SPL spectrum of the smooth leading-edge serrations is solved by c = 0.001. Additionally,
the analytical noise reduction levels of the representative double-wavelength serrations
generated by the above trials are plotted in Figures 29 and 30 under the condition of
h = 2, respectively. Serrations play an important role in suppressing low- and intermediate-
frequency noise. A noise reduction level of 14 dB at the specific frequency can be achieved.
The noise reduction level shows a tendency to increase first and decrease later over the
entire frequency band, showing good agreement with the laws of data obtained by Lyu [22].
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6.3. Sound Pressure Level Integrated with Different Frequency Bands

According to the classification principle of the low-frequency, intermediate-frequency,
and high-frequency bands, the frequency bands were divided into three representative
frequency bands. The OASPLs integrated with different frequency bands are described in
Figure 31. On the whole, a positive contribution induced by the leading-edge serrations is
conducive to decreasing the OASPL to varying degrees, manifesting in the intermediate
frequency band. Significantly, the intermediate-frequency bands are dominant in the
OASPL, which corresponds to the frequency band with the largest broadband noise. This
means that the reduction in the OASPL is closely related to the reduction in maximum
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broadband noise. In particular, the overall sound pressure reduction level is up to 5.19 dB
in h = 2, and the sound pressure level in the intermediate-frequency band is decreased by
6.71 dB. Except for this, the noise reduction ability of the different serrations is consistent
in the order of noise reduction ability at the same h. This illustrates the similarity of the
noise reduction mechanisms of the serrated structures at different h. The detailed noise
reduction mechanisms are explored in the subsequent section.
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6.4. Surface Pressure and Phase Distributions

The surface pressure is calculated as

ps(x, y, 0+) =
∞

∑
n=−∞

1

2πβ

√
−k1 − wn

∫ ∞

−∞

e−
iλx
β En(λ)√
λ + wn

dλeik2y+2nπiye
− ik1 M2x

β2 . (24)

Single-frequency gusts were selected to simplify the research objective, which mani-
fested in the replacement of a fixed wave number k2 with its integral over the wave number
spectrum. This is conducive to clarifying the oblique-gust effect on surface pressure and
interference and redistribution mechanisms. Surface pressures that act closely with far-
field noise were calculated at x = hF(z). This corresponds to the geometry profile of the
leading-edge serrations. Furthermore, a finite number of modes are summed, restricting
the degree of difficulty of infinite modes to solve.

Kim et al. [12] proposed a noise reduction mechanism for wavy leading edges adopting
numerical simulation methods combined with various statistical analysis methods. The
components of self-noise were eliminated by solving the full three-dimensional Euler
inviscid solution. Unlike a straight leading edge, geometric obliqueness caused by the
wavy leading edge led to the source cut-off effect of surface pressure fluctuations. In
addition, the phase interference effect generated between the peak and hill center of the
serrations contributed to noise reduction in the low- to mid-frequency range. The surface
pressure and phase distribution were employed to further elucidate the two noise reduction
mechanisms in this paper. According to the setting of the coordinate system of the studied
flat plate, the parts of the negative value for F(η) in Figure 1 correspond to the peak of
the serrations. On the contrary, the parts of the positive value denote the trough of the
serrations. Combined with the following pressure distribution exhibited in Figure 32, it can
be concluded that the surface pressure at the trough is greater than that at the peak.

The surface pressures along the wavy leading edge subjected to impinging turbulence
were solved for k3 = 0 at a specific frequency of k1 = 62.83. In general, the absolute values
of the surface pressure decrease gradually with the increase in h. The maximum differential
pressure from 1 to 0.55 achieves different degrees of acoustic energy attenuation. This
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verified that the source cut-off effect had taken effect. Additionally, the distributions of
the absolute surface pressure are closely relevant to the serration profiles. The acoustic
energy is reconstructed from the low propagating modes to higher cut-off modes. Source
correlation is minimized at the serrated roots, resulting in a more significant reduction in
the pressure distribution at the roots than in other locations.
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Figure 32. Surface pressure generating outgoing acoustic waves for double-wavelength serrations at
h = 2.

