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Abstract: Qβ is a positive (+) single-stranded RNA bacteriophage covered by a 25 nm icosahedral
shell. Qβ belongs to the family of Leviviridae and is found throughout the world (bacterial isolates
and sewage). The genome of Qβ is about 4.2 kb, coding for four proteins. This genome is surrounded
by 180 copies of coat proteins (capsomers) each comprised of 132 residues of amino acids. The other
proteins, the subunit II (β) of a replicase, the maturation protein (A2) and the read-through or
minor coat protein (A1), play a key role in phage infection. With the replicase protein, which lacks
proofreading activity, as well as its short replication time, and high population size, Qβ phage has
attractive features for in vitro evolution. The A1 protein gene shares the same initiation codon with the
coat protein gene and is produced during translation when the coat protein’s UGA stop codon triplet
(about 400 nucleotides from the initiation) is suppressed by a low level of ribosome misincorporation
of tryptophan. Thus, A1 is termed the read-through protein. This RNA phage platform technology
not only serves to display foreign peptides but is also exceptionally suited to address questions
about in vitro evolution. The C-terminus of A1 protein confers to this RNA phage platform an
exceptional feature of not only a linker for foreign peptide to be displayed also a model for evolution.
This platform was used to present a peptide library of the G-H loop of the capsid region P1 of the
foot-and-mouth disease virus (FMDV) called VP1 protein. The library was exposed on the exterior
surface of Qβ phages, evolved and selected with the monoclonal antibodies (mAbs) SD6 of the
FMDV. These hybrid phages could principally be good candidates for FMDV vaccine development.
Separately, the membrane proximal external region (MPER) of human immunodeficiency virus type 1
(HIV-1) epitopes was fused with the A1 proteins and exposed on the Qβ phage exterior surface.
The engineered phages with MPER epitopes were recognized by anti-MPER specific antibodies.
This system could be used to overcome the challenge of effective presentation of MPER to the
immune system. A key portion of this linear epitope could be randomized and evolved with the Qβ

system. Overall, antigens and epitopes of RNA viruses relevant to public health can be randomized,
evolved and selected in pools using the proposed Qβ model to overcome their plasticity and the
challenge of vaccine development. Major epitopes of a particular virus can be engineered or displayed
on the Qβ phage surface and used for vaccine efficacy evaluation, thus avoiding the use of live viruses.
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1. Introduction

Viruses with RNA genomes are major causes of emerging deadly infectious diseases and represent
the most ever-present and everlasting changing cellular parasites known. There are many different
alterations of genetic elements occurring during RNA genome replication [1,2]. This plasticity is
fundamental and caused by infidelity of the replication process [3,4]. Evolution of RNA viruses is
basically unpredictable due to the stochastic nature of the mutation and recombination events, as
well as environmental factors. A fundamental concern regarding RNA viruses is their high mutation
rate [2,5]. RNA viruses exist as quasispecies which are the result of pressure, mutation, and selection,
in ways which are poorly understood. These mutations could affect the binding capability of the virus
to both neutralizing antibodies and host receptors which could result in emergence of new viral host
ranges [6]. The chance that defined molecules may promote selection of escape mutants or a particular
detection tool may fail to detect the virus is high.

The mechanisms of viral infection and prevention are the most difficult investigations in virology
research. Virus tropism and neutralizing antibodies are the major crucial steps in virus life cycles
and vaccine development respectively. To better understand the molecular pathways of infection
and prevention, we must utilize synthetic biology. Synthetic biologists would simplify and engineer
complex artificial biological systems that investigate natural biological phenomena [7,8].

