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Abstract: The relationship between the host and the microbiome, or the assemblage of microorgan-
isms (including bacteria, archaea, fungi, and viruses), has been proven crucial for its health and
disease development. The high dimensionality of microbiome datasets has often been addressed
as a major difficulty for data analysis, such as the use of machine-learning (ML) and deep-learning
(DL) models. Here, we present BiGAMi, a bi-objective genetic algorithm fitness function for feature
selection in microbial datasets to train high-performing phenotype classifiers. The proposed fitness
function allowed us to build classifiers that outperformed the baseline performance estimated by
the original studies by using as few as 0.04% to 2.32% features of the original dataset. In 35 out of
42 performance comparisons between BiGAMi and other feature selection methods evaluated here
(sequential forward selection, SelectKBest, and GARS), BiGAMi achieved its results by selecting
6–93% fewer features. This study showed that the application of a bi-objective GA fitness function
against microbiome datasets succeeded in selecting small subsets of bacteria whose contribution to
understood diseases and the host state was already experimentally proven. Applying this feature
selection approach to novel diseases is expected to quickly reveal the microbes most relevant to a
specific condition.

Keywords: feature selection; genetic algorithm; human health; machine learning; microbiome

1. Introduction

The past decade has shown a gradual introduction of classical and advanced machine-
learning (ML) methods applied to bioinformatics, enabling the use of feature selection,
and regression and classification algorithms in the microbiome field [1]. These methods
allowed some of the first successes in identifying key features, including microbiome
taxa or gene abundances, and using them to classify or predict environmental conditions
based on the microbiota itself [2,3]. ML approaches have also been applied to studies
with human populations to investigate the link between the host’s microbiota composition
and health conditions, including obesity [4], colorectal cancer [5], liver cirrhosis [6], type
2 diabetes [7], bacterial vaginosis [8], and irritable bowel disease (IBD) [9]. These studies
achieved high scores classifying individuals in groups regarding conditions, with either
Metabarcoding (16s rRNA coding genes) or deep-sequencing metagenomics data, suggest-
ing the microbiome as a potential source of biomarkers for diagnostics or even treatment
using probiotics [10].

Microbiome datasets are small when compared to other fields that benefit from artifi-
cial intelligence (AI), with often a few dozen to a few thousand data points due to sampling,
experimental, and sequencing costs, which could go as high as hundreds of thousands
of dollars to even millions [11,12]. However, microbiome datasets have yet another char-
acteristic that can increase this challenge. They normally have thousands to millions of
features to be analyzed, therefore being sparse and highly dimensional [11]. Microbiome
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features may represent genetic markers grouped into operational taxonomic units (OTUs)
or amplicon sequence variants (ASVs) [13,14], together with the corresponding microbial
taxonomy classification, or gene abundance and activity levels, gene function, functional
pathways, and even protein abundance [3,15,16], having a distinct set of challenges and
biases that must be considered in a pre-processing step.

Such data characteristics are likely to cause issues if not properly addressed, a phe-
nomenon known as the “curse of dimensionality” [17], and the high dimensionality of
microbiome datasets has often been addressed as a major difficulty in the application of
ML algorithms [18]. Feature selection is a commonly used methodology to improve ML
algorithm performance in classification and regression by tackling the high dimensionality
problem; however, algorithms such as forward selection or backward elimination [19]
quickly result in an unmanageable computational complexity due to a large number of
microbial features being tested. Other methodologies, such as principal component analy-
sis (PCA), linear discriminant analysis (LDA), and multidimensional scaling, have been
applied to the microbiome field [20–22]. Collectively, these are known as dimensionality
reduction methods, and they reduce the data input by projecting it to a lower dimensional
subspace. However, although these methods do reduce the burden of high dimensionality,
part of the original information is lost forever.

To address this issue, studies have recently started to implement genetic algorithm
(GA) approaches to search for subsets of predictive microbiome features, which in turn
lead to an increased model performance. Unlike classical feature selection methods, which
focus on sequential addition or removal of features, a GA-based approach has the potential
to evaluate feature interactions that are more complex. GA represents evolutionary search
methods inspired by Darwinian principles [23,24], and the adoption of GAs is especially
popular for finding heuristic solutions to problems that are computationally intractable
otherwise (TSP) [25], making GA a potential solution for feature selection on microbiome
datasets. This method was successfully applied to search for a subset of vaginal microbiome
features to detect bacterial vaginosis using the genetic and evolutionary feature selection
(GEFeS) [26] and to select a fixed number of highly predictive features from small, medium,
and large-sized omics datasets [27]. Genetic algorithm was also applied after a PCA-based
dimensionality reduction with a fixed number of principal components, improving the
prediction accuracy [28].

