
Citation: Chao, Y.; Dillmann, R.;

Roennau, A.; Xiong, Z. E-DQN-Based

Path Planning Method for Drones in

Airsim Simulator under Unknown

Environment. Biomimetics 2024, 9, 238.

https://doi.org/10.3390/

biomimetics9040238

Academic Editor: Yongquan Zhou

Received: 30 December 2023

Revised: 13 March 2024

Accepted: 12 April 2024

Published: 16 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

E-DQN-Based Path Planning Method for Drones in Airsim
Simulator under Unknown Environment
Yixun Chao 1, Rüdiger Dillmann 2, Arne Roennau 2 and Zhi Xiong 1,*

1 Navigation Research Center, School of Automation Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China

2 FZI Research Center for Information Technology, 76131 Karlsruhe, Germany
* Correspondence: xiongzhi@nuaa.edu.cn

Abstract: To improve the rapidity of path planning for drones in unknown environments, a new bio-
inspired path planning method using E-DQN (event-based deep Q-network), referring to introducing
event stream to reinforcement learning network, is proposed. Firstly, event data are collected through
an airsim simulator for environmental perception, and an auto-encoder is presented to extract data
features and generate event weights. Then, event weights are input into DQN (deep Q-network) to
choose the action of the next step. Finally, simulation and verification experiments are conducted in a
virtual obstacle environment built with an unreal engine and airsim. The experiment results show
that the proposed algorithm is adaptable for drones to find the goal in unknown environments and
can improve the rapidity of path planning compared with that of commonly used methods.

Keywords: biological inspiration; E-DQN; reinforcement learning; drone; airsim; unreal engine

1. Introduction

Due to their small size, low cost, and high maneuverability, drones are widely used
in many applications, including target search, disaster rescue, electric power inspection,
and so on. Among various capabilities of drones, autonomous path planning plays an
important role in guaranteeing the task accomplishment of drones [1,2]. Despite extensive
research on motion decision algorithms having been carried out, fast and accurate path
planning in complex unknown environments remains challenging for drones.

Traditional path-planning algorithms mainly include RRT (rapidly exploring random
tree), artificial potential field, A* algorithm, and so on [3–6]. Nguyen, T.H. et al., proposed
a new path-planning method by inserting a universal pseudo-random number generator
into RRT, which improved the convergence and effectiveness of path planning for the
mobile robot [7]. Sabudin, E.N. et al., suggested a path potential field-based planning
algorithm, which was capable of eliminating the local minima that frequently occurs in the
conventional potential field while fulfilling the criterion of path planning and integrates
path pruning to shorten the planned path [8]. To optimize path length and path smoothness,
Zhang, L. et al., introduced an improved A* algorithm by dividing the distance between
adjacent nodes and employing a cubic spline function to smooth the path [9]. For the
intelligent unmanned system, the motion environment is not completely known. Certain
adaptive and self-learning abilities are needed to adapt to changes in the environment
and reach goals quickly. Although the above methods can solve the problems of the
local minimum value of traditional path-planning algorithms to some extent, they are not
suitable for fast path planning in the large-scale complex flight environments of drones.

With the development of AI (artificial intelligence), many AI-based path-planning algo-
rithms have been conducted, providing inspiration for solving the problems of traditional
motion decision-making algorithms. Machmudah, A. et al., addressed the optimization of
flight trajectories for a fixed-wing UAV (unmanned aerial vehicle) at a constant altitude by
employing a Bezier curve and meta-heuristic optimizations, including PSO (particle swarm

Biomimetics 2024, 9, 238. https://doi.org/10.3390/biomimetics9040238 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9040238
https://doi.org/10.3390/biomimetics9040238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://doi.org/10.3390/biomimetics9040238
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9040238?type=check_update&version=3

Biomimetics 2024, 9, 238 2 of 13

optimization), which minimized the path length while satisfying the maximum curvature
and collision avoidance constraints [10]. Hu, H. et al., proposed a new algorithm called
APF-D3QNPER, combining the action output method of APF (artificial potential field)
with the dueling double deep Q-network algorithm and introduced experience sample
rewards in the experience playback portion of the traditional DRL (deep reinforcement
learning) algorithm, overcoming the limitations of traditional path planning methods in
unknown environments, such as reliance on high-precision maps, lack of generalization
ability, and obstacle avoidance capability [11]. Xie, R. et al., presented a DRL approach for
three-dimensional path planning utilizing local information and relative distance without
global information to make up for the deficiencies of traditional path-planning algorithms
in a complex and dynamic environment [12]. The above AI-based path-planning methods
can effectively support the path-finding tasks of drones in three-dimensional complex
environments but ignore dynamic perception in complex environments.

Animals have excellent navigation abilities. Drawing inspiration from animal environ-
mental perception and navigation mechanisms, bio-inspired perception, navigation, and
path-planning technologies provide a possibility to further solve intelligent path-planning
issues in complex and unknown environments [13,14]. The neuromorphic visual system
event camera is regarded as a potential candidate for improving the rapidity of percep-
tion and path planning for drones in dynamic environments. Compared with traditional
machine vision systems, biology-inspired event cameras have significant advantages over
traditional cameras: low response delay, low data rate, high dynamic range, and low power
consumption, providing new ideas for improving the performance of existing AI-based
path-planning algorithms. Although there are currently some studies on event-based rein-
forcement learning, these methods are mainly applied to fields like traffic signals, intelligent
trains, multi-agent systems, etc. [15–17]. However, there is little research using the airsim
unreal platform to simulate real dynamic characteristics and physical features, such as
collisions, for the event-driven reinforcement learning training of unmanned aerial vehicles.
In this paper, an intelligent perception and path-planning method of drones based on event
camera and reinforcement learning named E-DQN is proposed to address the drawbacks
of traditional algorithms and make up for the lack of application of event-driven reinforce-
ment learning algorithms in the field of drone decision-making in airsim. Environment
perception employing event data can effectively improve the rapidity of path-planning
systems. Reinforcement learning draws inspiration from the dopamine reward and pun-
ishment mechanism in the brain and has strong environment adaptability and flexibility,
which makes it a potential candidate for solving path-planning problems in large-scale
and dynamically changing environments. Deep Q-network (DQN) is a commonly used
optimization algorithm for reinforcement learning, which employs a neural network to
represent the optimal policy function Q and updates the parameters. Reinforcement learn-
ing training by DQN can generate optimal value functions through interaction with the
environment without prior knowledge [18]. Introducing event streams into DQN for path
planning can ensure the stability and efficiency of training, overcoming the shortcomings
of traditional decision algorithms. The proposed algorithm was validated on the airsim
simulation platform [19]. The experiment results show that the optimal path to the target
can be found after several rounds of training.