The current generation of synthetic vaccines, diagnostic reagents (monoclonal antibodies (mAbs),
peptide antigens, oligonucleotides, etc.) and therapeutics may be very adequate to prevent, detect and
cure infections due to DNA viruses. Unfortunately, these fail to address RNA viruses. This is largely
due to the vast number of circulating quasispecies associated with RNA pathogens. The dynamics
of viral quasispecies mandates careful consideration. In reality, prevention and therapy of infection
due to an RNA virus should rely on multicomponent vaccines and antiviral agents that address the
complexity of the RNA quasispecies mutant spectra. This can be accomplished using the RNA Qβ

coliphage display peptide library.
Phage display technology has been developed, applied extensively and proven to have success in

exposing functional peptides on the exterior surface of phage [9]. A novel display system which exploits
the high mutation rate of RNA replicase has been developed [10,11]. A small peptide library has been
presented on this RNA phage surface and selected against the SD6 mAbs of the foot-and-mouth disease
virus (FMDV). The membrane-proximal external region (MPER) of the human immunodeficiency
virus type-1 (HIV-1) was engineered on the surface of Qβ as well. These studies use the Qβ phage
for its large population and high mutation rate [12]. The novel pipeline proposed herein takes into
consideration the quasispecies nature of these pathogenic RNA viruses. This review will present a
detailed structural and functional synopsis of the Qβ platform and emphasize the methodologies and
medical applications associated with the system.

2. The Concept and Consequence of Evolution in the Medical Field

The desire of the molecular biologist to engineer natural biological entities that address future
evolution are growing significantly. This includes the use of Darwin’s postulates as they relate to
in vitro molecular evolution.

The major success of in vitro evolution is best achieved with a system bearing a direct linkage
between the genetic information and the trait or outlook representing the dichotomy prone by Ronald
Fisher and Gregor Mendel [13]. The RNA phage is appropriate for evolutionary study with its
single genome (genotype) and shell protein (phenotype), which facilitate variation of information
and persistence or extinction of phages respectively. The phage stands in contrast to prokaryotic and
unicellular eukaryotic organisms that are composed of far more complex synthetic pathways, which
each can be subjected to individual evolutionary study [13–15]. Moreover, the biological time frame for
most studies in a complex system can be very long. The existence of a clear linkage between genotype
and phenotype makes it easier for in vitro study as is the case of RNA phage display method proposed.
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In a quest to give insight to the concern of RNA virus replication in a host cellular DNA
replication system, Sol Spiegelman and his colleagues presented the first in vitro Darwinian evolution
experiment. RNA virus replication, particularly RNA phage was found to be the perfect model
system for evolutionary investigation [16]. The life cycle of RNA virus was extremely short in time
with a very high number of progenies per cycle making them the perfect candidates for this kind
of work. Moreover, the genetic variation processes between offspring and parent were observed
and due to occasional errors. The errors were found to be the result of enzymatic machinery that
lacks the proofreading repair activities during replication, explaining the difference between parent
and offspring [17,18]. One of the major consequences of the lack of correction of errors during RNA
replication is the existence of viruses as a complex population with a dynamic distribution of related
genomes called quasispecies, by Manfred Eigen. The theory of Eigen shows that the target of selection
includes not just the fastest growing replicator (replicon), but also a spectrum of mutants, which are
evaluated as a single entity, the “quasispecies” and a model system of the first form of life on earth [13].

In this theory of quasispecies, the living RNA molecules are in equilibrium, which involved a
master genetic sequence and other closely related copies. The master sequence always represents the
important portion (in concentration) of all favored sequences and not just the consensus sequence
although it may represent it sometime. To be claimed perfect, a copy has to be much closer to
the master. For RNA viruses, the term population was assigned to wild type and not limited to
a single genome with defined sequence [14]. The step from the RNA replication to the live virus
shows the persistence in the environment of the surviving population, meaning mutation can be the
consequence of environmental factors [15]. The permanent interaction between viral population and
the environment can generate long-term variants or survival quasispecies, which can be subjected to
continuous mutation and competition for resources [16] and survive (“Survival of fittest” of Darwin).
Like in all RNA virus cases and our developed RNA phage display system, the genetic variation rate
during replication is the conceptual point (pivotal) of the novel technology.

The fact that RNA populations continuously vary during replication make them more adaptive
than their DNA counterpart and/or organisms. The variation rate increases with the reduced genome
size [17]. The adaptation potential of RNA viruses (RNA phages in particular) can be exploited for
in vitro evolutionary biotechnology. Recently, plasmid variants and derivatives with the full cDNA
of the RNA coliphage Qβ were obtained with plasmid pBR322 [18], which produced Qβ phage after
being transformed into Escherichia coli HB101 The subsequent construction of the vector could be used
to insert foreign functional protein genes. The stable recombinant plasmid would be expressed in
order to display a pool (library) of hybrid phages exposing the foreign proteins on the phage surface.
The most adapted variant phages can then be concentrated and selected by panning which is an
artificial selection against a known target [19]. In our recently developed biopanning, parameters of
the natural pressure can be mimicked and adjusted, therefore generating the most adapted variants
important for this in vitro evolution work.