Herein we explore the use of GA for feature selection by addressing the dimensionality
problem of microbiome datasets with a bi-objective genetic algorithm to select subsets
of microbiome features for classification models. While optimizing for the classification
performance of a certain feature subset (objective 1), the fitness score of a potential GA
solution is penalized proportionally to the number of the selected features (objective 2). This
way, the bi-objective GA search process is actively guided to be optimized for identifying
the smallest best performing feature subsets. We also do not restrict the size of the feature
subset to a predefined number but allow the search optimization process to grow or shrink
the number of selected features according to the selection, crossover, and mutation steps of
the GA evolutionary search.

Our method, called “BiGAMi-Bi-Objective Genetic Algorithm Fitness Function for
Feature Selection on Microbiome Datasets”, was implemented in Python and released
under the open-source MIT license on GitHub (https://github.com/mikeleske/BiGAMi
(accessed on 10 April 2022)). The method was tested using four publicly available datasets,
transformed in relative abundance, and centered log-ratio (CLR). We compared our results
with the baseline scores published elsewhere [26]. The performance of a classical sequential
forward selection (SFS) algorithm, a k-best selection based on statistical properties, and
GARS, a GA-based feature selection library focusing on optimizing fixed feature subset
lengths, were assessed and compared to BiGAMi.

https://github.com/mikeleske/BiGAMi
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2. Materials and Methods
2.1. Data Retrieval and Pre-Processing

The microbiome datasets used in this study were retrieved from the Microbiome
Learning Repo [29] (https://knights-lab.github.io/MLRepo/ (accessed on 15 March 2021)),
a public repository of microbiome data to be used for regression and classification tasks.
They were generated by studies aiming to identify associations between microbiome and
health status, such as the investigation of the relationship between microbiome, colorectal
cancer, and cirrhosis [6,30], and to investigate differences in the vaginal microbiota of
human populations [31]. The datasets included three microbiome matrices containing
a range of 586-8483 operational taxonomic units (OTU) and their counts generated by
mapping against two different reference databases, the Greengenes 97 (GG97) [32] and
RefSeq [33]. The repository also made available the corresponding sample metadata for
each dataset, which contained crucial information for the classification procedures, such as
the patients’ health status. Table 1 provides a summary of the datasets and classification
tasks (I-IV) used to evaluate the performance of our BiGAMi approach.

Table 1. Description of datasets used in this study.

Task I Task II Task III Task IV

Dataset Kostic [30] Ravel [31] Ravel [31] Qin [6]
Year 2012 2011 2011 2014

Description Healthy vs. Tumor Colon
Biopsy Tissues

Low vs. High Vaginal
Nugent Score

Black vs. White
phenotype classification Cirrhosis vs. healthy

Topic area Colorectal Cancer Vaginal Vaginal Cirrhosis
Classification targets Healthy, Tumor Low, High Black, White Cirrhosis, Healthy
Number of samples 190 342 200 130
Number of subjects 95 342 200 130

Number of OTUs GG97 3228 1093 1093 n/a
Number of OTUs RefSeq 908 586 586 8483

The matrices were transformed into relative abundance (percentage) and using a
compositional data analysis (CoDA) method called centered log-ratio (CLR), through
custom Python scripts and the Scikit-bio package (https://github.com/biocore/scikit-bio
(accessed on 24 April 2021)). The datasets were scaled using the Scikit-learn MinMax
function [34], followed by the selection of the 128 most important microbiome features
using the SelectKBest function. Each dataset was then split into 6 parts of equal sizes
(6-fold), where the first 5 were used as the training set, and the last was used as a hold-out
test set and used to perform classification experiments for each task (Figure 1).

Figure 1. Data pre-processing flow from raw abundance counts input data to the transformed datasets
used in classification tasks.

https://knights-lab.github.io/MLRepo/
https://github.com/biocore/scikit-bio
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2.2. Bi-Objective Genetic Algorithm Fitness Function and Implementation (BiGAMi)

GA represents evolutionary search methods inspired by Darwinian principles. Each
GA starts with the creation of an initial population of a predefined number of individuals,
which are generated in the form of chromosomes and represent potential solutions to the
search problem. The GA search process iterates for a predefined number of generations,
or until a stopping criterion is met, through the following steps: (a) Each individual in
the GA population is evaluated on how well its chromosome solves the computational
problem (Fitness Evaluation); (b) Chromosome pairs are selected for mating based on
the individuals’ fitness ranking (Selection); (c) Mating pairs partly exchange genes from
their chromosomes to generate offsprings for the next generation (Crossover); (d) new
offsprings experience random mutations in one or more genes to introduce novelty into the
population (Mutation) (Figure 2).

