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Abstract: In recent years, the need for systems capable of achieving the dynamic learning and
information storage efficiency of the biological brain has led to the emergence of neuromorphic
research. In particular, neuromorphic optics was born with the idea of reproducing the functional
and structural properties of the biological brain. In this context, solitonic neuromorphic research has
demonstrated the ability to reproduce dynamic and plastic structures capable of learning and storing
through conformational changes in the network. In this paper, we demonstrate that solitonic neural
networks are capable of mimicking the functional behaviour of biological neural tissue, in terms of
synaptic formation procedures and dynamic reinforcement.

Keywords: artificial intelligence; neuromorphic systems; neuroplasticity; neural networks; learning;
photorefractive solitons; photonic hardware; all-optical systems

1. Introduction

The human brain is a complex computer system, capable of collecting data, processing
them and storing them [1]. Through this succession of operations, the brain learns, i.e., it
knows from experience. Its architecture is perfectly optimized, as it is able to perform a large
number of operations with minimal energy consumption [2]. This is possible because the brain
exploits all the three spatial dimensions to distribute its functionality. In particular, it works
using neurons, elementary units of the neural system, for both the calculation and storage
of information, thus exercising a fundamental dual function of processor and memory. This
means that no time and energy are required to retrieve information, process it and store it [3];
everything happens simultaneously in the same physical location in the brain, and, therefore,
with minimal effort. In contrast, traditional computers exploit Von Neumann’s architecture,
whereby all hardware elements, processors—memories—peripherals, are distinct and distant
entities, physically separate, requiring a great deal of energy and time to communicate with
each other. For these reasons, scientific research has investigated the characteristic geometries
and mechanisms of brain functioning in order to replicate them in advanced computer
systems. This approach is known as the “neuromorphic approach” and refers to the study of
hardware that simulates the typical functioning of neurons and neural networks, i.e., based
on distributed elementary units, capable of simultaneously processing and storing according
to the calculation protocols typical of biological systems.

2. Biological Neurons and Neural Networks

The fundamental units of computation in the nervous system are neurons [1]. A
neuron typically receives information from previous units, processes it, and redistributes it
to the subsequent neurons connected to it. The interconnections between neurons are called
synapses. Not all synapses available to a neuron are active, only those that are functional to
the specific signal processing. The set of active neurons and synapses constitutes the neural
circuit. Neural networks formed in this way are dynamic networks, i.e., they can change in
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structure by activating and deactivating synaptic interconnections. A specific trajectory of
active synapses in the neural network simultaneously identifies a reasoning and a memory;
in fact, a reasoning activates a well-defined set of synaptic interconnections between
neurons and their mapping that, maintained over time, constitutes the memory of the
reasoning, and thus, of the concepts and notions associated with it. In the neural network,
the “strength” of the synaptic connection is of great importance; a strong connection will
remain for a long time while a weak connection will soon fade, just as, in other words, an
important memory will remain for a long time while an unimportant memory will quickly
fade. This complex dynamic of interconnection between activated neurons goes hand
in hand with a relatively basic method of information processing; indeed, each neuron
performs operations as simple as summing up the incoming signals and comparing them
as an high-pass filter. Let us see how. The arrival of a signal releases neurotransmitters
in the region between the two synaptic dendrites of successive neurons (synaptic cavity).
These substances are able to activate and strengthen the interconnection. The strength of
the synaptic interconnection, thus, depends largely on the number of neurotransmitters
that are released into the synaptic cavity and the number of receptors that receive them.
The receptors of the next neuron act as input for signal propagation in the new neuron. As
the number of neurotransmitters and receptors increases, the ability to transmit signals
improves, and thus, the strength of the synaptic connection will also last longer. The
neurotransmitter release dynamics (exocytosis) of pre-synaptic [2] vesicles are triggered by
the arrival of a signal as shown in Figure 1. The Nv vesicles fuse with the cell membrane
and release NT neurotransmitters into the synaptic cavity. After release, the vesicles reform,
but remain devoid of neurotransmitters within N0

v . Therefore, the rate of the release of free
neurotransmitters is governed by Equation (1) as follows:

