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Abstract: The number of scholarly articles continues to rise. The continuous increase in scientific
output poses a challenge for researchers, who must devote considerable time to collecting and
analyzing these results. The topic modeling approach emerges as a novel response to this need.
Considering the swift advancements in computed tomography perfusion (CTP), we deem it essential
to launch an initiative focused on topic modeling. We conducted a comprehensive search of the
Scopus database from 1 January 2000 to 16 August 2023, to identify relevant articles about CTP.
Using the BERTopic model, we derived a group of topics along with their respective representative
articles. For the 2020s, linear regression models were used to identify and interpret trending topics.
From the most to the least prevalent, the topics that were identified include “Tumor Vascularity”,
“Stroke Assessment”, “Myocardial Perfusion”, “Intracerebral Hemorrhage”, “Imaging Optimization”,
“Reperfusion Therapy”, “Postprocessing”, “Carotid Artery Disease”, “Seizures”, “Hemorrhagic
Transformation”, “Artificial Intelligence”, and “Moyamoya Disease”. The model provided insights
into the trends of the current decade, highlighting “Postprocessing” and “Artificial Intelligence” as
the most trending topics.

Keywords: CT perfusion; topic modeling; natural language processing

1. Introduction

The quantity of scholarly articles is consistently increasing, demonstrating a yearly
growth rate of 4% in publications and 1.8% in the number of references per publication [1].
The continuous increase in scientific output makes it challenging for researchers, as they
need significant time to gather and understand these results. Given the imperative for
medical practitioners and researchers to remain abreast of contemporary research and
literature in order to deliver the most current care and information to patients and advance
scientific knowledge, there exists a demand for enhanced methods of research synthesis that
optimize efficiency. In addressing this need, the topic modeling approach emerges as a novel
solution. It provides a way to discern hidden themes within a large research landscape,
paving the path for recognizing research trends and granting valuable insights [2]. These
tools are crucial in identifying both rising and waning areas in medical research and making
the exhaustive process of reviews more manageable.

Computed tomography perfusion (CTP) imaging has become a prominent diagnostic
tool. CTP has established itself as the favored advanced imaging modality in many stroke
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clinical trials, solidifying its standing [3]. The integration of CTP into the standard opera-
tional procedures of stroke centers worldwide is becoming more prevalent, serving as a
testament to its effectiveness and reliability. The increasing popularity of CTP can also be
attributed to its notable diagnostic accuracy in detecting myocardial ischemia. It has been
observed that CTP exhibits a diagnostic accuracy that is comparable to stress magnetic res-
onance imaging and positron emission tomography perfusion [4]. Moreover, the capability
of CTP to evaluate vascularization in tumor tissues without invasive procedures enhances
its scope of utility, thus demonstrating its versatility and significance in contemporary
medicine [5]. Given the rapid advancement and widespread implementation of CTP, we
have recognized the importance of undertaking a topic modeling endeavor. The objective
of our study was to gain an understanding of the dynamic research landscape pertaining
to CTP.

2. Materials and Methods

We conducted a search of the Scopus database from 1 January 2000 up to 16 August
2023, using the keywords “computed tomography perfusion”, “CT perfusion”, “perfusion
CT”, and “perfusion computed tomography” in article titles and keywords to identify
relevant articles. The article types considered for inclusion in this study were limited to
“Article” and “Review”. Only articles written in English were included. These specific
article types, along with their corresponding metadata elements, such as article title, ab-
stract, year, and citation count, were subsequently obtained. We removed articles lacking
abstracts to ensure that our topic modeling accurately captured the essential themes, as
abstracts provide a concise summary of an article’s main content and findings. The articles
were classified into distinct quartiles (Q1, Q2, Q3, and Q4) based on the number of citations
they received, with the division determined by the 25th percentile for each quartile.