The remainder of this paper is structured as follows: Section 2 describes the overall
framework of the proposed path-planning algorithm. The detailed method is explained in
Section 3. Section 4 presents simulation experiments developed on a virtual flight platform
supported by airsim and unreal engine. Section 5 concludes the whole work and discusses
future research.

2. System Framework

Path planning is performed to generate a motion strategy with which a drone can find
an optimal path connecting the starting and ending positions. Considering the complex
task execution environment of drones, a bio-inspired path-planning algorithm based on

Biomimetics 2024, 9, 238 3 of 13

event perception and reinforcement learning was designed to perform fast decision-making
for drones. The overall framework is as Figure 1.

Biomimetics 2024, 9, x FOR PEER REVIEW 3 of 13

2. System Framework
Path planning is performed to generate a motion strategy with which a drone can

find an optimal path connecting the starting and ending positions. Considering the com-
plex task execution environment of drones, a bio-inspired path-planning algorithm based
on event perception and reinforcement learning was designed to perform fast decision-
making for drones. The overall framework is as Figure 1.

Figure 1. The overall framework of bio-inspired path planning system.

The system framework consisted of three parts, including environment perception,
E-DQN training, and environment interaction. Event data were employed in the bio-in-
spired path-planning system for perception, which greatly reduced data redundancy and
improves the training efficiency of DQN [20]. Due to the asynchrony and sparsity of event
data, an auto-encoder was introduced to process the event stream data and make them
available for the following training network [21]. The DQN algorithm requires multiple
episodes of training through interactions between drones and environments. Airsim
serves as a plugin for any virtual environment provided by the unreal engine and is re-
garded as an ideal platform for artificial intelligence training [22]. Unreal engine simulator
creates a highly realistic virtual environment with high fidelity and avoids situations
where drones are prone to crashes while flying in the real environment [23]. In addition,
airsim can equip drones with multiple sensors and provide rich API interfaces to support
the task execution of drones in different scenarios.

3. E-DQN-Based Path-Planning Method
3.1. Bio-inspired Environment Perception

Drones equipped with RGB cameras have reaction times of tens of milliseconds,
which is not enough for drones to perform fast navigation tasks in complex dynamic en-
vironments. An event-based camera is a novel visual sensor inspired by animal perception
mechanisms. The time resolution of the event camera is in the microsecond range. Com-
pared with traditional cameras that capture images at a fixed frame rate, event cameras
have the advantage of low latency, high dynamic range, low power consumption, and
high time resolution. Moreover, events are inherently generated by changes in brightness
typically arising from motion, which makes event cameras natural complex environment
perception sensors and a good fit for fast path planning with obstacle avoidance function.
Therefore, event data were employed for environmental perception in this paper.

Airsim is a simulator built on an unreal engine that supports the realistic physical
and visual simulation of drones or cars. Airsim provides an event camera data collection
simulator that allows drones to fly and collect event data in a virtual environment, which
is equivalent to equipping a drone with an event camera. To prevent damage to drones

Figure 1. The overall framework of bio-inspired path planning system.

The system framework consisted of three parts, including environment perception,
E-DQN training, and environment interaction. Event data were employed in the bio-
inspired path-planning system for perception, which greatly reduced data redundancy and
improves the training efficiency of DQN [20]. Due to the asynchrony and sparsity of event
data, an auto-encoder was introduced to process the event stream data and make them
available for the following training network [21]. The DQN algorithm requires multiple
episodes of training through interactions between drones and environments. Airsim serves
as a plugin for any virtual environment provided by the unreal engine and is regarded as
an ideal platform for artificial intelligence training [22]. Unreal engine simulator creates a
highly realistic virtual environment with high fidelity and avoids situations where drones
are prone to crashes while flying in the real environment [23]. In addition, airsim can equip
drones with multiple sensors and provide rich API interfaces to support the task execution
of drones in different scenarios.

3. E-DQN-Based Path-Planning Method
3.1. Bio-Inspired Environment Perception

Drones equipped with RGB cameras have reaction times of tens of milliseconds, which
is not enough for drones to perform fast navigation tasks in complex dynamic environments.
An event-based camera is a novel visual sensor inspired by animal perception mechanisms.
The time resolution of the event camera is in the microsecond range. Compared with
traditional cameras that capture images at a fixed frame rate, event cameras have the
advantage of low latency, high dynamic range, low power consumption, and high time
resolution. Moreover, events are inherently generated by changes in brightness typically
arising from motion, which makes event cameras natural complex environment perception
sensors and a good fit for fast path planning with obstacle avoidance function. Therefore,
event data were employed for environmental perception in this paper.

Airsim is a simulator built on an unreal engine that supports the realistic physical
and visual simulation of drones or cars. Airsim provides an event camera data collection
simulator that allows drones to fly and collect event data in a virtual environment, which
is equivalent to equipping a drone with an event camera. To prevent damage to drones
caused by flying in real environments, the airsim virtual simulator is utilized for event
data collection. Event cameras generate “events” by measuring logarithmic brightness
changes. A set of events contains four values, namely pixel position (x and y coordinates),
timestamp, and polarity. An event has a polarity of +1 or −1 based on an increase or

Biomimetics 2024, 9, 238 4 of 13

decrease in logarithmic brightness. Event data in airsim are obtained using a series of
transformations of RGB images. An event occurs when the absolute change in logarithmic
brightness exceeds a certain threshold. Event sequences are reported in the form of byte
streams, which construct an event accumulation on a 2D frame known as an “event image”.
In event images, events with a polarity of +1 and −1 are visualized as red pixels and blue
pixels, respectively.