∂N0
v

∂t
= σSNv − γN0

v NT (1)

where S corresponds to the input signal, σ is the neurotransmitter release efficiency as a
function of the input signal, and γ is the probability of encounter between an empty vesicle
and a neurotransmitter. The number of neurotransmitters present within the synaptic
cavity is, therefore, governed by the dynamics of vesicle release; it may increase due to
vesicle release and may decrease either by reabsorption in the reformed vesicles or by
diffusion into the surrounding environment. Therefore, the rate equation of the density
of neurotransmitters present in the synaptic cavity (and identifying the strength of the
interconnection) will be similar to that of the vesicles with the addition of a diffusion term
as follows:

∂NT
∂t

=
∂N0

v
∂t

−
→
∇·

→
J (2)
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Figure 1. Diagram of synaptic activation upon the onset of a supra-threshold signal. The signal, 
propagating along the axon, causes the movement of vesicles that collect neurotransmitters and 
carry them towards the synaptic cavity where they are released by the endocytosis of the vesicle 
itself. New vesicles, inside which no neurotransmitters are present, are subsequently formed and 
move in the opposite direction towards the centre of the cell. 

Neurotransmitters are, therefore, released from the pre-synaptic neuron when an 
electrical stimulus occurs. The more intense the stimulus, or the more frequently it occurs, 
the greater the release of neurotransmitters. The onset of a signal only stimulates the 
release of neurotransmitters if above a certain threshold. Let us see how signal processing 
occurs. Figure 2 shows the different functional districts of a neuron. The presynaptic input 
channels, called dendrites, receive information from the preceding neurons and transfer 
it to the soma, which is the processing centre. In the soma, the received signals are 
summed up and the result is compared to a threshold level described by a high-pass 
activation function; if the sum of the received signals exceeds the threshold, then the 
neuron activates and starts transmitting to the axon (spiking or firing operation). 
Otherwise, if the sum of the signals does not reach or exceed the threshold, then the 
neuron will be inhibited and will not transmit any further. This behaviour is typical of 
electronic high-pass filters; a signal above the threshold will pass while a signal below the 
threshold will be blocked [1,2]. Once in transmission, the neuron sends the signal along 
the axon that redistributes it, without changing its amplitude, to subsequent neurons via 
the outgoing synaptic junctions. 

 
Figure 2. Schematic diagram of the functional structure of a neuron; the neuron collects presynaptic 
input data via the dendrites. Once in the soma, the signals are summed. If the resulting value 
exceeds a reference threshold, the soma transmits a signal, a long output channel, to the axon and 
distributes it to the synaptic junctions with the following neurons. If the sum of the signals in the 
soma does not exceed the reference threshold, the neuron does not transmit and is considered 
inhibited. 

As it exits the axon, the signal transmitted from the soma is divided and distributed 
across the synaptic junctions to successive interconnected neurons. Each dendritic 
termination releases neurotransmitters according to the process described above, 
modulating the various synaptic connections. There are mainly two situations that create 

Figure 1. Diagram of synaptic activation upon the onset of a supra-threshold signal. The signal,
propagating along the axon, causes the movement of vesicles that collect neurotransmitters and carry
them towards the synaptic cavity where they are released by the endocytosis of the vesicle itself. New
vesicles, inside which no neurotransmitters are present, are subsequently formed and move in the
opposite direction towards the centre of the cell.
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Neurotransmitters are, therefore, released from the pre-synaptic neuron when an
electrical stimulus occurs. The more intense the stimulus, or the more frequently it occurs,
the greater the release of neurotransmitters. The onset of a signal only stimulates the
release of neurotransmitters if above a certain threshold. Let us see how signal processing
occurs. Figure 2 shows the different functional districts of a neuron. The presynaptic input
channels, called dendrites, receive information from the preceding neurons and transfer it
to the soma, which is the processing centre. In the soma, the received signals are summed
up and the result is compared to a threshold level described by a high-pass activation
function; if the sum of the received signals exceeds the threshold, then the neuron activates
and starts transmitting to the axon (spiking or firing operation). Otherwise, if the sum of the
signals does not reach or exceed the threshold, then the neuron will be inhibited and will
not transmit any further. This behaviour is typical of electronic high-pass filters; a signal
above the threshold will pass while a signal below the threshold will be blocked [1,2]. Once
in transmission, the neuron sends the signal along the axon that redistributes it, without
changing its amplitude, to subsequent neurons via the outgoing synaptic junctions.
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Figure 2. Schematic diagram of the functional structure of a neuron; the neuron collects presynaptic
input data via the dendrites. Once in the soma, the signals are summed. If the resulting value exceeds
a reference threshold, the soma transmits a signal, a long output channel, to the axon and distributes
it to the synaptic junctions with the following neurons. If the sum of the signals in the soma does not
exceed the reference threshold, the neuron does not transmit and is considered inhibited.

