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Dear Readers: welcome to the Editor’s Choice for Volume 7, Issue 4 of the International
Journal for Newborn Screening. This issue comprises over 20 high-quality contributions on a
wide range of topics. It was difficult to select just one for special attention. I considered the
article by Parad et al. on hospital-based supplemental screening for Duchenne muscular
dystrophy [1] worthy of an honorable mention, because it offers an interesting alternative
method of recruiting parents and conducting a research study to screen for a condition not
yet approved for newborn screening (NBS); other than the one I highlighted [2] in an earlier
issue by Kucera et al. [3]. Moreover, two contributions from the Utah NBS program are also
worth mentioning. One of these, by Jones et al. [4], addresses a potential framework for
the development of a shared data model for standardized electronic data exchange across
NBS programs, and the other, by Ruiz-Schultz et al. [5], presents a potential blueprint for a
shared bioinformatics platform as more next-generation sequencing (NGS) is adopted for
second-tier testing in NBS.

My choice for this issue is the article “Future Perspectives of Newborn Screening for
Inborn Errors of Immunity” by Blom et al. [6], for which the excellent review of NBS for
SCID by Puck and Gennery in this issue [7] forms a perfect companion piece. NBS for
SCID was championed primarily by Dr Rebecca Buckley, who developed hematopoietic
stem cell transplantation (HSCT) as the first successful therapy for SCID [8] and Dr Jennifer
Puck, who developed the TREC assay as a first-tier NBS test to screen for SCID [9]. NBS
for SCID is now widespread, but as the authors point out, there are over 450 recognized
inborn errors of immunity (IEI), many of which are treatable by HSCT or other accessible
therapies. Methods for expanding the range of immune deficiencies for NBS are discussed.
For example, X-linked agammaglobulinemia (XLA) and other severe B-cell deficiencies can
be detected by measuring kappa-deleting recombination excision circles (KRECs) in DBS.
KRECs can be measured simultaneously with TRECs in a multiplex qPCR-based assay, an
approach that has already shown success in pilot studies [10], although the relatively high
referral rate for XLA is proving to be a barrier for adoption. Several methods based on
tandem mass spectrometry (MS/MS) are discussed, including the targeting of IEl-specific
peptides in a multiplex fashion using selected reaction monitoring (SRM). Recently, a
panel of eight peptide biomarkers to screen for five molecularly defined IEI, including
adenosine deaminase (ADA) deficiency, dedicator of cytokinesis 8 (DOCKS) deficiency,
X-linked chronic granulomatous disease (XL-CGD), Wiskott—Aldrich syndrome (WAS),
and XLA was reported [11]. The application of molecular technologies to expand NBS
for IEIs is extensively discussed, but it would appear that only a targeted approach using
next-generation sequencing (NGS) as already used in some NBS programs as a secondary
test to the TREC assay [12] would be acceptable as a primary screening option, because
the time-sensitive nature of screening for IEI precludes options that result in a delay in
reporting results of more than 48 h. Epigenetic immune cell counting is another novel
approach that may expand the repertoire of IEIs detectable in newborns [13], but there are
problems of scalability and other technical issues that need to be overcome.

Overall, this is a well-written and thorough review of the current literature. It serves
to increase our awareness of the technological advances capable of extending the scope
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NBS for a group of inherited disorders that are devastating unless detected early in life,
and for which treatment options are available.
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