In our study, we employed BERTopic, a topic modeling technique that facilitates the
interpretation of topics by preserving important words in topic descriptions [6]. The Bidi-
rectional Encoder Representations from Transformers (BERT) embeddings were generated
utilizing the S-PubMedBert-MS-MARCO model, which has been specifically optimized
for the medical domain [7]. Upon acquiring the embeddings, we eliminated stop words
that lacked contextual significance in the text, such as “the” and “of”. The utilization of
the Natural Language Toolkit library in the Python programming language enabled the
attainment of this objective [8]. In the model, the parameters for both the minimum topic
size and the number of extracted words per topic were configured to be 50. The former
establishes the minimum permissible magnitude for a subject, whereas the latter specifies
the quantity of words extracted from each subject. Using the BERTopic model, we derived
a collection of topics along with their respective representative articles. To assign labels
to these topics, both authors (B.B.O. and M.K.) reached a mutual agreement based on an
analysis of keywords and representative articles. We also crafted word clouds to visualize
the primary keywords associated with these topics. Subsequently, we investigated the
distribution of these leading topics across various citation quartiles and publication years.

For the current decade, the 2020s, we set out to analyze prevailing trends. Linear
regression models were the primary tools to discern these trends within topics [9]. By
focusing on linear patterns, we enhanced the methodology, simplifying the interpretation
of our results. During this analysis, topic probabilities, publication years, and topic names
were drawn from the dataset. Here, the topic probability represented the chance of an
article aligning with a specific topic due to its content. Afterward, we computed the average
topic probability for each year and topic. With these consolidated data, linear regression
models were built for every unique topic, facilitating the distinction between trending (hot)
and waning (cold) topics. Linear regression models were constructed using mean topic
probability as the dependent variable and the publication year as the independent variable.
A “hot topic” denotes an area of research showing a positive trend in topic probability over
time, indicating growing interest and relevance within the research community. In contrast,
a “cold topic” refers to subjects displaying a negative trend in topic probability, signifying
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diminishing interest or relevance in that particular research area. The model’s source
code can be found in the project’s GitHub repository (https://github.com/mertkarabacak/
TopicModeling_CTP).

3. Results

The initial dataset consisted of 3562 articles; by limiting our scope to solely the article
types of “Article” and “Review”, a total of 995 articles were excluded. The lack of abstracts
resulted in the additional exclusion of 53 articles. Out of the total of 2514 articles that
were analyzed, a classification process was conducted on 2356 articles, resulting in their
categorization into 12 distinct categories. Consequently, the 158 articles comprising the
remaining subset were identified as outliers due to their inability to be assigned to any
specific category.

Table 1 displays all the crafted topics, each characterized by its distinct set of keywords
and indicating the total count of articles associated with each topic. The topics that were
crafted encompass “Tumor Vascularity”, “Stroke Assessment”, “Myocardial Perfusion”,
“Intracerebral Hemorrhage”, “Imaging Optimization”, “Reperfusion Therapy”, “Postpro-
cessing”, “Carotid Artery Disease”, “Seizures”, “Hemorrhagic Transformation”, “Artificial
Intelligence”, and “Moyamoya Disease”.

Table 1. Topics, keywords, number of articles, and representative articles.

Topic Label Key Words Number of
Articles Representative Articles

Tumor
Vascularity

tumor, blood, parameters, bf, liver, bv, patients, cancer,
volume, flow, values, using, tumors, study, mean, ps,
response, significantly, hepatic, significant, correlation,
lung, carcinoma, treatment, group, permeability,
compared, hcc, analysis, time, arterial, respectively,
pancreatic, higher, value, ml100, performed, tissue, pct,
lesions, changes, mtt, cell, showed, different, 005,
dynamic, used, underwent, groups

848

Title: Perfusion computed tomography
for monitoring induction chemotherapy
in patients with squamous cell
carcinoma of the upper aerodigestive
tract: Correlation between changes in
tumor perfusion and tumor volume

Stroke
Assessment

stroke, patients, ischemic, acute, core, infarct, volume,
cerebral, penumbra, aspects, score, outcome, time,
collateral, clinical, occlusion, maps, cta, infarction,
using, volumes, ml, cbv, blood, analysis, ncct,
software, angiography, followup, circulation, tissue,
mismatch, thresholds, ais, early, dwi, noncontrast,
rapid, 95, onset, used, study, cbf, final, included,
treatment, within, vessel, good, correlation

498

Title: Quantifying infarct core volume
in ischemic stroke: What is the optimal
threshold and parameters of computed
tomography perfusion?