Figure 2. General process flow of a genetic algorithm.

To perform such a feature selection, we first have to encode the GA individuals’
chromosomes as a binary string of genes, included or not in the fitness evaluation. A
gene is set to the value 1 if the associated feature is included in the fitness evaluation
process and set to 0 otherwise. We used a sparse chromosome initialization strategy for
the initial GA generation that activates only a small fraction of the dataset features per
chromosome. This was necessary, since a random initialization of the chromosome could
result in unnecessarily large feature subsets and the activation of mostly irrelevant features.

For each chromosome, a separate Scikit-learn stochastic gradient descent classifier
(SGDClassifier) was trained to predict the target class, e.g., phenotype or disease state,
using k-fold cross-validation to evaluate the chromosome’s overall fitness score. The
chromosome-specific classifier’s feature coefficients table was then used to reset to 0 the
chromosomes containing genes with no significant relevance to the classification task. The
crossover operation used the one-point mating option to minimize the risk of producing
exact copies of the mating individuals due to their chromosome sparsity. In addition, a
custom mutation function was implemented to provide equal chances to either switch off
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an active gene or switch on an inactive gene. Lastly, a bi-objective fitness function, which
considered the classification metric and penalized the usage of larger feature subsets, was
used to evaluate chromosome fitness. The bi-objective fitness function was implemented
using the following formulae:

fitness score = x × metric + y × (selected features/total features) (1)

metric = avg(cv_score) + min(cv_score) (2)

In the above formula, metric represents the sum of the average and minimum k-fold
cross-validation AUC scores, while features are relative abundance or CLR values, and x = 1
and y = −1. For each input data, we executed 25 GA runs with a population size of 300 for
10 generations. The 6-fold data split remained consistent across its generations for each
separate GA run. In each generation, the individuals’ performances were evaluated by a
5-fold cross-validation (CV) using a SGDClassifier on the training data (folds 1 to 5).

The sum of the 5-fold average and minimum scores was reported as this individual’s
metric, which provides a larger optimization (maximization) space compared to relying on
the k-fold average alone. Each SGDClassifier used the “log” loss function, the L1 penalty,
and was restricted to 500 iterations. After each generation, the best performing individual
(according to 5-fold CV using the bi-objective fitness function) was evaluated against the
hold-out test set and promoted into the next generation, a strategy known as the elitism
concept. After each GA search, the individual with the highest bi-objective evaluation
metric on the test set was identified, resulting in 25 high-performance individuals per
input data.

GA individual selection for crossover was based on a tournament selection method
with size 3. The crossover operation was set to one point to reduce the risk of selecting
only patches of inactive genes due to chromosome sparsity. The probability of 2 selected
individuals producing offspring was set to 0.8, a common default value for the crossover
probability in GA frameworks. Likewise, the probability of an offspring undergoing a
mutation was set to 0.8. The sparse gene activation per chromosome would have given
default mutation operators a bias toward activating inactive genes. Therefore, a custom
mutation operator was implemented to ensure that after each successful crossover, a
mutation operation with a 50% chance to activate or deactivate a single random gene is
executed on the new chromosome. The Python package DEAP [35] was used as the core
framework for the genetic algorithm and evolutionary search process. Table 2 lists the
essential parameters together with their respective values to initialize and execute the
GA runs.

Table 2. GA parameters.

Parameter Description Value

n_searches Number of individual GA runs 25
pop_size GA population size 250
max_iter Number of GA iterations/generations 10

bestN Elitism concept 1
crossover Crossover strategy 1p (One-point)

CXPB Crossover probability 0.8
MUPB Mutation probability 0.8

init GA individual initialization strategy zero

init_ind_length Average number of enabled GA
individual chromosomes 10

select GA crossover selection strategy Tournament (size = 3)
mutate GA mutation operation mutFlipOne (custom)
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2.3. Other Feature Selection Implementations

In order to test the efficiency of BiGAMi, we compared it against 3 other feature
selection methods: a classical sequential forward selection (SFS) [36] implementation, the
Scikit-learn SelectKBest methodology, and GARS, a different feature selection method that
applies a GA-based approach.