3. RNA-Coliphage Qβ Display

The phage display technique has mostly been applied using the M13 phage which contains
a single-stranded circular DNA genome with 6407 nucleotides [20,21]. The M13 display system is
however a DNA replication system with very low mutation rates, which prevent and negatively affect
a rapid evolution and adaptation of display biomolecules [22,23]. The polymerase of the RNA viruses
(e.g., the replicase of Qβ) lack the proofreading activity and for this reason the mutation rates of
these RNA viruses greatly exceed those of DNA counterparts [22,24,25]. Qβ RNA phages possess
very attractive features including high mutation rates, high population and short replication time
all of which can be exploited for this study [26,27]. Found throughout the world in bacterial isolates
associated with sewage and animal feces, Qβ phages are small positive-stranded RNA viruses infecting
E. coli [23,24]. Each infectious Qβ virion is about 25 nm in diameter. Qβ is made up of four genes within
the 4220 nucleotides genome encoding the subunit II (β) of replicase, a major coat protein, a maturation
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protein A2 and the read-through or minor coat protein A1 [24]. The main difference between Qβ and
another RNA phage in the same family, the MS2 phage, lies in the minor coat protein, which is the
key target in this study [28,29]. The phage Qβ genome is surrounded by an icosahedral shell of 178
coat protein molecules (capsomers) and two additional capsomers are internal and associated with
genomic RNA [26]. Each capsomer is comprised of 132 amino acids. A capsomer is made up of a
five-stranded antiparallel β-sheet “core”, a hairpin and two contiguous β-helices on the outside [28,30].
These capsomers are linked together by disulfide bonds in covalent pentamers and hexamers with a
stoichiometric ratio of 12:20 and a well-known crystal structure [31]. The A1 protein shares the same
initiation codon with the coat protein and is produced during translation when the coat protein’s
UGA stop codon triplet (about 400 nucleotides from the initiation) is suppressed by a low level of
ribosome misincorporation of tryptophan [10,21] (Figure 1). The development and achievement of this
Qβ display system was based on some features and known functions of the genome and proteins of
the phage described here.
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4. The Biology of RNA Qβ

4.1. The Maturation Protein or A2

The genome of Qβ is encapsulated by capsomers that make up the icosahedral structure [28].
A five-stranded β-sheet core, a hairpin and two helices on the outside of the particle make up the coat
protein, and all form a lattice with the triangulation number T = 3 [29]. The Qβ virion contains only
one copy of the 48.55 kDa maturation protein A2. Although the A2 protein is insoluble in an isolated
form, it remains soluble when fused to maltose-binding protein or MBP [30,32]. Crystallography
reveals a four-molecular structure, of a highly elongated shape, about 50 Å in width and 110 Å in
length. Resembling a bow, half of the protein is built of four α helices while the other half contains β
strands, both are located on opposite ends of the molecule. There are two distinct positive charged
areas in the α-helical portion, their identified function will be uncovered below.

The A2, or minor constitute, is involved in pilus recognition and host cell binding [21]. It also
serves as a protective aspect for the virion against external ribonucleases [21,33]. Unlike the MS2
phage, which contains a separate lysis gene, Qβ does not contain an independent lysis gene. Bernhardt
and colleagues found that A2 blocks the synthesis of murein precursors in vivo by inhibiting MurA
which is the catalyst of the committed step of murein biosynthesis [34]. The expression of MurA or
induction of a murA– clone delays lysis or completely abolishes lysis respectively [34]. In a study
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conducted by Karnik and Billeter, overexpression of A2 was shown to trigger cell lysis [12]. Karnik and
Billeter cloned complete and partial (mutated and non-mutated) Qβ sequences [35]. In cells containing
plasmids for the full Qβ genome and A2, phage production increased 100-fold over cells with the
Qβ genome plasmid only. Plasmids containing a mutation at the cistron of A2 did not promote cell
lysis [32]. Their experiments also concluded that the entire A2 protein must be synthesized to mediate
cell lysis; partial synthesis did not lead to cell lysis.