Myocardial
Perfusion

myocardial, coronary, stress, stenosis, cad, ccta, mbf,
diagnostic, artery, angiography, dynamic, cardiac, cta,
ischemia, disease, patients, accuracy, using, significant,
95, assessment, spect, invasive, ffr, ci, flow,
performance, rest, reserve, value, compared, study,
specificity, analysis, adenosine, combined, sensitivity,
fractional, respectively, heart, evaluation, detection,
segments, myocardium, quantitative, obstructive,
hemodynamically, cardiovascular, reference, alone

210 Title: Dynamic myocardial CT
perfusion imaging-state of the art

Intracerebral
Hemorrhage

cerebral, vasospasm, dci, hemorrhage, patients, sah,
subarachnoid, aneurysmal, delayed, cbf, asah, mtt,
outcome, blood, hematoma, early, ischemia, mean,
time, intracerebral, flow, study, 95, pressure,
performed, angiography, cranioplasty, clinical, ich,
perihematomal, brain, ci, group, aneurysm, spot,
value, infarction, parameters, days, analysis, values,
cbv, sensitivity, significantly, volume, within,
expansion, dsa, deficits, transit

170

Title: Relationship between vasospasm,
cerebral perfusion, and delayed
cerebral ischemia after aneurysmal
subarachnoid hemorrhage

https://github.com/mertkarabacak/TopicModeling_CTP
https://github.com/mertkarabacak/TopicModeling_CTP


Tomography 2023, 9 2019

Table 1. Cont.

Topic Label Key Words Number of
Articles Representative Articles

Imaging
Optimization

dose, image, radiation, images, quality, noise,
phantom, using, reconstruction, lowdose, data,
dynamic, protocol, maps, reduction, cerebral, contrast,
scan, algorithm, brain, temporal, tube, values, doses,
mgy, study, proposed, compared, time, scans, pct, mas,
iterative, effective, cbf, flow, blood, used, standard,
sampling, model, purpose, skin, quantitative, injection,
mean, acquisition, clinical, stroke, exposure

161

Title: Temporal feature prior-aided
separated reconstruction method for
low-dose dynamic myocardial
perfusion computed tomography

Reperfusion
Therapy

patients, stroke, thrombectomy, thrombolysis,
outcome, endovascular, onset, ischemic, evt, outcomes,
treatment, time, group, score, mrs, scale, clinical,
selection, intravenous, hours, window, acute, large,
treated, modified, functional, core, rankin, occlusion,
nihss, study, mismatch, 90, therapy, baseline, safety,
reperfusion, wakeup, mechanical, days, volume,
criteria, median, recanalization, selected, mortality,
beyond, tissue, groups, vs

128

Title: Utilization of CT perfusion
patient selection for mechanical
thrombectomy irrespective of time: A
comparison of functional outcomes and
complications

Postprocessing

cerebral, cbf, blood, cbv, values, using, aif, flow, data,
maps, artery, svd, mtt, brain, patients, mean, input,
arterial, quantitative, function, obtained, volume,
technique, pct, study, analysis, time, compared,
different, measurements, variability, used, software,
algorithm, postprocessing, algorithms, stenosis,
deconvolution, parameters, correlation, differences,
transit, stroke, significant, mca, regions, singular,
images, mrp, decomposition

103

Title: Differences in CT perfusion maps
generated by different commercial
software: Quantitative analysis by
using identical source data of acute
stroke patients

Carotid Artery
Disease

cerebral, carotid, stenosis, patients, artery, stenting, cbf,
symptomatic, mtt, cvr, blood, side, acetazolamide,
ipsilateral, bypass, contralateral, cas, ttp, flow,
changes, unilateral, challenge, ica, occlusion,
hemodynamic, cerebrovascular, internal, spect, study,
hps, parameters, severe, asymptomatic, time, middle,
impairment, test, group, disease, mean, surgery, bto,
mca, chronic, hyperperfusion, cbv, significant, 0001,
brain, ischemic