To convert RGB images into event images, firstly, the logarithmic strength of the
current frame was calculated [24].

L(u, t) = log(0.299IR(u, t) + 0.587IG(u, t) + 0.114IB(u, t)), (1)

where L(u, t) means the logarithmic strength of the current frame. IR(u, t), IG(u, t), and
IB(u, t) represent the brightness of RGB images in the red, green, and blue channels, respec-
tively. Subsequently, all pixels are traversed, and the polarity of each pixel is calculated
based on the threshold of the difference in logarithmic intensity between the current frame
and the previous frame. The polarity of the current frame can be obtained as follows:

p(u, t) =

 +1, i f L(u, t)− L(u, t − 1) > Th

−1, i f L(u, t)− L(u, t − 1) < −Th ,
(2)

where Th denotes the event brightness threshold. According to the degree to which the
intensity change exceeds the threshold, the number of events to be emitted for each pixel can
be determined. Assuming that the maximum number of events that a pixel experience is Nmax,
the total number of emissions simulated at the pixel position u can be expressed as follows:

Nmax = int
(

∆t
rt × 10−3

)
, (3)

Ne(u, t) = min
(

Nmax,
∆L(u, t)

TOL

)
, (4)

where rt is the refractory period. Ne(u, t) represents the number of events generated at
pixel u. Nmax represents the maximum constraint on the maximum number of possible
events that can occur in a pixel. ∆L(u, t) is the total logarithmic brightness change that
occurs at pixel u and time t.

To train the neural network architecture using event data, a one-dimensional event
stream with event data form (x, y, t, p) was generated, where (x, y) denotes the sum
coordinates of the current pixel, t is the timestamp, and p represents the polarity of the event.
Then, the timestamp of each interpolation event was determined through interpolation,
which represents the amount of time between the captured previous and current images.

t = tprev +
∆T

Ne(u)
, (5)

where tprev means the timestamp of the first event generated at the current time step. ∆T
indicates the time interval between frames in microseconds. Finally, the generated event
stream was sorted in timestamp order to simulate event data correctly.

3.2. Feature Extraction of Event Data

The generated event data cannot be applied to neural network-based motion de-
cision algorithms directly because these data are not images but asynchronous event
streams encoding changes in pixel intensity. The data processing of an asynchronous event
stream is one of the key issues in utilizing event data for bio-inspired navigation and
decision-making systems.

Biomimetics 2024, 9, 238 5 of 13

With the resolution of the event camera set to (H, W), the event at time t was de-
fined as a tuple (t, x, y, p). A series of events in the time window τ were represented as
Eτ = {ei|t < i < t + τ}. The events in Eτ can be accumulated and represented as the corre-
sponding event image frames IEτ . Although event sequences are time-based data streams,
the data length is long and difficult to apply to neural networks. Therefore, the decoupling
of temporal and spatial information is needed to apply event data to path-planning and
obstacle-avoidance algorithms. For spatial representation, pixel coordinates and polarity
were encoded separately by calculating and extracting asynchronous event stream features.
Moreover, the principle of position encoding was utilized for time embedding. For an event
set En with n events, the timestamp was normalized between 0 and 1 so that the timestamp
corresponding to the end of the window was mapped to 1. Then, time characteristics were
calculated for each normalized timestamp. The spatiotemporal decoupling process of event
data is shown in Figure 2 [25].

Biomimetics 2024, 9, x FOR PEER REVIEW 5 of 13

3.2. Feature Extraction of Event Data
The generated event data cannot be applied to neural network-based motion decision

algorithms directly because these data are not images but asynchronous event streams en-
coding changes in pixel intensity. The data processing of an asynchronous event stream is
one of the key issues in utilizing event data for bio-inspired navigation and decision-making
systems.

With the resolution of the event camera set to (H, W), the event at time twas defined
as a tuple (t, x, y, p). A series of events in the time window τ were represented as

{ }|iE e t i tτ τ= < < + . The events in Eτ can be accumulated and represented as the corre-
sponding event image frames IEτ . Although event sequences are time-based data
streams, the data length is long and difficult to apply to neural networks. Therefore, the
decoupling of temporal and spatial information is needed to apply event data to path-
planning and obstacle-avoidance algorithms. For spatial representation, pixel coordinates
and polarity were encoded separately by calculating and extracting asynchronous event
stream features. Moreover, the principle of position encoding was utilized for time em-
bedding. For an event set nE with n events, the timestamp was normalized between 0
and 1 so that the timestamp corresponding to the end of the window was mapped to 1.
Then, time characteristics were calculated for each normalized timestamp. The spatiotem-
poral decoupling process of event data is shown in Figure 2 [25].

Figure 2. Spatiotemporal decoupling of event data.

An auto-encoder is used to restore input data at the output and extract useful infor-
mation from the data, which acts as a bridge for applying event data to reinforcement
learning training. The auto-encoder describes a probabilistic framework for mapping fea-
ture vectors to reconstructed space rather than randomly mapping attributes to the output
[26]. The auto-encoder attempts to learn parameter variable models by maximizing the
marginal log-likelihood of training data composed of reconstruction loss and KL diver-
gence loss, as shown in Figure 3.

Figure 3. Auto-encoder of feature vector.

Due to the narrow bottleneck layer in the middle of the network, only the most im-
portant information is preserved in the encoding value z . The decoder inputs a vector z
and outputs a reconstructed image. Multi-layer perceptron (MLP) was used as a classifi-
cation model for the encoder and the decoder. The activation function was implemented
to solve the classification model of MLP. The commonly used activation functions include
the sigmoid function, the tanh function, and the ReLU function. The sigmoid function and
tanh function have a gradient saturation and output of non-zero mean at both ends of the
function, which can affect the training effectiveness of the neural network. The ReLU

Figure 2. Spatiotemporal decoupling of event data.