SFS is a well-known feature selection methodology and represents a simple and greedy
feature selection algorithm where, in each iteration of the process, the single feature that
improves the target metric the most is added to the list of the selected features until a
stopping criterion is met, e.g., the maximum feature subset size is reached. SFS was applied
using the MLxtend Python library [36], using the same input data used by BiGAMi and
5-fold cross-validation (based on
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of the dataset size). A total of 25 SFS runs were executed
per input to identify, stepwise, the 1 to 32 most important features using the training dataset
and subsequently evaluate the test set. For each SFS run, the best performing feature subset
was reported, including the test set performance and the selected features.

The Scikit-learn SelectKBest methodology with a Chi2 scoring function was applied to
extract the k = [4, 8, 12, 16, 20, 24, 28, 32] most important features per data input. As this
feature selection approach is purely based on statistical properties of the underlying data,
multiple runs with the same value for k result in the same feature subset. Therefore, for
each value of k, 25 SGD classifiers were trained on different training data splits, and the
average performance of the 25 respective tests is associated with the matching value of k.

GARS is a GA-based feature selection framework implemented in R that works with
a fixed chromosome length of selected features, i.e., any given GARS run specifies how
many features should be evaluated by each GA individual. The reference implementation
for the GARS publication provides an individual feature subset per cross-validation fold
(https://github.com/BioinfoMonzino/GARS_paper_Code (accessed on 8 May 2022). All
classification tasks were performed using the scikit-learn SGDClassifier with L1 penalty.

3. Results
3.1. Feature Selection Using BiGAMi

The use of BiGAMi to reanalyze consolidated data allowed us to identify and select
small subsets of highly informative microbiome features (OTUs), which, when used for
classification tasks, greatly improved most classification scores, or at least obtained the
same scores of the original studies with considerably fewer features. The results listed here
represent the average performance and OTU subset sizes of the best performing solutions
found across the 25 BiGAMi runs per data input.

For the Kostic colorectal cancer dataset (Task I), BiGAMi was able to reduce the number
of OTUs from 3228 to 12–18 (GG97) and from 908 to 8–17 (RefSeq) while increasing the AUC
score from 0.74 to 0.93–0.95 and from 0.69 to 0.84–0.86, respectively, a significant increase
in classification power while reducing the number of features by 50–200×. For the vaginal
Nugent category dataset (Task II), the baseline AUC score was already 0.99; however, we
achieved similar scores of 0.99 using 8–9/1083 (GG97) and 0.98 using 6–7/586 (RefSeq) OTUs,
on average. The same behavior was observed when using the same dataset to classify the
host’s ethnicity in black or white groups (Task III), an increase of 0.64 to 0.73–0.77 (GG97) and
from 0.70 to 0.73–0.75 (RefSeq) while using 11–16/1083 and 10–14/586 OTUs, on average,
and when classifying healthy vs. patients with cirrhosis (Task IV), increasing the AUC score
from 0.92 to 0.93–0.94 while using 4–12/8483 OTUs, a reduction of 706×, on average (Table 3,
Figures 3 and 4). For each classification task, a single data input, indicated by an * symbol,
was selected for further analysis, according to the bi-objectivity feature selection approach
of BiGAMi. For task III, preference was given to the RefSeq + CLR data input due to the
species-level resolution of the RefSeq datasets.

https://github.com/BioinfoMonzino/GARS_paper_Code
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Table 3. Performance results per classification task. Per input data, the average AUC score and the
average number of OTUs are provided. (I) Kostic colorectal cancer healthy/tumor GG97, (II) Ravel
vaginal Nugent category, (III) Ravel vaginal black/white, (IV) Qin cirrhosis RefSeq. Rows with an *
symbol were selected for taxonomy analysis of selected feature subsets.