As it exits the axon, the signal transmitted from the soma is divided and distributed
across the synaptic junctions to successive interconnected neurons. Each dendritic termi-
nation releases neurotransmitters according to the process described above, modulating
the various synaptic connections. There are mainly two situations that create marked
synaptic pathways, i.e., privileged pathways: (1) when a piece of information is repeated
several times (the same specific pathway is retraced several times, increasing the number
of neurotransmitters at each step, and thus, making the interconnections stronger and
longer lasting), or (2) when the information is new, novel and very strong. The first case
can be traced back to a process like school or academic study; by continuing to study
and repeat, information is memorized and will remain mnemonic for a long time. The
second case can be traced back to a sudden, violent, upsetting process, such as a shock,
a traumatic event or a sudden, beautiful event. In this second case, neurotransmitters
are released instantaneously into the various synaptic connections during propagation,
producing a very strong and well-defined neural pathway without the need for subsequent
reinforcement iterations. This is nature’s way of learning that a certain action may be
harmful or reminds us of moments of extreme happiness. Similarly, for unused pathways,
the number of neurotransmitters in the synaptic cavities slowly decreases, making the
pathway less and less defined until it slowly dissolves (forget). However, signal propa-
gation may be subject to loss. Neural channels are covered by myelin in order to limit
the loss of information. Whether the signal propagates without leakage depends largely
on the presence and amount of myelin around it [4]. Myelin is an insulating substance
consisting mainly of lipids and proteins, which externally coats axons [2]. This coating
may be simple, i.e., a single layer, or composed of several concentric layers, giving rise to
a kind of sheath or sleeve. This sheath is not continuous but interrupted, forming many
segments; in their presence, propagated signals travel faster as they jump from one segment
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to another. This “jump conduction” increases the speed of transmission as conduction is
more efficient; furthermore, the presence of myelin, in addition to bringing nourishment
to the neuron, mechanically protects it and, above all, isolates it by avoiding crosstalk
between neighbouring neurons. In fact, in the absence of myelin, especially where neu-
ronal networks are particularly dense, neurons could respond to the multiple surrounding
signals carried by other neurons: just as an electric wire without an insulating coating
would disperse the current without carrying it to its destination. Myelin promotes signal
confinement by eliminating unwanted crosstalk between neighbouring neurons or axons.
Therefore, the biological brain is a dynamic system, capable of changing its geometry,
reorganizing the map of neural interconnections to learn new information or to forget old
ones. This adaptive capacity of biological networks is the real challenge of neuromorphic
hardware research.

3. Photonic Neuromorphics

Neuromorphic electronics is inspired by the functioning of the biological nervous
system and seeks to develop circuits that can learn, adapt and process information. Unlike
traditional electronic circuits, which are largely static and pre-programmed, neuromorphic
devices must be able to adapt and learn from experience. This is made possible by artificial
neural networks that simulate the way biological neurons communicate and form synaptic
connections. Despite the extreme integrability of devices, neuromorphic electronics has
failed to realize compact electronic neurons. It succeeded in realizing extended circuits with
responses similar to those of single neurons. This brings topological limitations (especially
for interconnections in dense and ultra-dense networks), together with the technological
limitations typical of conventional electronic circuits, such as limited bandwidth, high
power consumption, high heat generation and poor electromagnetic compatibility. Com-
pared to electronics, photonics shows considerable advantages [3]; it has a far greater
bandwidth, limited energy consumption [5], may not require physical interconnections
between circuit elements, and favours parallel computing in dense or ultra-dense networks.
In addition, light is able to exploit the nonlinearities of the host material more effectively.
This last factor is of utmost importance to realize complex devices or systems capable of
self-modifying to learn information. Thus, research has slowly moved towards optics, first
with optoelectronic neuromorphic circuits and then towards fully optical systems [6]. So
far, the main attempts at neuromorphic optics have followed two paradigms:

(1) the realization of a single neuron;
(2) the realization of active connections between neurons.