An auto-encoder is used to restore input data at the output and extract useful informa-
tion from the data, which acts as a bridge for applying event data to reinforcement learning
training. The auto-encoder describes a probabilistic framework for mapping feature vectors
to reconstructed space rather than randomly mapping attributes to the output [26]. The
auto-encoder attempts to learn parameter variable models by maximizing the marginal
log-likelihood of training data composed of reconstruction loss and KL divergence loss, as
shown in Figure 3.

Reconstructed
Image

Feature
Vector

zμ

zσ
z

Encoder Decoder

MLP MLP

Figure 3. Auto-encoder of feature vector.

Due to the narrow bottleneck layer in the middle of the network, only the most important
information is preserved in the encoding value z. The decoder inputs a vector z and outputs
a reconstructed image. Multi-layer perceptron (MLP) was used as a classification model
for the encoder and the decoder. The activation function was implemented to solve the
classification model of MLP. The commonly used activation functions include the sigmoid
function, the tanh function, and the ReLU function. The sigmoid function and tanh function
have a gradient saturation and output of non-zero mean at both ends of the function, which
can affect the training effectiveness of the neural network. The ReLU function returns the
input value when it is greater than 0 and 0 when it is less than or equal to 0 [27].

ReLU(x) = max(0, x) (6)

The ReLU function is simple and efficient in calculation without involving complex
exponential operations. Moreover, the ReLU function can solve the gradient saturation
problem of the sigmoid and tanh functions. Furthermore, the derivative of the activation

Biomimetics 2024, 9, 238 6 of 13

function is always constant 1 in the positive region, which can effectively transfer gradi-
ents [28]. Therefore, the ReLU function was adopted as the activation function here. The
training of the auto-encoder was performed end-to-end. The weights of the auto-encoder
were generated simultaneously. The trained weights we of the auto-encoder could be
utilized as inputs for path-planning algorithms.

3.3. E-DQN Training of Drones

The path-planning problem refers to finding a collision-free path under the constraints
of path length and training time. Reinforcement learning is a learning method inspired by
animal dopamine reward strategies, suitable for solving path-planning problems through
continuous trial and error. Animals produce movements through the prefrontal cortex.
Dopamine is a neurotransmitter produced by the brain that can provide feedback on reward
signals based on actions and states, thereby generating behaviors such as homing and
foraging. The decision-making mechanism of animals is shown in Figure 4.

Biomimetics 2024, 9, x FOR PEER REVIEW 6 of 13

function returns the input value when it is greater than 0 and 0 when it is less than or
equal to 0 [27].

R eLU () m ax(0,)x x= (6)

The ReLU function is simple and efficient in calculation without involving complex
exponential operations. Moreover, the ReLU function can solve the gradient saturation
problem of the sigmoid and tanh functions. Furthermore, the derivative of the activation
function is always constant 1 in the positive region, which can effectively transfer gradi-
ents [28]. Therefore, the ReLU function was adopted as the activation function here. The
training of the auto-encoder was performed end-to-end. The weights of the auto-encoder
were generated simultaneously. The trained weights ew of the auto-encoder could be
utilized as inputs for path-planning algorithms.

3.3. E-DQN Training of Drones
The path-planning problem refers to finding a collision-free path under the constraints

of path length and training time. Reinforcement learning is a learning method inspired by
animal dopamine reward strategies, suitable for solving path-planning problems through
continuous trial and error. Animals produce movements through the prefrontal cortex. Do-
pamine is a neurotransmitter produced by the brain that can provide feedback on reward
signals based on actions and states, thereby generating behaviors such as homing and for-
aging. The decision-making mechanism of animals is shown in Figure 4.

Figure 4. The decision-making mechanism of animals.

Inspired by an animal�s path-planning mechanism, reinforcement learning aims to
learn motion policies for sequential decision problems by optimizing a cumulative future-
reward signal. Reinforcement learning has exploratory characteristics and can continuously
try new actions to discover reward signals during the learning process, which makes rein-
forcement learning highly adaptable and flexible when facing unknown environments or
new tasks. Through exploration, drones can gradually learn the characteristics and laws of
the environment, thereby generating optimal motion strategies. With event data represen-
tation value z as state observations, generating the next action by reinforcement learning
can effectively solve the problem of the fast path planning of drones in complex environ-
ments.

Q-learning is one of the most popular reinforcement learning methods. However, in
many cases, the state space of reinforcement learning tasks is continuous and infinite,
making it difficult to store the value function in a table format [29]. The DQN algorithm
can improve the processing ability of high-dimensional state spaces, providing a new idea
to address the issues of rapidity and continuity in decision-making.

DQN approximates the action value (),Q s a by adopting a value function
(), ;Q s a w , where w is the parameter for training the neural network [30]. Firstly, the

original state and Q values of corresponding actions should be initialized. By providing ts

Figure 4. The decision-making mechanism of animals.

Inspired by an animal’s path-planning mechanism, reinforcement learning aims to learn
motion policies for sequential decision problems by optimizing a cumulative future-reward
signal. Reinforcement learning has exploratory characteristics and can continuously try new
actions to discover reward signals during the learning process, which makes reinforcement
learning highly adaptable and flexible when facing unknown environments or new tasks.
Through exploration, drones can gradually learn the characteristics and laws of the environ-
ment, thereby generating optimal motion strategies. With event data representation value z
as state observations, generating the next action by reinforcement learning can effectively
solve the problem of the fast path planning of drones in complex environments.

Q-learning is one of the most popular reinforcement learning methods. However,
in many cases, the state space of reinforcement learning tasks is continuous and infinite,
making it difficult to store the value function in a table format [29]. The DQN algorithm
can improve the processing ability of high-dimensional state spaces, providing a new idea
to address the issues of rapidity and continuity in decision-making.

DQN approximates the action value Q(s, a) by adopting a value function Q(s, a; w),
where w is the parameter for training the neural network [30]. Firstly, the original state
st and Q values of corresponding actions should be initialized. By providing starting
position O(Ox, Oy, Oz), target position T(Tx, Ty, Tz) and event weights We, the next action
selection of drones can be performed. In the decision-making process, ε − greedy strategy,
which means a drone select actions randomly with a certain probability ε, is adopted to
select an action and react with the environment to obtain a new state st+1 and reward r.
The ε − greedy strategy helps to balance the trade-off between exploration and utilization,
preventing getting stuck in a local optimum.