Task Database Total
OTUs

Baseline
AUC

Input
Data

SGD
AUC

SFS
AUC/OTUs

SelectKBest
AUC/OTUs

GARS
AUC/OTUs

BiGAMi
AUC/OTUs (Ours)

(I)

GG97 3228 0.74 Rel 0.85 0.94/21.6 0.92/28 0.57/63 0.95/18.1
CLR 0.9 0.94/19.0 0.92/28 0.64/63 0.94/12.3

RefSeq 908 0.69 Rel 0.8 0.87/22.4 0.87/20 0.58/68 0.86/16.8
CLR 0.85 0.85/10.0 0.86/20 0.64/65 0.84/8.2

(II)

GG97 1093 0.99 Rel 0.96 0.98/9.8 0.97/8 0.80/69 0.98/9.2
CLR 0.97 0.99/6.6 0.98/12 0.92/33 0.99/8.6

RefSeq 586 0.99 Rel 0.96 0.98/7.4 0.97/4 0.91/50 0.98/6.6
CLR 0.96 0.98/5.5 0.99/8 0.95/26 0.98/6.5

(III)

GG97 1093 0.64 Rel 0.65 0.71/19.4 0.79/32 0.52/59 0.77/16.2
CLR 0.63 0.73/16.2 0.67/4 0.55/32 0.73/11.1

RefSeq 586 0.7 Rel 0.6 0.75/19.4 0.76/20 0.55/57 0.75/13.6
CLR 0.61 0.73/14.4 0.72/24 0.62/39 0.73/10.2

(IV) RefSeq 8483 0.92
Rel 0.82 0.92/16.4 0.85/8 0.71/51 0.93/11.6

CLR 0.83 0.93/13.5 0.92/4 0.92/61 0.93/4.3

Figure 3. Average classification performance (including 99% confidence interval) for each data input
achieved by the BiGAMi, SFS, and GARS methods. Confidence intervals were calculated by the
Seaborn plotting library using the bootstrap resampling technique with a mean estimator. The dashed
horizontal lines represent the base performances as documented by Ref [29]. (Top): Performance
results for GG97-based data input. (Bottom): Performance results for RefSeq-based data input.
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Figure 4. Average number of selected OTUs (including 99% confidence interval) for each data input
achieved by the BiGAMi, SFS, and GARS methods. Confidence intervals were calculated by the Seaborn
plotting library using the bootstrap resampling technique with a mean estimator. (Top): Selected OTUs
for GG97-based data input. (Bottom): Selected OTUs for RefSeq-based data input.

When compared to SFS, BiGAMi achieved a marginally superior or equal classification
score for 12 out of 14 experiments, the only exception being the RefSeq annotated dataset for
task I. In comparison with the SelectKBest results, BiGAMi shows an improved classification
score for 9 out of 14 experiments. Where SelectKBest marginally outperformed BiGAMi by
0.01–0.02 AUC classification metric, SelectKBest only achieved this by selecting substantially
larger feature sets of 1.2× to 2.4× of the feature subset sizes BiGAMi selected.

BiGAMi also outperformed GARS. While GARS successfully reduced the number of
OTUs, identifying mean subsets of 64.7, 44.5, 46.7, and 56 OTUs across the four experiments,
it achieved low classification scores when they were used in the GARS classification
model (random forest) (mean of 0.60, 0.89, 0.56, and 0.81 for tasks I-IV, respectively)
(Table 3). BiGAMi used, on average, 21% of the OTU used by GARS across the four
experiments, while achieving a high classification score (mean of 0.89, 0.98, 0.74, and 0.93
for tasks I–IV, respectively). When executed against the mid-size GARS dataset, which
includes approximately 700 features and thus meets well the dimensions of microbiome
datasets, BiGAMi achieved an average performance of 0.91 AUC with an average of
6 selected features across 25 GA runs, whereas GARS achieved a classification performance
of 0.81 AUC using 9 features.

Figure 5 summarizes BiGAMi performance in comparison to the other feature
selection approaches.

Figure 5. Performance comparison overview between BiGAMi, SFS, SelectKBest, and GARS. The
upper left cells are preferred, indicating BiGAMi achieves a higher classification metric using a
smaller feature subset.
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3.2. Taxonomy Annotation of Feature Subsets