68

Title: Carotid artery stenting and
blood–brain barrier permeability in
subjects with chronic carotid artery
stenosis

Seizures

seizure, stroke, patients, postictal, acute, eeg,
hypoperfusion, focal, hyperperfusion, pct, diagnosis,
aphasia, ictal, epileptic, syndrome, cerebral,
epilepticus, case, ischemic, symptoms, status, clinical,
may, neurological, emergency, cortical, mimics, left,
blood, brain, aura, se, patterns, isolated, handl, cases,
pres, deficits, pattern, encephalopathy, migraine, code,
changes, onset, epilepsy, presented, study, reversible,
strokelike

59
Title: Acute Ischemic Stroke or
Epileptic Seizure? Yield of CT
Perfusion in a “Code Stroke” Situation

Hemorrhagic
Transformation

ht, bbbp, transformation, hemorrhagic, permeability,
stroke, barrier, bloodbrain, patients, acute, ischemic,
patlak, hemorrhage, analysis, ph, regression, model,
using, ps, area, prediction, relative, 95, associated,
admission, tpa, infarct, bbb, cerebral, multivariate,
values, pct, clinical, increased, study, reperfusion,
thrombolysis, volume, delayed, risk, ais, parenchymal,
higher, nlr, parameters, significantly, therapy,
intracerebral, blood, hc

46
Title: Hemorrhagic transformation of
ischemic stroke: Prediction with CT
perfusion
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Table 1. Cont.

Topic Label Key Words Number of
Articles Representative Articles

Artificial
Intelligence

learning, deep, segmentation, neural, ischemic, stroke,
network, infarct, maps, acute, convolutional, lesion,
using, model, ml, core, data, dice, networks, cnn,
machine, based, tissue, used, images, proposed,
volume, patients, approach, 4d, penumbra, time,
spatiotemporal, image, prediction, unet, trained,
coefficient, performance, predict, absolute, algorithm,
training, mean, software, parameter, segment, achieve,
compared, challenge

34
Title: Prediction of Stroke Infarct
Growth Rates by Baseline Perfusion
Imaging

Moyamoya
Disease

moyamoya, disease, bypass, revascularization,
surgery, mmd, cerebral, patients, postoperative,
stamca, hemodynamic, adult, cbf, values, time,
surgical, hemispheres, side, preoperative, dt, rttp,
mms, brain, rcbf, collateral, rmtt, formation, changes,
temporal, blood, ttp, volume, operation, months,
atherosclerotic, seconds, artery, ischemic, mtt, relative,
improved, compared, hemodynamics, significant,
flow, wbctp, underwent, 005, significantly, combined

31

Title: CT perfusion assessment of
Moyamoya syndrome before and after
direct revascularization (superficial
temporal artery to middle cerebral
artery bypass)

Figure 1 presents word clouds corresponding to individual topics, which consist of
keywords that symbolize the fundamental concepts and components. Within these word
clouds, the prominence of each keyword reflects its frequency, offering a concise overview
of the primary themes related to each topic.
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We illustrated the progression of these topics by charting the count of papers based
on their publication year (Figure 2). This chart captures the annual changes in topic
prominence.
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Figure 3. Citation quartiles.

The model offered insights into the current decade’s patterns, spotlighting “Post-
processing” and “Artificial Intelligence” as the most prominent subjects. “Myocardial
Perfusion” and “Hemorrhagic Transformation” were among the hot topics as well. Con-
versely, the topics identified as least prevalent in this decade were “Carotid Artery Disease”
and “Reperfusion Therapy”. We visualized these patterns using a color-gradient bar chart
in Figure 4.
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4. Discussion