The maturation protein is also essential for infectivity in the Qβ infection cycle. In the conventional
M13 DNA phage display, infectivity and surface expression of peptides is a characteristic held by the
same minor coat protein called pIII. This gives Qβ an advantage during biopanning by not needing an
acid elution step (Figure 2). In order to inject its RNA, the Qβ phage must first be adsorbed to the sex
pili via the A2 protein [36]. As the cycle continues, while the ribosome is translating binding the coat
protein region, it induces the refolding (secondary structure) of the RNA that sets free the replicase
start region and the synthesis of the β subunit can commence. A minus strand is produced which
acts as a template for the plus strand. During its synthesis, the ribosome binding site (RBS) of the
A2 is accessible only for a short duration so that a small amount of the A2 can be produced [37,38].
This occurs due to a small relaxation state of the template before its folding into a secondary structure,
closing the region. Along with the recently discovered structure, it was determined that a portion of
the α-helical domain is involved in genomic RNA binding.
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Figure 2. Schematic representation of the panning methodology with Qβ phage variants (library)
with selection and amplification on target avoiding harsh condition (heat and/or acidic elution).
(A) A variant of phages solution exposing the library of interest is loaded to the well of a plate
pre-coated with the desired target (bio or abio). (B) The indicator bacteria (Escherichia coli Q13) at the
log phase growth are added to the well to allow a round of amplification. While the phages, having
low affinity to the target, are removed by series of washings, the selected candidates are amplified.
(C) High-affinity phages bound to the target can infect E. coli Q13 by adsorbing to the A2 and injecting
its RNA via the F+ pilus. (D) Phages newly obtained after indicator E. coli infection were transferred to
new wells containing the immobilized target for the next round of biopanning. Several rounds can be
used for the enrichment interactions bio-bio or bio-abio.
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4.2. The Read-Through Protein or A1

The RNA bacteriophage Qβ encodes genes essential for the production of proteins such as those
that compose its outer shell termed the coat and minor coat proteins. Howbeit, we will focus on the
minor coat protein A1 protein, due to its malleability and efficacy. The A1 (minor coat) protein is a
read-through protein and is important for the formation of infectious phage particles [39]. Translation
of the coat proteins for Qβ phage initially occurs concurrently however, intermittent read-through
by ribosomes of the leaky stop codon of the coat protein, allows for extension of translation beyond
the C-terminus [28]. This read-through mechanism is employed by a number of viruses as a means
of regulation.

The read-through domain of Qβ A1 protein has a 15-residue-long polyproline type II helix
PPII. The A1 protein motif suggests its relevance and complete functionality as these PPII motifs are
known to foster protein–protein and protein–nucleic acid interactions that are essential in protein
assembly, signal transduction, serve as binding sites and bacterial and viral pathogenesis [29]. It was
previously proposed that the probable copy number of A1 display sites per Qβ phage were between
3–7% in total [21]. However, it is now known that the A1 protein has twelve vertices that are evenly
displayed across the surface of the Qβ phage [33]. A previous study has shown that small extensions,
approximately 222 nucleotides long, can be fused in frame to the 3′ end of the A1 protein without
negatively affecting the functionality or efficacy of the phages level of infectivity [33].

Although there is minimal research in the literature regarding the functionality of A1 protein,
current studies investigating the structure of Qβ phage and its constituents indirectly suggest the
potential for the exploitation of the A1 protein’s motif capacity for detection assays, drug delivery,
and vaccines.