The taxonomic annotation up to the species level was further used to identify and
explore the microorganisms selected as important for classification models applied to tasks
I–IV (Figures S1–S4) (Table 3, data inputs marked with *). Microorganisms that appeared
in fewer than five of a task’s best performing GA individuals were excluded. For task I,
where the classification performance based on the Greengenes 97 dataset outperformed
the RefSeq dataset, the translation of OTU IDs to taxonomic annotation often resulted
in the identification up to the family level, of which Lachnospiraceae (including Blautia
and Coprococcus), Ruminococcaceae (including Oscillospira), and Veillonellaceae (including
Veillonella dispar) account for 63% of the selected OTUs, accompanied by Fusobacteriaceae
(13%), Rikenellaceae (9%), Bacteroidaceae (9%), Enterobacteriaceae (6%), and Methylobac-
teriaceae (4%). For task II, Gardnerella vaginalis and Lactobacillus vaginalis account for 67% of
the selected species, followed by Gemella asaccharolytica (13%), Prevotella timonensis (13%),
and P. amnii (7%). For task III, a set of five genera (Anaerococcus, Aerococcus, Corynebacterium,
Lactobacillus, and Blautia) account for 63% of the selected species, with special emphasis
on Anaerococcus hydrogenalis, Lactobacillus crispatus, and Blautia luti. The subset identified
for task IV was dominated by Megasphaera micronuciformis (48%), Oribacterium sinus (20%),
Lactobacillus salivarius (13%), Anaeroglobus geminatus (11%), and Fusobacterium periodonticum
(8%). Further analysis of the feature subsets selected by the best performing data inputs
indicates a strong consistency for tasks II and IV (Figure 6), in which the same OTUs were
consistently selected across the 25 runs. For tasks I and III, certain OTUs were selected
almost consistently, but a larger proportion of the OTUs was selected by a few isolated
GA runs only. This is especially true for task III, which had the lowest baseline score and,
therefore, is considered to be the hardest classification task analyzed as part of this study.

Figure 6. Feature selection heatmap per best performance data input. Runs represent the 25 BiGAMi
runs per data input. Features represent the 128 features selected by the SelectKBest operation for each
data input. Yellow marks indicate that a feature was part of the best performing GA individual feature
subset. Vertical structures of yellow marks signal that a certain feature was consistently identified
as being highly relevant across the 25 BiGAMi runs. Task I: Kostic colorectal cancer healthy/tumor
GG97 CLR, Task II: Ravel vaginal Nugent category RefSeq CLR, Task III: Ravel vaginal black/white
RefSeq Rel, Task IV: Qin cirrhosis RefSeq CLR.
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4. Discussion

Microbiome datasets are often sparse and highly dimensional, meaning that not only
do they present a significant amount of zeroes, since most microorganisms are not identified
in all samples, but also, the number of samples is exceeded by the number of OTUs, or
other components, such as genes and functional pathways, by an order of magnitude. These
intrinsic characteristics are well-known challenges for the machine-learning field and can
greatly affect the outcome of ML models. Herein, we present BiGAMi, a new feature selection
method for microbiome data using genetic algorithms to tackle the dimensionality burden
by reducing the number of OTUs used in ML classification tasks while retaining a high
classification score. We also compare its results with the sequential forward selection (SFS)
method provided by the MLxtend library, the SelectKBest method provided by Scikit-learn,
GARS, and the baseline results for each study provided by Ref [29].

4.1. BiGAMi Drastically Reduced Microbiome Features for Classification Tasks

BiGAMi significantly reduced the number of microbiome features in all four tasks,
identifying subsets of informative features hundreds of times smaller than the original
dataset. The reference database used to map the OTUs had a small role in both the number
of features in each subset and in the final classification score. The only task in which the
database had a significant impact was task I, in which the Kostic colorectal cancer GG97
dataset led to better predictive performances than the RefSeq-mapped set, however, with a
larger subset of features. The other tasks (II to IV) had AUC score differences that ranged
from 0.01 to 0.04.

Differences in the input data (REL or CLR) showed a minor impact on the BiGAMi
performance; however, CLR-transformed data resulted in a 2.6–2.8× lower number of
selected OTUs than the relative abundance data. The use of CLR data has many advantages;
for instance, to overcome differences in sequencing library sizes in Metabarcoding studies,
the data have to be grouped in fractions (frequencies) to be compared between samples.
Due to this fact, Metabarcoding data are strictly compositional, since they reside in a
simplex rather than the Euclidean space [37] due to the sum constraint (frequencies of a
sample sum to 1) and thus should be investigated using approaches developed by the
compositional data analysis (CoDA) discipline.

Researchers have proposed data transformation approaches using ratios to remove the
unit-sum constraint of compositional data and project it into the Euclidean space, such as
the centered log-ratio transformation (CLR), additive log-ratio transformation (ALR), and
isometric log-ratio transformation (ILR), of which CLR is most often used in multivariate
data analysis [38,39]. Tools that consider the compositional nature of microbiome datasets
have been published recently [40,41], and the microbiome field can greatly benefit from
models using this type of data [42], or it can help circumvent the difficulties of dealing
with zero values [43]. In addition, the combination of ML and CoDA has been successfully
applied in a recent study to identify sources of potentially toxic elements in the soil of a
mining city, in the field of geology [44].