The first paradigm attempts to reproduce the main functions of biological neurons
in integrated photonic systems. It exploits excitability, i.e., the ability to reproduce and
transmit self-consistent signals from even weak inputs according to a high-pass filter-
like threshold process [6–11]. Sub-threshold or amplifier laser systems [6,7] are exploited
to reproduce this behaviour, including graphene-impregnated semiconductor lasers [8],
photonic crystals [9], vertical cavity lasers [9] or resonant tunnelling photodetectors [11,12].
These systems have major limitations due to the lack of nonlinearity that can be used
to store information. Therefore, they are also unable to carry out learning at the same
time and are, therefore, unable to adapt to the type of information received. To resolve
this limitation, the second paradigm intervenes, focusing not on individual devices but
on their interconnections. In fact, the second neuromorphic paradigm is based on the
possibility of opening and closing interconnections, and thus, realizing specific trajectories
in the neuronal network, recording all signal passages. By doing so, the entire map of the
activated synapses constitutes the stored information, simple or complex, which can be
reinforced or possibly deleted in order to forget. The second paradigm is based on neural
plasticity, i.e., the ability of a nervous system to modify itself, to adapt to information,
storing it in the form of specific trajectories in the processing network [13,14]. To achieve
a memory-network, it is, therefore, necessary to be able to open and close, as well as
reinforce, each connection. The strength of the interconnection is, in fact, the necessary
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tool to realize and optimize a mapping. In O/E/O neuromorphic devices, this is usually
implemented electronically, as demonstrated by the photoreceptor–modulator neuron
model for Mach Zehnder Interferometer networks [15] and the electronic superconducting
significant pathway [16]. Fully optical implementations of weighted interconnections,
e.g., by exploiting chalcogenic phase change materials (PCMs) [17,18], are also already
present in the literature. In short, the crystalline state, and thus, the optical properties of
these materials depend on the different received light signals. Synapses consist of optical
waveguides and the reinforcement process is performed by PCM cells that can absorb or
transmit light in accordance with their crystalline state, which, in turn, depends on the
received light. Thus, when the PCM is in the amorphous state, light absorption is low
and a strong connection occurs, whereas if the PCM is in the crystalline state, most of the
light is absorbed, making the connection weak. PCM materials are a good solution for
superimposing memory and processing units but have important limitations; they can only
assume two states and have no memory of the previous state. Recently, photorefraction
has been effectively employed to realize active solitonic interconnections [19], i.e., capable
of establishing, reinforcing or possibly even erasing themselves. Photorefraction had
already been employed in the past to store even complex information in the form of
holographic patterns. However, the great novelty of photorefraction lies in the possibility
of realizing innovative interconnections in the form of solitonic waveguides. By exploiting
photorefractive nonlinearity, spatial solitons can be formed. Thus, laser beams do not
diffract because they have changed the refractive index of the host material, so that induced
waveguides are written. The writing process is also nonlinear, allowing each individual
channel to be reinforced, thus making the index contrast of the waveguide ‘stronger’. Thus,
photorefraction is the ideal tool to simulate the plasticity of biological neural systems [20].

4. Photorefraction as a Basis for Optical Neural Networks

Photorefractive nonlinearity is based on the electro-optical effect, i.e., the change in the
refractive index of a material subjected to a static electric field. A photorefractive material
is typically a semiconductor capable of absorbing light by transitions from trap states (gift
states) to the conduction band. Thus, the absorption of light will generate two species of
carriers: electrons free to move in the conduction band and holes located in trap states. This
behaviour is usually described by the following regime equations for ionized N+

D donors
and Ne electrons:

∂N+
D

∂t
= σFND − γN+

D Ne (3)

∂Ne

∂t
=

∂N+
D

∂t
−

→
∇·

→
J (4)