The training of path-planning neural networks is an optimization problem. The DQN
algorithm includes two neural networks: the evaluated network (Q-value network) and the
target network. The target network is to train the network by minimizing the mean square

Biomimetics 2024, 9, 238 7 of 13

error of the Q value so that the network can approximate the real Q function. The objective
function includes the difference between the actual reward and the target Q value of the
next state. The calculation formula of the target network can be written as follows [31]:

yt = r + γ · maxaQ(st+1, a; w, we), (7)

where yt denotes the Q value of the target network, which represents the expected reward
obtained after performing an action. γ describes the discount factor coefficient. st+1 denotes
the next state. a is the selected action. w refers to the weights of the target network at time t.
we means event weights. Q(st+1, a; w, we) represents the maximum Q value corresponding
to the action in state st+1. r stands for the reward and can be written as follows:

r =

100, Reach the goal

−100, If collosion

0, Others

(8)

To optimize the training network, the difference between the evaluated network and
the target network is calculated as the following loss function [32]:

L = 1/2[yt − Q(s, a; w, we)]
2, (9)

where L is the loss function. Then, the Q parameters of the neural network are updated
using the back propagation gradient descent method to make the Q(st, at) approach yt.
The updated Q network is the following [33]:

Q = r + (γ ∗ Qt+1 ∗ (1 − dones)), (10)

where dones equals 0 or 1 indicates whether to complete a training session.
A transition of a quadruple (st, at, rt, st+1) can be obtained through the update of the

Q value. Then, a new state is entered to repeat the above process. After multiple training
processes, the optimal path in the obstacle environment can be found. There is a strong
correlation between adjacent transitions, which have an impact on Q-network training
if transitions are used in order. Therefore, experience replay is introduced to eliminate
correlation, provide convergence speed, and improve data utilization. A replay buffer
that stores n transitions, known as experience, will be created. During each episode of
training, batch-size transition data are selected randomly, and multiple random gradients
are calculated to update the parameter w of the target Q-network. The flowchart of the
proposed E-DQN training process for the bio-inspired path planning of drones in complex
environments is shown in Algorithm 1.

Algorithm 1. E-DQN training process for bio-inspired path planning of drones in complex
environments.

1: Input: Starting point O(Ox, Oy, Oz); Target point T(Tx, Ty, Tz); Event weight We
2: Output: Optimal path
3: Initialize: Evaluation function; Target function; State st
4: for t < tend
5: Select an action at by the ε − greedy strategy.
6: Input at into the environment and obtain new states st and r.
7: Compute target function yt = rt + γ · maxaQ(st+1, a; w)

8: Compute loss function L = 1/2[yt − Q(s, a; w)]2

9: Introduce experience replay and update parameters
Q = r + (γ ∗ Qt+1 ∗ (1 − dones))

10: end for

Biomimetics 2024, 9, 238 8 of 13

4. Experiments

Plan planning with obstacle avoidance means that drones can independently ana-
lyze the environment information and generate a collision-free path from the initial state
to the target state in an environment with unknown obstacles. To verify the feasibility
of the proposed algorithm, an obstacle-avoidance scenario built on the airsim platform
was created.

4.1. Experimental Setup

The simulation was performed on a computer with a 2.40 GHz Intel Core i7 processor
and an 8 GB GPU. To interact with airsim’s APIs, programming was implemented using
the Python language. The flight range of the drone was a three-dimensional obstacle
environment of 110 m × 110 m × 25 m, as shown in Figure 5.

Biomimetics 2024, 9, x FOR PEER REVIEW 8 of 13

Algorithm 1. E-DQN training process for bio-inspired path planning of drones in com-
plex environments.
1: Input: Starting point (, ,)x y zOO O O ; Target point (, ,)x y zT T T T ; Event weight
2: Output: Optimal path
3: Initialize: Evaluation function; Target function; State ts

4: for endt t<
5: Select an action ta by the greedyε − strategy.
6: Input tainto the environment and obtain new states ts and r .

7: Compute target function 1max (, ;)t t a ty r Q s a wγ += + ⋅
8: Compute loss function () 2

1 2 , ;tL y Q s a w= −
9: Introduce experience replay and update parameters
 ()1* * (1)tQ r Q donesγ += + −
10: end for

4. Experiments
Plan planning with obstacle avoidance means that drones can independently analyze

the environment information and generate a collision-free path from the initial state to the
target state in an environment with unknown obstacles. To verify the feasibility of the
proposed algorithm, an obstacle-avoidance scenario built on the airsim platform was cre-
ated.

4.1. Experimental Setup
The simulation was performed on a computer with a 2.40 GHz Intel Core i7 processor

and an 8 GB GPU. To interact with airsim�s APIs, programming was implemented using
the Python language. The flight range of the drone was a three-dimensional obstacle en-
vironment of 110 m × 110 m × 25 m, as shown in Figure 5.

Figure 5. Flight environment.

In the airsim flight environment, the positions of the yellow dot and the blue dot were
regarded as the starting point and the target point, respectively. The gray blocks and yel-
low ball were considered obstacles. The start position and the target position were set to
(1, 1, 3) and (90, 90, 10), respectively. The goal of the experiment was to enable a drone to
find an optimal and collision-free path from the start to the target. The path-planning
method was trained using E-DQN. To ensure that the drone is well-trained, the total train-
ing timesteps were set to 5 × 105. The main parameters utilized in the experiment are
shown in Table 1.

eW

Figure 5. Flight environment.

In the airsim flight environment, the positions of the yellow dot and the blue dot were
regarded as the starting point and the target point, respectively. The gray blocks and yellow
ball were considered obstacles. The start position and the target position were set to (1, 1, 3)
and (90, 90, 10), respectively. The goal of the experiment was to enable a drone to find an
optimal and collision-free path from the start to the target. The path-planning method was
trained using E-DQN. To ensure that the drone is well-trained, the total training timesteps
were set to 5 × 105. The main parameters utilized in the experiment are shown in Table 1.