4.3. The Replicase Protein or REP

The Qβ replicase is an RNA-dependent RNA polymerase (RdRp). It differs from the reverse
transcriptase found in retroviruses, which are RNA-dependent DNA polymerases (RdDp), in that it
catalyzes the transcription of RNA from an RNA template, rather than RNA from a DNA template.
This protein is encoded in all positive-stranded RNA viruses. The replicase is a holoenzyme consisting
of four subunits: the β subunit (65 kDa) that is encoded by the phage itself, as well as three other
subunits encoded for by the natural host of Qβ, E. coli, the α ribosomal protein (S1, 70 kDa), and
two host translation elongation factors, γ (EF-Tu, 45 kDa), and δ (EF-Ts, 35 kDa). The β-subunit
consists of a finger, thumb, and palm domain. The finger and thumb domains interact via hydrophobic
interactions with elongation factors subunits γ and δ (EF-Tu and EF-Ts) allowing them to bind the
subunit tightly [12]. This interaction between the virus and the host ensures specificity of both the
template and the polymerase [40].

The S1-γ subunit is part of the bacterial 70S ribosome and is one of 21 proteins that comprises the
smaller 30Ss subunit and is responsible for translation of mRNA within the cell after transcription by
assisting mRNA in binding to the 30S ribosome subunit [33]. S1 has a molecular weight of 70 kDa,
but has a sedimentation ratio lower than expected, due to its elongated shape [30,38]. The structure of
the right-handed S1 protein is comprised of a finger, thumb, and palm domain. The finger domain
consists of four antiparallel β-sheets and six α-helices. The thumb domain consists of two bundles of
α-helices, comprised of three helices each as well as a three antiparallel β-sheets. The palm domain is
comprised of five antiparallel β-sheets flanked by four α-helices [41].

Elongation factor subunit γ is a translation elongation factor that binds to aminoacylated tRNAs
(aatRNA) and assists them in moving into the correct position within the ribosome in the A-site via the
formation of a ternary complex that consists of EF-Tu:GTP:aatRNA [40]. It does this by hydrolyzing
the power of GTP into GDP+ inorganic phosphate. It also plays a role in the accuracy of translation.
After hydrolysis of GTP to GDP, the GDP-bound EF-Tu is then released from the ribosome. Elongation
factor subunit δ is a second elongation factor in E. coli that allows EF-Tu to hydrolyze GTP into GDP.
Elongation factor subunit γ then releases the bound GDP where it can be recycled and allows for
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EF-Tu to bind a new GTP to catalyze another aatRNA. Upon infection of the host cell by the Qβ virus,
the β subunit hijacks these three subunits of the bacteria creating the replicase holoenzyme using the
S1 subunit, EF-Tu, and EF-Ts as its coenzymes with the replicase becoming the β subunit, and the
S1, EF-Tu, and EF-Ts becoming the α, γ, and δ subunits, respectively. It is the replicase core complex
(β subunit, EF-Tu and EF-Ts) that possesses polymerization activity [40,42].

Host factor (HF1) is a 102 amino acid protein provided by the E. coli bacteria encoded for by
the hfq gene, is also required for initiation of replication and initiation will not occur in the absence
of the enzyme [43]. The rate of replication depends on the ratio of HF1 to RNA rather than on
the ratio of RNA to replicase [20,23,38]. Once the 215 kDA replicase holoenzyme is completely
assembled after hijacking the host’s S1 ribosomal protein as well as the EF-Tu and EF-Ts elongation
factors, replication of Qβ’s positive-stranded genome can begin, and the genome is first synthesized
into a complementary negative-stranded RNA that will serve a template for the synthesis of more
positive-stranded RNA that can serve as mRNA. Both the plus and minus strands will serve as
templates during replication rather than just the minus strands. This causes replication to double in
each round [34]. The replicase is capable of amplifying Qβ’s genome 10,000-fold within one hour and
Qβ can use both the positive and negative sense RNA strands as a template for replication; a feature
that allows for exponential amplification.

Qβ’s replicase has a unique set of features that not many other replicases possess. In addition, to
amplifying its genome more than 104 in less than an hour, it is able to distinguish between its own
RNA and a vast amount of host RNA and only replicate its own RNA, as well as do both of these
things without the use of endogenous primers [34]. The template is recognized by the S1 protein and
the EF-Tu [34]. The motif sequence required for strand recognition by Ef-Tu:EF-Ts is CCC of the CCCA
sequence at the 3′ end of the template RNA [12].