In Equation (3), F is the photon flux, σ the absorption cross-section, γ the decay
probability while J, in Equation (4), is the current density, due to both conduction and
electrical scattering. The charges thus generated, both free electrons and localized gaps,
generate a local electric field capable of changing the refractive index of the photo-refractive
material due to the electro-optical effect. This change in refractive index will be local
because the static charge distributions are local and, therefore, the photoinduced electric
field will be local [21,22]. By focusing a Gaussian laser beam in a photorefractive material,
the bell-shaped intensity distribution will induce a micro-lens-shaped refractive index
change that can refocus the light. By extending this behaviour throughout the material, it is
possible to obtain narrow channels of higher refractive index that act as waveguides, within
which light can be trapped. This describes the formation of a spatial soliton, i.e., a self-
confined laser beam within the refractive index variation induced by it. But this variation
can also be effective at other wavelengths “being a real variation”, which can exploit the
soliton channels as waveguides, within which it can travel confined. This process is quite
similar to the behaviour of biological synapses. In fact, local index variation depends on
the gradient of electrical charges and ionized donors that assume the functional role that
neurotransmitters play in biological neural networks (BNNs): regulating synaptic intensity.
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When the strength of a biological synapse changes, the neural system begins to learn.
Repetition of the same pattern of signal input results in synaptic strengthening, which is
synonymous with information storage [12]. Therefore, a structural change in the connection
(strengthening or weakening) can mean memorization or forgetting. Similarly, solitonic
interconnections strengthen or weaken depending on the intensity of the information
flowing through them and the number of times the information is replayed for learning. In
summary, biological and solitonic networks learn by modifying the network of connections
according to incoming information. A synapse is strengthened mainly by two factors:

- the intensity of incoming signals;
- the frequency with which the signals occur in a specific pathway.

Both processes lead to the release of a higher number of neurotransmitters into the
selected synaptic cavity, ensuring a higher binding intensity.

Figure 3 shows the functional parallelism between BNN and SNN.
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Figure 3. Diagram of the functioning of learning and memorising processes of a biological neural
system (left) and a solitonic neural system (right).

In the biological neural networks, input signals cause the release of neurotransmitters
that induce the activation and reinforcement of synapses responsible for the evolution
of biological synapses. In the photonic–solitonic case, the input signals are responsible
for the photoexcitation of electrical charges. The photoproduction of ionized donors and
free electrons depends on the intensity of the incoming light signal just as the number
of neurotransmitters released depends on the intensity of the stimuli received and the
frequency with which they occur. A higher density of neurotransmitters is synonymous
with synaptic weight enhancement while higher densities of ionized donors and free
electrons induce a higher refractive index change and, consequently, a greater ability of
the waveguide to confine and transport information. Conversely, if the intensity of the
electrical stimulus was low or no further stimulus was forthcoming, the concentration of
the neurotransmitters would be low or even zero and the synaptic weight would weaken.
If no light is injected into the crystal, the photo-ionization process is not initiated and
no change in the refractive index is triggered. Thus, in the biological case, thanks to
neurotransmitters, electrical signals can pass from one neuron to another, i.e., a synaptic
connection can be opened. In the solitonic case, thanks to ionised donors, a solitonic
waveguide can be formed and signals can pass from one point of the nonlinear crystal to
another. In the biological case, the strength and speed of signal propagation depends on
the number of neurotransmitters released; in the solitonic case, the strength of the solitonic
propagation, i.e., the ability to transfer information without loss and scattering, depends on
the index contrast of the guide, which, in turn, depends on the number of ionised donors
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influencing the local electric field. As can be seen, there is a direct correlation between
the behaviour of biological neurotransmitters and the behaviour of ionised donors. The
similarities between the biological and solitonic systems are also evident with regard to the
properties of signal transmission. In BNNs, the efficiency of signal conduction depends on
the amount of myelin present [23–25]. Its main effect is to ensure focused and loss-limited
signal conduction. This dependence is very similar to that between light propagation in
the solitonic regime and the static electric field of polarisation. Higher values of this field
correspond to a higher self-confinement of the light, and thus, to a more significant focusing
of the signal. Figure 4 shows numerical simulations of the formation of the solitonic channel
(first line in black and white) and the propagation of the signal (second line in colour) within
it. For bias values of less than 15 kV/cm, diffractive behaviour prevails over self-focusing;
therefore, the input signal is diffracted over the entire crystal (second line). Increasing the
value of the bias electric field results in a more pronounced confinement, i.e., an efficient
solitonic waveguide, which causes signals to propagate without diffraction. If the Ebias
exceeds 50 kV/cm, however, instability begins to occur; the waveguide begins to pulsate
and can no longer carry the signal, so losses occur.
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Figure 4. From left to right: the evolution of the formation of a solitonic waveguide (first line) and the
propagation of a signal in it (second line) as a function of the electric polarisation field. As the Ebias