Table 1. Parameter settings of DQN.

Parameter Value

Discount rate 0.99
Time constant 0.005

Batch_size 128
Hidden_dim 16

Learning_rate 0.0004
Num_episodes 40,000

Max_eps_episode 10
threshold 200
State_dim 42

Action_dim 27

4.2. Experimental Results

To collect environmental information, a drone is allowed to fly freely in the airsim en-
vironment to collect RGB image data and generate event data by calculating the brightness
changes in adjacent RGB images. The comparison of the RGB image and the event image is
shown in Figure 6.

Biomimetics 2024, 9, 238 9 of 13

Biomimetics 2024, 9, x FOR PEER REVIEW 9 of 13

Table 1. Parameter settings of DQN.

Parameter Value
Discount rate 0.99
Time constant 0.005

Batch_size 128
Hidden_dim 16

Learning_rate 0.0004
Num_episodes 40,000

Max_eps_episode 10
threshold 200
State_dim 42

Action_dim 27

4.2. Experimental Results
To collect environmental information, a drone is allowed to fly freely in the airsim

environment to collect RGB image data and generate event data by calculating the bright-
ness changes in adjacent RGB images. The comparison of the RGB image and the event
image is shown in Figure 6.

(a)

(b)

Figure 6. Comparison of RGB image and event image. (a) RGB image. (b) Event image.

Then, event weights generated by the auto-encoder were employed for DQN training
and to obtain motion selection experience at a faster pace. Due to the lack of experience in
the early stages of training, the drone randomly selected actions to explore the environ-
ment. The random exploration period was set as 1000. Moreover, the greedyε − strategy
was adopted to select the next action of drones during one training cycle. When the drone
entered a termination state due to a crash, reaching the target point, or exceeding the max-
imum step size, it entered the next training cycle. After training, the drone was able to
reach the target point safely, and the motion trajectory of the drone could be obtained. To
have a clearer view of the drone�s flight situation, a proportional sketch of the airsim en-
vironment and the final path are shown in Figure 7.

Figure 6. Comparison of RGB image and event image. (a) RGB image. (b) Event image.

Then, event weights generated by the auto-encoder were employed for DQN training
and to obtain motion selection experience at a faster pace. Due to the lack of experience in
the early stages of training, the drone randomly selected actions to explore the environment.
The random exploration period was set as 1000. Moreover, the ε − greedy strategy was
adopted to select the next action of drones during one training cycle. When the drone
entered a termination state due to a crash, reaching the target point, or exceeding the
maximum step size, it entered the next training cycle. After training, the drone was able
to reach the target point safely, and the motion trajectory of the drone could be obtained.
To have a clearer view of the drone’s flight situation, a proportional sketch of the airsim
environment and the final path are shown in Figure 7.

It can be seen from Figure 7 that the drone can find a collision-free and shortest path
to reach the target after training using the proposed method. The running time of the entire
planning process was 41.364 s. Moreover, the entire planning process consisted of 188 steps.

Figure 8 shows the reward values for different episodes. The total episodes was 16,381
during the training process. In Figure 8, the red dots represent the highest reward value
of 195, while other reward values are represented by blue dots. It can be seen from Figure 8
that the training process converges gradually toward 6000 episodes, and most of the reward
values can receive the maximum reward value during 6000–16,381 episodes, which proves
the convergence speed of the proposed algorithm.

To further demonstrate the performance of the proposed method, the running time of
the E-DQN path-planning method was compared with that of DQN and the spiking neural
network (SNN) [31] in the same test environment. DQN is a commonly used intelligent
path-planning algorithm, and SNN is also one of the typical brain-inspired path-planning
methods. In our previous research, the running time of the SNN path-planning algorithm
was introduced in detail [34]. The path-planning algorithm utilizing SNN adopts the leaky
integrate-and-fire (LIF) model to generate a motion strategy. The parameter settings for
SNN are shown in Table 2. The comparison results are shown in Table 3.

The path-planning time using the E-DQN algorithm was significantly reduced com-
pared with that of the DQN algorithm and SNN algorithm, which verifies the rapidity and
feasibility of the proposed algorithm.

Biomimetics 2024, 9, 238 10 of 13
Biomimetics 2024, 9, x FOR PEER REVIEW 10 of 13

(a)

(b)

Figure 7. Planned path. (a) 3D View of the Planed Path. (b) Top View of the Planned Path.

It can be seen from Figure 7 that the drone can find a collision-free and shortest path
to reach the target after training using the proposed method. The running time of the en-
tire planning process was 41.364 s. Moreover, the entire planning process consisted of 188
steps.

Figure 8 shows the reward values for different episodes. The total episodes was
16,381 during the training process. In Figure 8, the red dots represent the highest reward
value of 195, while other reward values are represented by blue dots. It can be seen from
Figure 8 that the training process converges gradually toward 6000 episodes, and most of
the reward values can receive the maximum reward value during 6000–16,381 episodes,
which proves the convergence speed of the proposed algorithm.

Figure 7. Planned path. (a) 3D View of the Planed Path. (b) Top View of the Planned Path.

Biomimetics 2024, 9, x FOR PEER REVIEW 11 of 13

Figure 8. Episodes vs. Reward Result.

To further demonstrate the performance of the proposed method, the running time
of the E-DQN path-planning method was compared with that of DQN and the spiking
neural network (SNN) [31] in the same test environment. DQN is a commonly used intel-
ligent path-planning algorithm, and SNN is also one of the typical brain-inspired path-
planning methods. In our previous research, the running time of the SNN path-planning
algorithm was introduced in detail [34]. The path-planning algorithm utilizing SNN
adopts the leaky integrate-and-fire (LIF) model to generate a motion strategy. The parameter
settings for SNN are shown in Table 2. The comparison results are shown in Table 3.

Table 2. The parameter settings for SNN.

Parameter Value
membrane time constant 0.002
rest membrane potential 0 mV

membrane resistance 20 M
pre-amplitude 1.0
post-amplitude 1.0

pre-time constant 0.0168
post-time constant 0.0337

Table 3. Runtime comparison of typical brain-inspired path-planning methods.