The extensive and rapidly expanding body of scholarly literature highlights the es-
sential significance of topic modeling in effectively navigating and integrating research
findings. In our research, we employed BERTopic to analyze 2514 articles pertinent to
CTP, successfully identifying 12 central topics: “Tumor Vascularity”, “Stroke Assessment”,
“Myocardial Perfusion”, “Intracerebral Hemorrhage”, “Imaging Optimization”, “Reper-
fusion Therapy”, “Postprocessing”, “Carotid Artery Disease”, “Seizures”, “Hemorrhagic
Transformation”, “Artificial Intelligence”, and “Moyamoya Disease”. Leveraging linear
regression models allowed us to discern the dominant research trajectories manifesting
in the current decade. The examination of the development of these topics revealed that
“Postprocessing” and “Artificial Intelligence” have ascended as the foremost subjects in
the 2020s, with “Myocardial Perfusion” and “Hemorrhagic Transformation” also gaining
prominence. Conversely, the interest in “Carotid Artery Disease” and “Reperfusion Ther-
apy” seems diminishing, as evidenced by their declining trends. Our method offers a
distinct viewpoint and essential insights, becoming a significant resource for researchers
specializing in CT Perfusion, offering a valuable glimpse into the dynamic progression of
the CTP research domain.

The topic “Tumor Vascularity” emerged as the most dominant, in part because stroke-
related subjects were divided into smaller subcategories. CTP helps to evaluate the vitality
and extent of tumor vascularization. CTP has revealed marked disparities in perfusion
values between normal and neoplastic tissues, with notably elevated perfusion metrics
observed in patients with head and neck, rectal, hepatic, and lung masses [10]. Conse-
quently, this assessment plays a pivotal role in diagnosing and staging, prognosticating, and
tracking responses to therapies [11]. In more specific terms, for certain tumor types, CTP
has proven effective in differentiating between benign and malignant processes [12–14],
forecasting potential metastatic events [15], predicting therapeutic responses [16,17], and
monitoring responses to various treatments [18–22]. CTP also expands its utility in distinct
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areas, such as assessing the effects of radiation therapy on the hemodynamics of the spinal
cord [23]. Given these applications of CTP, it is understandable that “Tumor Vascularity”
stands out as a significant topic in CTP research literature. Although CT imaging has been
clinically proven to be capable of discerning tumor perfusion, vessel morphology, and
response to therapy, its popularity in this field has decreased, according to our analysis
(Figure 2). This is likely due to concerns about the additional radiation exposure associ-
ated with perfusion acquisition techniques and limitations in the use of iodinated contrast
agents. As a result, magnetic resonance imaging (MRI) and ultrasound-based perfusion
assessments have become more favored, especially in cases where high-resolution soft-
tissue anatomical imaging is needed (such as MRI for the brain) or point-of-care assessment
is necessary (such as ultrasound for the liver). However, the implementation of CTP in
whole-body staging CT protocols can be seamless. Additionally, there is less variation
in scanning parameters and postprocessing methodologies compared to MRI, and the
output of quantitative imaging biomarkers is a strong advantage for the further use and
development of CTP, particularly in conjunction with low-dose protocols.

In our study, “Stroke Assessment” emerged as the second most prevalent topic. This
is notably significant, considering that the model subdivided stroke-related topics into
various subcategories during the analysis. CTP plays a key role in evaluating patients
presenting with acute stroke symptoms. Ischemic stroke occurs when a cerebral artery
becomes blocked, the primary source of disability in the US [24]. This blockage triggers the
unavoidable demise of a section of the brain tissue called the core infarction. Concurrently,
there exists another segment of the brain that, although deprived of sufficient blood
supply, remains alive; this area is widely known as the penumbra [25]. The penumbra is
vulnerable to permanent damage if the resumption of blood circulation is not promptly
facilitated. Consequently, the main objective of reperfusion therapy during the management
of ischemic strokes is to safeguard the penumbra by re-establishing the flow of blood
through the arteries [25]. The procedure of CTP is utilized to conduct a thorough assessment
of the brain’s parenchymal tissue amidst instances of cerebral ischemia. This method can
be employed to ascertain the extent of core infarction as well as the surrounding penumbra
area. Despite its unambiguous utility in detecting oligemic and penumbra tissue, there
are concerns about the associated contrast and radiation exposure accompanying a CTP
study. Hence, in the initial hours post-stroke, CTP is primarily reserved for instances where
noncontrast CT and CTA fail to provide adequate diagnostic clarity [26]. However, the
American Heart Association guidelines advocate using CTP or MR imaging in triaging
patients beyond the 6 h mark [27]. This change in stance arises since the efficacy of
endovascular therapy between 6 and 24 h has been demonstrated in patients selected
through CTP [28,29]. Furthermore, the findings from these two pivotal trials published in
2018 could plausibly account for the rising prevalence of the “Stroke Assessment” topic
since 2018. Another application of CTP in stroke assessment involves evaluating the
cerebral perfusion status and reserve in patients with Moyamoya disease [30,31]. This
chronic condition is characterized by occlusion and stenosis of the cerebrovascular system,
potentially leading to cerebral ischemia and hemorrhage [32]. Given these multifaceted
considerations, it is understandable that “Stroke Assessment” emerged as a dominant topic
in our study. It is worth noting that the keyword “stroke” also appears in the “Seizures”
topic. Differentiating clinically between acute ischemic stroke and epileptic seizure can be
challenging. Making the correct diagnosis can prevent unnecessary reperfusion therapy,
and CT perfusion may play a pivotal role in this distinction, which explains the presence of
the “stroke” keyword in the topic.