Similarly, the noise reduction mechanism connected with phase interference is illus-
trated in Figure 33. The phase change at different amplitudes is similar to the geometrical
profile. Moreover, the phase interference difference at the root of the ogee-shaped serration
is in stark contrast to the other three serrations for h = 2, where spike-like depressions
emerge. Therefore, the local phase difference is reduced by an additional maximum of 1.15
for h = 2. Nevertheless, the overall phase interference difference is not significantly weak-
ened. Combined with the surface pressure along the leading edge, the phase difference
between the traditional sawtooth and the sinusoidal serrations at the root is also smaller
than the sinusoidal sawtooth and the iron-shaped serrations, indicating that a larger local
phase difference can restrain the surface pressure of the outgoing sound energy.
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It is speculative to reach a conclusion regarding the noise-reducing serration profiles.
Compared with traditional serrations and ogee-shaped serrations, the sinusoidal serrations
and iron-shaped serrations form a larger inclination angle with the z-axis, and both of them
have convexity-preserving properties. Moreover, the ogee-shaped serrations contribute to
the local phase interference difference. It can be inferred that serrations combined with the
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above two advantages have more advantages in reducing the aeroacoustic noise emitted
by surface pressure. The trade-off between the pressure field formed by the destructive
interference and the variable pressure field between the root and the hill can result in a
more excellent noise abatement effect.

6.5. Directivity Characteristic of OASPL

Judging from the above analysis, it can be deduced that noise at a specific frequency
does not reflect the change law of the overall sound pressure level very well unless enough
frequency bands are taken. So, the broadband noise integrated over different frequency
bands is likely responsible for the aerodynamic noise reduction. Combined with the above
frequency band division basis, the broadband noise in each band was analyzed. To describe
the relationship between the additional noise reduction gain of the double-wavelength
serrations and the observer angles, the SPL directionality mode of the smooth airfoil and
the double-wavelength serrations was compared, as depicted in Figure 34. The directivity
of the sound pressure level was not changed by the leading-edge serrations. It is worth
noting that additional sound suppression of double-wavelength serrations is achieved
at almost all observer angles. For the sinusoidal serration profile of the optimal noise
reduction level at low and medium frequencies, there was some increase in the undesirable
noise in high frequency, but the negative contribution to the reduction in the overall sound
pressure level was negligible. As a consequence, noise reduction for broadband noise in
low-to-intermediate frequencies is critical to diminish the overall sound pressure level.
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7. Conclusions

The noise reduction performance of a double-wavelength serration was analyzed in
this study, and a systematic parameterization study was carried out to determine the match-
ing degree of the optimal wavelength and amplitude for the maximum noise reduction
level. The conclusions obtained are summarized as follows.
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(1) Combined with the function |En| associated with the shape factor, noise reduction at
specific frequencies can be obtained in the low- and intermediate-frequency bands
for serrations with a small curvature at non-smooth points. Moreover, it should
be mentioned that spanwise-varying leading edges coping with a subsonic airflow
interact with sharp serrations, resulting in an increase in additional broadband noise in
the low-frequency regime compared with traditional serrations. And the performance
in the high-frequency region is reversed. However, when the influence of trailing-edge
self-noise is gradually enhanced with the increase in h, the noise reduction advantage
of large-curvature serrations at non-smooth points in the high-frequency region is
weakened to a certain degree. For a single-value piecewise function in the unit
wavelength range of 1 and 1/4 period, one must meet the |∂F(η)/∂η| > 4h condition
in order to design a serration with excellent noise reduction performance at low and
intermediate frequencies, while the opposite represents a good noise reduction level
in the high-frequency region.

(2) Aside from this, the acoustic optimality of double-wavelength serrations of different
frequencies and phases is the key focused discussion. The noise reduction levels
of shape factors, wavelengths, and amplitudes at different tip-to-root ratios are ob-
tained through the design of 16 × 4 trial numbers. It turns out that the shape factor
was dominant at different tip-to-root ratios. The amplitude gradually replaces the
wavelength with the increase in the tip-to-root ratio and transforms into the second
most influential factor. Based on the premise of fixed wavelength and amplitude,
the noise reduction level at x2 = 1 performed best. This indicates that the larger the
amplitude of the superimposed serrations, the more conducive it is to increasing the
phase difference.

(3) Both the sinusoidal function and the iron-shaped function performed well at different
double-wavelength serrations, reducing the overall sound pressure level by up to
5.2 dB. Broadband noise in the 500–5000 Hz band was significantly reduced by
6.7 dB. The root-destructive interference was enhanced by the ogee-shaped serrations,
increasing the local noise reduction effect and suppressing noise emissions in specific
high-frequency regions. In the design of serrations, one can refer to the source cut-off
mechanism of source radiation and introduce sharp structures such as narrow slits at
the root to achieve local noise control, satisfying the design requirement of reducing
high-frequency noise.
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