Method Run Time (s)
E-DQN 41.364
DQN 161.88
SNN 155.4

The path-planning time using the E-DQN algorithm was significantly reduced com-
pared with that of the DQN algorithm and SNN algorithm, which verifies the rapidity
and feasibility of the proposed algorithm.

5. Conclusions

To improve the rapidity of motion decision-making, a bio-inspired path-planning
algorithm based on E-DQN for drones in complex environments was proposed. Unreal
engine and airsim plugin were employed to build a training environment with obstacles
for drones. Event data were generated using airsim simulator environment perception to
reduce information redundancy. In terms of the asynchrony and sparsity of event data,

Figure 8. Episodes vs. Reward Result.

Biomimetics 2024, 9, 238 11 of 13

Table 2. The parameter settings for SNN.

Parameter Value

membrane time constant 0.002
rest membrane potential 0 mV

membrane resistance 20 M
pre-amplitude 1.0
post-amplitude 1.0

pre-time constant 0.0168
post-time constant 0.0337

Table 3. Runtime comparison of typical brain-inspired path-planning methods.

Method Run Time (s)

E-DQN 41.364
DQN 161.88
SNN 155.4

5. Conclusions

To improve the rapidity of motion decision-making, a bio-inspired path-planning
algorithm based on E-DQN for drones in complex environments was proposed. Unreal
engine and airsim plugin were employed to build a training environment with obstacles
for drones. Event data were generated using airsim simulator environment perception to
reduce information redundancy. In terms of the asynchrony and sparsity of event data,
an auto-encoder was designed to generate event weights, which were then input into a
reinforcement learning network for training. Subsequently, DQN was introduced for the
motion planning training of drones, and the ε-greedy strategy was used for drone action
selection. The next step, the state of the drone, could be updated by setting reward signals
and interacting with the airsim simulation environment. After several training sessions,
the drone could find an optimal collision-free path to the target. The key contributions of
this paper are listed below.

(1) An event auto-encoder for the unsupervised representation learning is presented from
fast and asynchronous spatiotemporal event byte stream data.

(2) Motion policies are trained over event representations using the DQN for path plan-
ning for drones, which is superior to traditional path-planning algorithms.

(3) The dopamine reward mechanism is adopted for obstacle avoidance, which is more
in line with animal action decision-making behavior.

Future work will investigate the extension of our algorithm to multiple drones and
dynamically growing maps for motion decision-making and conduct real-world field
experiments to validate our method. However, the real-world application of the proposed
method also has limitations and challenges, such as efficiency issues, security issues,
interpretability issues, and the practical challenges and scalability of the proposed method
in diverse real-world scenarios. Overall, the problems of the E-DQN algorithm in practical
applications are diverse and complex. However, with the continuous deepening of research
and the continuous development of technology, many problems are expected to be solved
or alleviated.

Author Contributions: Methodology, Y.C.; software, A.R.; writing—original draft preparation, R.D.;
writing—review and editing, Z.X. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by [Science and Technology Bureau] grant number [JCKY2020605C009]
and [Aeronautic Science Foundation of China] grant number [ASFC-2020Z071052001].

Institutional Review Board Statement: Not applicable.

Biomimetics 2024, 9, 238 12 of 13

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to the research project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramalepa, L.P.; Jamisola, R.S. A review on cooperative robotic arms with mobile or drones bases. Int. J. Autom. Comput. 2021, 18,

536–555. [CrossRef]
2. Quinones, G.M.; Biswas, G.; Ahmed, I.; Darrah, T.; Kulkarni, C. Online decision making and path planning framework for safe

operation of unmanned aerial vehicles in urban scenarios. Int. J. Progn. Health Manag. 2021, 12, 1–17.
3. Martinez, N.A.; Lu, L.; Campoy, P. Fast RRT* 3D-sliced planner for autonomous exploration using MAVs. Unmanned Syst. 2022,

10, 175–186. [CrossRef]
4. Mohammed, H.; Romdhane, L.; Jaradat, M.A. RRT* N: An efficient approach to path planning in 3D for static and dynamic

environments. Adv. Robot. 2021, 35, 168–180. [CrossRef]
5. Rostami, S.M.H.; Sangaiah, A.K.; Wang, J.; Liu, X. Obstacle avoidance of mobile robots using modified artificial potential field

algorithm. EURASIP J. Wirel. Commun. Netw. 2019, 1, 70. [CrossRef]
6. Duchon, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path planning with modified a star algorithm for a

mobile robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]
7. Nguyen, T.H.; Nguyen, X.T.; Pham, D.A.; Tran, B.L.; Bui, D.B. A new approach for mobile robot path planning based on RRT

algorithm. Mod. Phys. Lett. B 2023, 37, 2340027. [CrossRef]
8. Sabudin, E.N.; Omar, R.; Debnath, S.K.; Sulong, M.S. Efficient robotic path planning algorithm based on artificial potential field.

Int. J. Electr. Comput. Eng. 2021, 11, 4840–4849. [CrossRef]
9. Zhang, L.; Li, Y. Mobile robot path planning algorithm based on improved a star. J. Phys. Conf. Ser. 2021, 1848, 012013. [CrossRef]
10. Machmudah, A.; Shanmugavel, M.; Parman, S.; Manan, T.S.A.; Dutykh, D.; Beddu, S.; Rajabi, A. Flight trajectories optimization

of fixed-wing UAV by bank-turn mechanism. Drones 2022, 6, 69. [CrossRef]
11. Hu, H.; Wang, Y.; Tong, W.; Zhao, J.; Gu, Y. Path planning for autonomous vehicles in unknown dynamic environment based on

deep reinforcement learning. Appl. Sci. 2023, 13, 10056. [CrossRef]
12. Xie, R.; Meng, Z.; Wang, L.; Li, H.; Wang, K.; Wu, Z. Unmanned aerial vehicle path planning algorithm based on deep

reinforcement learning in large-scale and dynamic environments. IEEE Access 2021, 9, 24884–24900. [CrossRef]
13. Banino, A.; Barry, C.; Uria, B.; Blundell, C.; Lillicrap, T.; Mirowski, P.; Pritzel, A.; Chadwick, M.J.; Degris, T.; Modayil, J.; et al.