“Myocardial Perfusion” emerged as the third most prevalent topic in our study. The
process of CTP imaging involves assessing myocardial perfusion under both rest and
hyperemic circumstances [33]. CTP is conducted following the introduction of iodinated
contrast, where the left ventricular myocardium is captured during the first pass of the
contrast bolus passing through [33]. Capturing images during the beginning stage of the
first passage of the contrast is vital because of the rapid washout [34]. In studies con-



Tomography 2023, 9 2024

ducted at single centers, myocardial CTP imaging has exhibited impressive accuracy when
benchmarked against modalities like single-photon emission CT, cardiovascular magnetic
resonance, invasive coronary angiography, positron emission tomography, and invasive
fractional flow reserve [35]. While the application of CTP for myocardial perfusion has
been somewhat constrained, primarily because coronary CT angiography on its own offers
a substantial negative predictive value in ruling out myocardial ischemia, its relevance
emerges in scenarios demanding clarity on ischemia presence [35]. This is particularly true
in cases with coronary artery stenoses of ambiguous hemodynamic impact, pronounced
coronary calcification, or coronary stents [35–37]. In our study, “Myocardial Perfusion”
secured the third position, a reflection of its varied uses encompassing static, dynamic, and
dual-energy acquisitions. Additionally, “Myocardial Perfusion” maintained its position as
one of the hot topics of this decade, emphasizing the growing interest in utilizing CTP in
this domain.

Another interesting topic created by our topic modeling analysis, emerging as the
5th most prevalent topic, was “Imaging Optimization”. This concept mainly encompasses
strategies for minimizing radiation exposure without compromising the precision of per-
fusion parameters [25,38]. Furthermore, it involves approaches that fine-tune the initial
analysis of CTP first-pass analysis, optimize the timing of the contrast administration, and
hone image acquisition techniques [39,40]. Additionally, it considers the finer details, such
as adjusting image-acquisition parameters and optimizing z-direction coverage and section
thickness to procure the highest quality images [40]. Noise reduction efforts have also
been a significant area of research for this topic [41–43]. This concerted effort to optimize
imaging procedures represents a significant stride in advancing the field, merging safety
with efficiency and accuracy.

The heightened emphasis on “Postprocessing” and “Artificial Intelligence” in our
trend analysis for the 2020s indicates a shift in CTP research directions. Several factors may
potentially explain why “Postprocessing” has emerged as a hot topic in recent research.
Firstly, the variability in postprocessing represents a significant challenge in myocardial CTP
implementation, potentially spurring heightened investigative interest [35]. Additionally,
in acute ischemic stroke, the decision for endovascular intervention is frequently based
on CTP analysis. This involves quantifying penumbra and infarct core using perfusion
parameter thresholds, which unfortunately lack consistency across various vendors, further
driving research in this area [44]. Numerous studies have also delved into comparing
diverse postprocessing software [45–47]. Thus, the surge in focus on “Postprocessing”
may be attributed to the ongoing quest for a unified postprocessing method. Meanwhile,
artificial-intelligence-driven solutions are infiltrating every industry, radiology being no
exception [48]. In line with this, artificial intelligence has emerged as a prominent theme in
CTP research, showcasing numerous applications in both stroke and myocardial perfusion,
aligning well with our topic modeling findings [49–53].