Functionally, polymerization occurs once the 3′ bound end of the template enters into the initiation
site of the replicase [34]. Additionally, strands are recognized by ribosomes, and minus strands are not,
and must go through an alternative mechanism. The mechanism for plus strand is that it is replicated
in equal amounts along with the minus strand so long as HF1 is supplied in excess. Replication
proceeds linearly. Once replicase copies the plus strand, replication for that event is terminated and
the strand joins a minus strand, either through template switching or it joins a free-floating minus
strand. An A residue is added at the end of the free 3′ end post-transcriptionally [33].

4.4. Qβ Life Cycle

The Qβ phages infect bacteria with the F-pili, making them male dependent viruses. The Qβ

infection cycle has been intensively investigated and simplified [44]. To start the infection during
the lifecycle the phages adsorb to the specific bacterial sex pili proteins of a sensitive host cell. It is
presumed that when the phages are interacting with the pili appendage via the A2 protein, the RNA
molecules are being injected through the tubular sex pili (6–8 nm in diameter) leaving behind the
empty capsid [44]. At this point of the infection the exact mechanism of the RNA genome transfer is
not known. Once in the host cell the linear RNA with very high level of secondary structure (75% of the
genome), is attractive to the host ribosomes. The secondary structure of Qβ RNA is mostly made
of many hairpin-like loops, even at the 5′ and 3′ ends, and provides protection from host cellular
exonuclease damage.

In the host cytoplasm, with its high level of RNA secondary structure, only the start region of
the coat protein RNA is accessible to the ribosome. The binding of the ribosome to the start of the
coat RNA region frees the replicase start gene region and allows the beginning of the early translation
of this β subunit of the RNA-dependent RNA polymerase or the replicase [45]. The β subunit of the
replicase requires a few more proteins from the host bacterium for its complete enzymatic activity
(see above Section 4.3).

After assemblage and formation of the active replicase complex, it competes with ribosomes
for the coat protein start region. This competition results in a repression of the translation due to
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ribosome removal. Replication occurs after the complete repression of translation in the absence of
the ribosome. The minus strand of the RNA genome is the first product of this replication that serves
as the template for the synthesis of the plus strand. The A2 start region of the newly synthesized
RNA on the plus strand, not completed, would be attractive to ribosomes. The temporary availability
of the A2 start gene to ribosomes, would produce a small amount of A2 proteins. The openness of
the A2 protein gene to the ribosome is the result of a short relaxation (level free energy) of the RNA
template secondary structure, which always prevents this accessibility. The plus strand produced by
replication would serve as template for dual purpose: (i) replication and synthesis of progeny RNA
molecules; and (ii) translation and production of more replicase enzymes and coat proteins for viral
shells [46]. The further production of a large amount of the coat protein represses the replicase’s β

subunit. This later repression of the replicase later in the phage cycle is done by the coat protein that
binds to the RNA start of the replicase. The replicase repression induces the initiation of the coat
protein shell formation and the final encapsulation of the plus strand RNA of the phage, yielding
newly viable phages [47]. With the newly confirmed intimate fit between A2 protein and MurA, the
mechanistic pathway that leads to host cell lysis during Qβ infection is now clear [48].

5. Medical Applications of Qβ In Vitro Evolution

Potential applications for Qβ’s replicase include usage in novel approaches to polymerase chain
reaction (PCR). Isolation and use in place of traditional polymerases in PCR reactions. Unlike conventional
PCR, where a short target sequence is amplified, Qβ’s replicase can mass produce using midivariant
RNAs (MDV-1). Unlike most polymerases which amplify from the template strand only, Qβ’s replicase
can use both the template and the product strands as templates during each round of amplification [49].
These MDVs product complements to the parent strand and in each round of infection, both sets
of strands get amplified in about 20 s, generating more than a trillion copies. Additionally, the Qβ

replicase does not require high temperature for denaturation as do traditional PCR enzymes such as
Thermus aquaticus DNA polymerase (Taq). The entire process can occur at 37 ◦C. As mentioned, Qβ’s
replicase has high specificity for its template, a fact that can be overcome by the addition of Mg2+ to
the solution, allowing the replicase to replicate non-native templates [33].