Vector-based navigation using grid-like representations in artificial agents. Nature 2018, 557, 429–433. [CrossRef] [PubMed]
14. Edvardsen, V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network. Nat.

Comput. 2019, 18, 13–27. [CrossRef]
15. Wang, S.; Xie, X.; Huang, K.; Zeng, J.; Cai, Z. Deep reinforcement learning-based traffic signal control using high-resolution

event-based data. Entropy 2019, 21, 744. [CrossRef] [PubMed]
16. Zhang, L.; Zhou, M.; Li, Z. An intelligent train operation method based on event-driven deep reinforcement learning. IEEE Trans.

Ind. Inform. 2021, 18, 6973–6980. [CrossRef]
17. Menda, K.; Chen, Y.C.; Grana, J.; Bono, J.W.; Tracey, B.D.; Kochenderfer, M.J.; Wolpert, D. Deep reinforcement learning for

event-driven multi-agent decision processes. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1259–1268. [CrossRef]
18. Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al. Deep

q-learning from demonstrations. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 29
April 2018; Volume 32.

19. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics: Results of the 11th International Conference; Springer International Publishing: Berlin/Heidelberg, Germany,
2018; pp. 621–635.

20. Falanga, D.; Kleber, K.; Scaramuzza, D. Dynamic obstacle avoidance for quadrotors with event cameras. Sci. Robot. 2020, 5, 9712.
[CrossRef] [PubMed]

21. Andersen, P.A.; Goodwin, M.; Granmo, O.C. Towards safe reinforcement-learning in industrial grid-warehousing. Inf. Sci. 2020,
537, 467–484. [CrossRef]

22. Xie, D.; Hu, R.; Wang, C.; Zhu, C.; Xu, H.; Li, Q. A simulation framework of unmanned aerial vehicles route planning design and
validation for landslide monitoring. Remote Sens. 2023, 15, 5758. [CrossRef]

23. Buck, A.; Camaioni, R.; Alvey, B.; Anderson, D.T.; Keller, J.M.; Luke, R.H., III; Scott, G. Unreal engine-based photorealistic aerial
data generation and unit testing of artificial intelligence algorithms. In Geospatial Informatics XII; SPIE: Orlando, FL, USA, 2022;
Volume 12099, pp. 59–73.

24. Available online: https://microsoft.github.io/AirSim/event_sim/ (accessed on 30 December 2023).
25. Vemprala, S.; Mian, S.; Kapoor, A. Representation learning for event-based visuomotor policies. Adv. Neural Inf. Process. Syst.

2021, 34, 4712–4724.
26. Zhou, J.; Komuro, T. Recognizing fall actions from videos using reconstruction error of variational autoencoder. In Proceedings of

the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3372–3376.

https://doi.org/10.1007/s11633-021-1299-7
https://doi.org/10.1142/S2301385022500108
https://doi.org/10.1080/01691864.2020.1850349
https://doi.org/10.1186/s13638-019-1396-2
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1142/S0217984923400274
https://doi.org/10.11591/ijece.v11i6.pp4840-4849
https://doi.org/10.1088/1742-6596/1848/1/012013
https://doi.org/10.3390/drones6030069
https://doi.org/10.3390/app131810056
https://doi.org/10.1109/ACCESS.2021.3057485
https://doi.org/10.1038/s41586-018-0102-6
https://www.ncbi.nlm.nih.gov/pubmed/29743670
https://doi.org/10.1007/s11047-016-9575-0
https://doi.org/10.3390/e21080744
https://www.ncbi.nlm.nih.gov/pubmed/33267458
https://doi.org/10.1109/TII.2021.3138098
https://doi.org/10.1109/TITS.2018.2848264
https://doi.org/10.1126/scirobotics.aaz9712
https://www.ncbi.nlm.nih.gov/pubmed/33022598
https://doi.org/10.1016/j.ins.2020.06.010
https://doi.org/10.3390/rs15245758
https://microsoft.github.io/AirSim/event_sim/

Biomimetics 2024, 9, 238 13 of 13

27. Si, J.; Harris, S.L.; Yfantis, E. A dynamic ReLU on neural network. In Proceedings of the 2018 IEEE 13th Dallas Circuits and
Systems Conference (DCAS), Dallas, TX, USA, 12 November 2018; pp. 1–6.

28. Rynkiewicz, J. Asymptotic statistics for multilayer perceptron with ReLU hidden units. Neurocomputing 2019, 342, 16–23.
[CrossRef]

29. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Robot. Auton.
Syst. 2019, 115, 143–161. [CrossRef]

30. Coy, M.V.C.; Casallas, E.C. Training neural networks using reinforcement learning to reactive path planning. J. Appl. Eng. Sci.
2021, 19, 48–56.

31. Ab Azar, N.; Shahmansoorian, A.; Davoudi, M. Uncertainty-aware path planning using reinforcement learning and deep learning
methods. Comput. Knowl. Eng. 2020, 3, 25–37.

32. Kim, C. Deep Q-Learning Network with Bayesian-Based Supervised Expert Learning. Symmetry 2022, 14, 2134. [CrossRef]
33. Rubí, B.; Morcego, B.; Pérez, R. Quadrotor path following and reactive obstacle avoidance with deep reinforcement learning.

J. Intell. Robot. Syst. 2021, 103, 62. [CrossRef]
34. Chao, Y.; Augenstein, P.; Roennau, A.; Dillmann, R.; Xiong, Z. Brain inspired path planning algorithms for drones. Front.

Neurorobotics 2023, 17, 1111861. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2018.11.097
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.3390/sym14102134
https://doi.org/10.1007/s10846-021-01491-2
https://doi.org/10.3389/fnbot.2023.1111861
https://www.ncbi.nlm.nih.gov/pubmed/36937552

	Introduction
	System Framework
	E-DQN-Based Path-Planning Method
	Bio-Inspired Environment Perception
	Feature Extraction of Event Data
	E-DQN Training of Drones

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions
	References