increases, the confinement of light increases, and signal propagation is more focused. Blue represents
low intensity while red is the maximum intensity. Above 50 kV/cm, a pulsating phenomenon occurs,
and the waveguide begins to lose some of its signal.

The effect of myelin on biological signal conduction is compared with the effect of the
polarization electric field on the propagation of optical information in Figure 5. Figure 5b
shows the integral of the output signal as a function of the polarization field value. As
Ebias increases, the intensity also increases up to a threshold value [26]. After this value,
the channel instability increases; the signal is no longer fully contained and is lost along
the path.
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output signal strength as a function of the Ebias polarisation field.

5. Conclusions

In conclusion, this manuscript demonstrates that optical photorefraction simulates
the plastic behaviour of biological neural systems. Indeed, intelligent optical systems
realised through spatial solitons are able to change their structure over time according to
the signals they receive, just as biological units do. In the case of solitonic structures, the
density of charge carriers plays a key role in the development of synaptic connections,
similar to that played by the density of biological neurotransmitters. Just as the strength
of a biological synapse depends on the concentration of neurotransmitters in the synaptic
cavity, in the same way, the formation of a solitonic channel depends on the concentration
of photo-ionized donors. Both of these quantities are driven by stimuli external to the
system. Furthermore, the bias electric field, which underlies the photorefractive process,
acts in a similar way to biological myelin; it can improve signal conduction, favouring
the focusing of light and reducing diffractive leakage phenomena. Nowadays, there
are many ways to obtain biological perception [27–30]. The great advantage of soliton
technology over previous implementations lies in the possibility of making self-assembling
and self-optimizing devices. In addition, since these is hardware that works completely
in the optical domain, it is easily interfaced with plasmonic technology, which has been
maturing important achievements just in recent years [31]. In this work, we have shown
for the first time that, by exploiting the plastic behaviour of photorefraction, it is possible
to create intelligent systems whose properties are similar to the mechanisms through
which biological neurons are connected. Therefore, it is possible to speak of a solitonic
neural tissue.

Author Contributions: A.B. carried out the Conceptualization, Investigation, Formal Analysis and
wrote the paper with E.F.; H.T. has supervised the Validation and contributed during the Conceptual-
ization; R.P. and A.N. dealt with results discussions; E.F. dealt with Methodology, Conceptualization,
Formal Analysis, Supervision and wrote the paper with A.B. All authors have read and agreed to the
published version of the manuscript.

Funding: Sapienza Università di Roma. FAZIO-ATENEO_SEED_PNR_2021—FAZIO-ATENEO_
PICCOLI_2022—AMDG—BILE AR2221814D17193B; FAZIO-PRIN 2022: project ONEPLAST—ERC
PE2; FAZIO-European Union funding under the NRRP of NextGenerationEU, partnership on
“Telecommunications of the Future” under Grant PE00000001—“RESTART”.

Institutional Review Board Statement: Not Applicable.

Data Availability Statement: The research data are generated by the direct application of the model
and of its associated equations.

Conflicts of Interest: The authors declare no conflicts of interest.



Biomimetics 2024, 9, 231 9 of 10

References
1. Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition;

Cambridge University Press: Cambridge, UK, 2014; ISBN-10: 978-1107060838.
2. Ramachandran, V. Encyclopedia of the Human Brain; Elsevier: Amsterdam, The Netherlands, 2002; ISBN-10: 978-0080548036.
3. Dupeyroux, J.; Hagenaars, J.; Paredes-Valls, J.; de Croon, G.C.H.E. Neuromorphic control for optic-flow-based landing of MAVs

using the Loihi processor. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China,
30 May–5 June 2021; pp. 96–102.

4. Hartline, D.K. What is myelin? Neuron Glia Biol. 2008, 4, 153–163. [CrossRef] [PubMed]
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