“Hemorrhagic Transformation” was also one of the hot topics of this decade, high-
lighting the increasing use of CTP in addressing this dangerous complication in patients
with acute ischemic stroke [54]. The hemorrhagic infarction that arises following venous or
arterial thrombosis and embolism is known as hemorrhagic transformation [55]. Hemor-
rhagic transformation exhibits a wide array of severity levels, from minor pinpoint bleeding
within the affected tissue to a substantial hematoma that sprawls past the infarcted area’s
edges [56]. This transformation’s radiological categorization stemmed from the initiatives
taken by the European Cooperative Acute Stroke Study (ECASS), which discerns between
various forms: minor petechial hemorrhagic infarction (HI1), extensive petechial hemor-
rhagic infarction (HI2), modest parenchymal hemorrhage (PH1) (constituting less than
30% of the infarct with a slight mass effect), and significant parenchymal hemorrhage
(PH2), which accounts for more than 30% of the infarct and exhibits a pronounced mass
effect [57]. In the past, various imaging techniques such as noncontrast CT and MRI
have been explored to anticipate the occurrence of hemorrhagic transformation. However,
throughout the past ten years, numerous researchers have examined the potential of CTP in
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forecasting hemorrhagic transformation during acute ischemic strokes, which is consistent
with the trends identified in our analysis [58]. CTP serves as a valuable tool in predicting
hemorrhagic transformation, a potentially life-threatening complication associated with
reperfusion therapies [55]. Various perfusion parameters are known to correlate with hem-
orrhagic transformation, including time to peak, relative cerebral blood flow, relative mean
transit time, relative cerebral blood volume, and time to maximum [59–62]. In their detailed
meta-analysis on using CTP to predict hemorrhagic transformation in acute ischemic stroke,
Suh et al. studied 15 articles, which included data from a total of 1134 patients. They found
a pooled sensitivity and specificity of 84% and 74%, respectively. Additionally, the area
under the hierarchical summary receiver operating characteristic curve was 0.84 [58]. Fur-
thermore, the state of hypoperfusion is recognized to have a connection with hemorrhagic
transformation. This was evidenced by Suh et al.’s findings which indicated lower CBV and
CBF levels, along with extended Tmax values, in individuals who underwent hemorrhagic
transformation compared to those who did not [58]. Therefore, the existing data support
the utilization of CT perfusion in forecasting hemorrhagic transformation in cases of acute
ischemic stroke.

Our study is not without limitations. First and foremost, while we employed a solid
NLP approach, the effectiveness of our topic modeling hinges on the accuracy and com-
prehensiveness of the metadata extracted from different publications. Another potential
limitation of our study is the possibility of encountering duplicate articles or those that
have been updated over time in the Scopus database, as referenced in prior research [63].
Moreover, our assessment of trends was confined to linear trajectories, potentially overlook-
ing the intricate nuances of the shifting research landscape. Additionally, we intentionally
excluded keywords like “CTP” or “PCT” to avoid incorporating numerous irrelevant ar-
ticles into the model, which could skew the outcomes. Our approach aimed to strike a
balance between including a wide range of articles and excluding irrelevant ones.

5. Conclusions

In conclusion, our study offers valuable insights into the evolving landscape of CTP
research. Using natural language processing and topic modeling, we were able to identify
and track the major topics discussed in recent literature. The dominant topics were tumor
vascularity, stroke assessment, and myocardial perfusion. In the meantime, postprocessing
and artificial intelligence emerged as prominent trends, highlighting a shift toward optimiz-
ing analysis techniques. The trends and themes identified by our computational analysis
align well with advances and innovations in the field of CTP. As the technique continues to
gain traction for a variety of diagnostic applications, additional research will be required
to address current limitations, standardize acquisition and postprocessing protocols, and
maximize the potential of artificial intelligence. Our study provides a high-level overview
of the activity in this field, laying the groundwork for more in-depth investigations on
specific topics and applications.
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