In our research work, plasmids harboring the full cDNA of bacteriophage Qβ were used [50].
By cloning an insertion cassette at the end of A1 gene, we used bioinformatic analysis to make sure
the secondary structures of the Qβ phage RNA are conserved. Specifically, the recombinant A1 gene
sequence is always fused to a foreign protein DNA or cDNA, would be optimized by selecting the
most adequate codons for insertion into the cassette.

Unlike DNA phages, the use of an RNA phage display technique for in vitro evolution is poorly
understood. The Qβ phage is also an important tool to map the library of a virus to determine its
antigenic properties which can lead to easy detection of the virus both in the field and clinical settings.
Recently, we have successfully constructed and exposed a 5-mer library of FMDV VP1 G-H loop on
the external surface of Qβ (Figure 3). The tandem amino acid sequence that is required for anti-FMDV
monoclonal antibody SD6 was selected and evolved with our novel panning system. The tandem pair
Arg–Gly was essential for the recognition and was found to be enough for this binding amongst the
spectrum of variants. In that work in addition to proving the concept, the size of the inserted library
and the stability of the phages obtained were the major issues. These issues were solved, and a larger
size DNA was fused with a stable A1 protein.

A 50-mer representing the consensus sequence of the MPER region of HIV-1 was engineered
and displayed of the surface of Qβ. MPER was designed for broadly neutralizing antibodies but was
poorly accessible. We have demonstrated that recombinant Qβ phage framed with gp41 MPER of HIV
can be used either alone or in combination with other strategies for the production and monitoring
of HIV-1 gp41 MPER-specific immune responses [11]. The results obtained from the study showed
that broadly neutralizing antibodies of MPER were easily recognized by all the reported epitopes
(methodology in Figure 3). This reinforces that hybrid phages could be used to assess the antigenicity
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of specific peptides in an infected subject. The application of RNA phage technology can be ideal for a
rapid detection of an infection both in animal and human [11].

Other applications include use of nanotags as a biosensor for peptide detection. Nano-tags can
be used as part of the peptide library for easy identification and tracking to establish binding of
recombinant phage to the right antibody. This method was very useful in maintaining the structural
conformation of the peptide as shown with FMDV, HIV-1, and severe acute respiratory syndrome
coronavirus or SARS-CoV [10,11]. More so, the RNA phage has been designed to bind and block breast
cancer resistance protein known as P-glycoprotein [51]. This is a big breakthrough to the future of
therapeutic tools against cancer using Qβ phage and nanobodies.
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Figure 3. Schematic representation of the RNA Qβ phage display system methodology. (Panel A)
The recombinant cDNA of Qβ genome or other variants can be generated by reverse transcription
and polymerase chain reaction (RT-PCR). (Panel B) From any insert generated by (PCR) or a library
constructed. (Panel C) The vector constructed from purified Qβ cDNA in pBR322 containing the
ampicillinase gene under the control of T7 promoter [52]. (Panel D) the vector for display system
obtained is used to insert the appropriate gene and/or library by cloning. (Panel E) the generation of
hybrid phages or variants (if from library) after E. coli HB101 transformation.

6. Conclusions

For the past hundred years, phages have provided insight into molecular biology, pathology,
immunology, structural biology and medical technology. The quasispecies nature of RNA viruses has
compromised numerous antiviral therapeutic agents. The RNA phage display system methodology
described here is simple, low in cost and risk, and is still in its infancy and remains a powerful tool for
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in vitro evolution and application to the medical field. The RNA display can serve as platform
for RNA virus vaccine development with its quasispecies aspect. The RNA phage can display
antigens for a particular pathogen allowing it to serve as a point of care by facilitating detection and
concentration of pathogen specific. This system can be further developed to play a role of biosensor for
detection of disease in developing countries where sophisticated equipment is not available. Live RNA
viruses are deadly and should be avoided in vaccine evaluation. Live viruses could be substituted
or represented by this RNA phage display system, avoiding biohazards usually seen during live
virus laboratory manipulations. With the volume of reports and papers on RNA viruses’ replication,
mutation, resistance to antiviral therapy, Red Queen Hypothesis, and escaping immune molecules,
the struggle and difficulties to develop vaccines against these viruses can be alleviated in the coming
century using RNA phage display system.
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