4.2. BiGAMi Outperforms Other Feature Selection Methods

In this study, we compared the BiGAMi classification performance, as well as the size
of the feature subsets leading to these performance metrics, against the results achieved
by classical feature selection methods, such as sequential forward selection (SFS) and
SelectKBest, and GARS, a different GA-based feature selection framework. The results of
all experiments underline the value of BiGAMi’s bi-objective fitness function. In 29 out
of 42 experiments, BiGAMi achieved a superior performance, either by increasing the
classification metrics or by using a smaller feature subset of features. In six experiments,
BiGAMi led to a higher performance score using a marginally larger feature subset than
SFS or SelectKBest, and in seven experiments, it displayed a marginally lower performance
score but still used fewer microbial features (Figure 5).
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BiGAMi achieved a score better than or equal to the SFS method in 12 out of 14 experi-
ments, with a reduction of up to 68% OTUs (Table 3). Only in two input data was the SFS
performance marginally higher than BiGAMi’s performance metric at the cost of a larger
OTU subset. Performance and OTU selection results for classification tasks, such as (II)
Ravel vaginal Nugent category, where even the baseline result achieved a metric of 0.99,
only differed marginally between SFS and BiGAMi. Due to its greedy mode of operation, in
which each iteration adds the single feature with the largest gain in classification metric to the
selected feature subset until a stop criterion is met, SFS lacks the capability of modeling and
evaluating the complex feature interactions inherent to microbial datasets. Both algorithms
were able to identify a limited number of OTUs needed to reliably classify samples into the
correct categories; however, while both SFS and BiGAMi achieved the average classification
performance per data input with comparable 99% confidence intervals (Figure 3), BiGAMi
identified its 25 best performing OTU subsets more consistently around the average number
of OTUs selected per data input (Figure 4). The SelectKBest method for selecting a fixed (user-
configurable) number of relevant features relies solely on statistical dataset evaluations. Hence,
like SFS, this methodology can also be blind to complex feature interactions. In comparison
to SelectKBest, BiGAMi achieved, in 9 out of 14 experiments, a higher or equal classification
score with up to 59% fewer OTUs (Table 3). In the remaining five experiments, SelectKBest
marginally outperformed BiGAMi by 0.01–0.02 AUC classification metric at the cost of se-
lecting substantially larger feature sets of 1.2× to 2.4× of the feature subset sizes selected by
BiGAMi. Using an SGDClassifier without any form of OTU selection expectedly resulted in
less performant classification results than those achieved with BiGAMi, SFS, or SelectKBest.

As another GA-based feature selection methodology, GARS was expected to be capable
of modeling complex microbial feature interactions throughout the life cycle of the search
process. Interestingly, with the exception of a single experiment (Task IV, RefSeq with
CLR data transformation), GARS did not even reach the baseline classification results.
On average, GARS selected feature subsets 5× the size of the feature subsets selected by
BiGAMi, while mostly achieving significantly worse classification results. The reference
implementation of GARS included running distinct GA searches per training data fold
and thus resulting in overfitted fold-specific distinct feature subsets, which were mostly
inconsistent with each other. Only on rare occasions, single OTUs were selected into
each of the k-fold-specific feature subsets. For the fitness evaluation of GA individuals,
GARS uses a random forest classifier, leading to longer runtimes than leveraging simpler
linear models, as BiGAMi does. GARS results for relative abundance input data were
often significantly worse than GARS performance on CLR transformed data, indicating a
potentially hidden preference on the data representation. Lastly, GARS accepts the feature
subset sizes of interest as input parameters, e.g., 5 to 20. GARS then runs separate feature
selection searches per size (and fold) and tries to fully exploit a given subset size. In
contrast, we designed BiGAMi to flexibly explore the number of active features in the
GA population chromosomes led by the nature of a Darwinian search, resulting in largely
reduced runtimes of just several minutes (BiGAMi) compared to multiple hours (GARS).
Ultimately, BiGAMi showed increased performance in both classification score and the
selection of a smaller subset of features, or at least one of both, thus highlighting its ability
to reduce the high dimensionality of microbiome datasets.

4.3. BiGAMi Selects Features with Relevant Microbiological Role

The taxonomic information of the OTU subsets identified by BiGAMi suggested that
BiGAMi extracts microbiologically relevant OTUs per classification task for well-known
diseases, making this method suitable for reliable identification of relevant microbes for
novel diseases or phenotypes in non-disease tasks.

In Task I subsets, several selected microbial families are well-known biomarkers for
the detection of colorectal cancer [45–49]. Zhong et al., 2020, describe the relation of
Collinsella aerofaciens and Bacteroides, among others, to the development of colorectal cancer.
Gao et al., 2017, discovered that Blautia were significantly reduced in cancer patients,
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while Bacteroides fragilis and Fusobacterium nucleatum were enriched. Flemer et al., 2016,
documented that cancer patients display an increased abundance of Ruminococcus.

For Task II subsets, we identified multiple recent publications that confirm that the se-
lected OTUs, including Gardnerella vaginalis and Lactobacilli, are related to the development
of bacterial vaginosis, which itself is diagnosed by a high vaginal Nugent score [50–52]. For
Task III, it was already documented that Caucasian females have a vaginal microbiome dom-
inated by Lactobacillus crispatus, among others, whereas women of African heritage show
higher abundances of Anaerococcus and Atopobium [53]. Women of European ancestry, when
diagnosed with bacterial vaginosis, were more likely to be colonized by Corynebacterium.

Lastly, for Task IV, the genus Megasphaera, among others, shows higher abundance
counts in cirrhosis duodenum, while Lachnospiraceae show decreased abundances in a
study with the salivary microbiome of cirrhotic patients [54]. The protective effect of
Lactobacillus salivarius on liver injuries was already documented [55], as well as the fact that
Fusobacterium periodonticum is enriched in cirrhosis patients [56].

The results presented here show that a bi-objective genetic algorithm fitness function
helps in building and training well-performing host-state classifiers using a minimized
subset of OTUs. Such models presented an improved predictive performance when com-
pared to the baseline models [29] and also exceeded or matched the performance of the
other algorithms on almost all data inputs while retaining smaller subsets of features. At
the same time, BiGAMi achieves these classification performance results by drastically
reducing the number of predictive OTUs compared to other algorithms. The use of a fitness
function that merges the actual classification performance and the chromosome size of
an individual into a single metric is essential for guiding the GA search toward finding
high-performance OTU subsets and proved to work efficiently on microbiome datasets.

This study only evaluated the effectiveness of the GA-based OTU selection on classifi-
cation problems. It is expected that additional regularization operations are required to
trade off the regression metric and the number of selected OTUs. General GA search param-
eters, such as the number of generations and population size, were selected in a way that
limited computation capacity, leading to superior results. It remains for future research to
define parameter guidelines that produce similar results with reduced computational cost.

5. Conclusions

This study demonstrated the successful application of a genetic algorithm with a
bi-objective fitness function to select the most predictive combination of OTUs from mi-
crobiome datasets to classify host phenotypes. It was shown that such a GA evolutionary
search for the most predictive feature (OTU) subset improves classification performance for
all classification problems. Where classifiers without a feature selection already achieved
almost perfect results, our proposed BiGAMi method performed “on par”. Furthermore,
BiGAMi achieved its results by selecting significantly fewer OTUs than other methods we
compared our results with (up to 68% fewer OTUs than sequential forward selection, up to
59% fewer OTUs than SelectKBest, and up to 93% fewer OTUs than GARS).

BiGAMi selected, on average, 1.02% of the original number of OTUs across the
14 experiments, reducing the feature space by two orders of magnitude. Compared to
methods relying on the adoption of deep learning and variational autoencoders, this fea-
ture space reduction helps simpler classifiers to find patterns in the data more easily and
improves the interpretability of the classification results. This is a desirable capability,
especially for machine-learning models used for medical diagnoses.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mps5030042/s1, Figure S1. Overview of the bacteria selected
by the 25 best performing GA individuals for all classification task I: Kostic Colorectal Cancer
Healthy/Tumor GG97 CLR, Figure S2. Overview of the bacteria selected by the 25 best performing
GA individuals for all classification task II: Ravel Vaginal Nugent Category RefSeq CLR, Figure S3.
Overview of the bacteria selected by the 25 best performing GA individuals for all classification task
II: Ravel Vaginal Black/White RefSeq RefSeq CLR, Figure S4. Overview of the bacteria selected by
the 25 best performing GA individuals for all classification task IV: Qin Cirrhosis RefSeq CLR.
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